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Abstract

In the process of biological knowledge discovery, PCA is commonly used to complement

the clustering analysis, but PCA typically gives the poor visualizations for most gene expres-

sion data sets. Here, we propose a PCCF measure, and use PCA-F to display clusters of

PCCF, where PCCF and PCA-F are modeled from the modified cumulative probabilities of

genes. From the analysis of simulated and experimental data sets, we demonstrate that

PCCF is more appropriate and reliable for analyzing gene expression data compared to

other commonly used distances or similarity measures, and PCA-F is a good visualization

technique for identifying clusters of PCCF, where we aim at such data sets that the expres-

sion values of genes are collected at different time points.

Introduction

In the process of biological knowledge discovery, the clustering and visualizing analysis plays

central roles [1–3]. The clustering algorithms are used to search for patterns that provide addi-

tional insight into the biological function and relevance of genes [4, 5]. Among the most popu-

lar are unsupervised clustering algorithms, such as K-means [5]. K-means analysis depends on

choosing an appropriate distance or similarity measure that takes into account the underlying

biology and the nature of the data [6]. Commonly used measures include PCC(the Pearson

correlation coefficient) and Euclidean distance [7]. However, K-means can not reveal underly-

ing global patterns in the data, or relationships between the clusters found. To complement K-

means, PCA is a commonly used method for this purpose. But for most gene expression data,

PCA typically gives a poor visualization [8, 9]. Because of these limitations, nonlinear dimen-

sion reduction methods have been developed that attempt to preserve local structure in the

data, such as t-SNE(t-statistic Stochastic Neighbor Embedding) [8, 10, 11]. For t-SNE, it has

been successful in displaying clusters of Euclidean distance [8], but it gives the poor visualiza-

tions for clusters of PCC usually.

Here, we use PCCF to measure similarity of genes, and PCA-F to display clusters of PCCF,

where PCCF is the correlation coefficient of F-points, PCA-F is the principal component anal-

ysis of F-points, and F-point of a gene is constructed by the modified cumulative probability of
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the positively and reversely normalized gene. To evaluate PCCF measure, we apply it to group

four gene expression data sets. These clustering results clearly demonstrate the statistical reli-

ability and biological relevance of PCCF far more than other commonly used distances or sim-

ilarity measures. For PCA-F, the cumulative variance of its principal components are greater

than 85% for any reference data set in this paper, and far more than PCA of the normalized

points. Furthermore, we demonstrate that PCA-F is able to project similar F-points in the

same regions, to accurately depict distant F-points, and to accurately reveal the relationships of

clusters of PCCF. These superior performances of PCCF and PCA-F benefit from the validity

of F-points. The most prominent feature of F-points is that their curve shapes are almost like

capital N. That is, F-points weaken the curve shape difference of the similar expression behav-

ior genes. Moreover, F-points enlarge the element discrepancy of dissimilar genes by their two

cumulative probability.

However, for PCA-F maps of many expression data sets, projections in their internal

regions are crowded usually, where these crowded projections come from these genes that

their elements are relatively equivalent. For a 2D projecting map, it needs to help an investiga-

tor in the interpretation of any particular region of the visualization, but the crowded regions

can give inconvenience for the investigator. To clearly distinguish any projecting region, we

propose PCA-FO that is the similarity transformation of PCA-F. For gene points, the position

relationship of their PCA-FO projections is the same as their PCA-F projections, but the spaces

of PCA-FO projections are more uniform compared to PCA-F.

In this study, these data sets from published studies are used to investigate and illustrate the

performance of PCCF and PCA-F, including the yeast metabolic cycle data [12], K562 cell line

data [13], human embryo data [14], and mouse retinal data [7]. Here, PCCF is firstly applied

to divide these data sets into clusters, and then these clustering results are overlayed onto

PCA-F maps. Results show that PCCF is able to group the similar expression behavior genes

into the same clusters, and PCA-F is able to project genes of the same clusters together. That

is, PCCF and PCA-F can be used in conjunction to understand the logic of cluster partitions

and to identify co-regulated genes. We suggest that PCCF and PCA-F provide new insights for

analyzing large-scale transcriptome data.

Materials and methods

Data set 1

The simulation data set contained 1500 four-dimensional points. These 1500 points belonged

to 14 populations, and each population was constructed by four independent normal distribu-

tions, where the used normal distributions were N(10,1) and N(20,2). Obviously, N(10,1) and

N(20,2) would construct 16 four-dimensional normal populations. Here, (N(10,1),N(10,1),N

(10,1),N(10,1)) and (N(10,1),N(20,2),N(20,2),N(20,2)) were abandoned, (N(20,2),N(20,2),N

(20,2),N(10,1)) consisted of 200 points, and each of other populations consisted of 100 points.

For points of (N(20,2),N(20,2),N(20,2),N(20,2)), all their elements were equivalent. And for

points of other groups, half of their elements were relatively equivalent at least.

Data set 2

NCBI GEO accession number GSE 12736. Time course microarray data was obtained at

seven independent time points. Duplicate experiments were performed for each time point.

Selecting genes with significant detection p-value produced 14000 probes out of total 23920

probes. Quantile normalization was carried out for each dataset at seven time points using the

average expression value. It was reasoned that significant genes should show over two-fold

PCCF measure and PCA-F projection
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induction at least at one time point with respect to the control sample(t = 0; before PMA treat-

ment), and 1779 probes satisfying this requirement have been determined [13, 15].

Data set 3

Yeast metabolic cycle data: NCBI GEO accession number GSE3431. This data set

described the transcriptional changes in the metabolic cycle of budding yeast Saccharomyces

cerevisiae [12, 14]. In this experiment, gene expression behaved in a periodic manner, com-

prising a non-respiratory phase followed by a respiratory phase. The transcriptome was

assayed every 25 min over three consecutive cycles, resulting in 36 samples (T1-T36). These

were profiled using Affymetrix YG_S98 oligonucleotide arrays. Probes that had at least three

‘present’ called as generated by Affymetrix Gene Chip software were classified as expressed

and the data normalized using GeneSpring v7 per-chip normalization. Using a periodicity

algorithm described in the original paper, the authors classified 3552 genes as periodic, corre-

sponding to 3656 probe sets. From these 3552 genes, 2913 genes, expression values had greater

than 5 in at least one of 36 samples selected.

Data set 4

Human embryo data: NCBI GEO accession number GSE18887. The resulting matrix

contained expression measurements for 5441 transcripts across 18 samples, denoted as the

human organogenesis expression matrix [14] (Carnegie stages 9-14, S9-S14). A total of 5441

probe sets were identified as differentially expressed using Extraction of Differential Gene

Expression (EDGE)-based methodology. Initially, Hai Fang had used SOM-SVD to identify

co-expressed genes of Human embryo Data [10, 14], which identified six clusters. From their

analysis, they extracted 2148 differentially expressed probe sets. We used this set of 2148 probe

sets for our analysis.

Data set 5

The raw mouse retinal data consisted of 10 SAGE libraries (38818 unique tags with tag

counts� 2) from developing retina taken at 2-day intervals. The samples ranged from embry-

onic, to postnatal, and to adult. Among the 38818 tags, 1467 tags that had counts greater than

or equal to 20 in at least one of the 10 libraries were selected [7]. The purpose of this selection

was to exclude the genes with uniform low expression. The counts of each tag in a SAGE

library was Poisson distributed. These Poisson distributions were independent of each other

across different tags and libraries [7].

Methods

The gene expression points can be represented by the n-tuple of vectors, where Xi = {xi1,

xi2,� � �, xin} represents the i-th gene, and xij represents the expression level of the j-th time

points.

F-points

1. Xi is normalized into Wi, where

Wi ¼ fwi1;wi2; � � � ;wing; wit ¼

xit � min ðmin
1�t�n
ðxitÞ; 0Þ

Pn
l¼1
ðxil � min ðmin

1�t�n
ðxitÞ; 0ÞÞ

; t ¼ 1; 2; � � � ; n: ð1Þ

For genes, their expression levels may be negative at some time points, such as genes of data

PCCF measure and PCA-F projection
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set 2. Here, xit is substituted by xit � min ðmin
1�t�n
ðxitÞ; 0Þ. In fact, if all expression levels of Xi

are nonnegative, xit � min ðmin
1�t�n
ðxitÞ; 0Þ is the same as xit.

2. W 0

i is constructed, whereW 0

i is the modified cumulative probability of Wi,W
0

i is named as

P-point of Xi, and

W 0

i ¼ fwi1=2;wi1 þ wi2=2;wi1 þ wi2 þ wi3=2; � � � ;
Xn� 1

s¼1
wis þ win=2g:

3. Vi and V 0i are constructed by Wi, where Vi is the ON-point of Xi, V
0

i is the modified cumula-

tive probability of Yi, and

Vi ¼ fwin;wiðn� 1Þ; � � � ;wi2;wi1g;

V 0

i ¼ fwin=2;win þ wiðn� 1Þ=2; � � � ;
Xn

s¼2
wis þ wi1=2g:

(

4. W 0

i and Y 0i are merged into Fi, where Fi is named as F-point of Xi, and

Fi ¼ fwi1=2;wi1 þ wi2=2;wi1 þ wi2 þ wi3=2; � � � ;
Xn� 1

s¼1
wis þ win=2;win=2;

win þ wiðn� 1Þ=2;win þ wiðn� 1Þ þ wiðn� 2Þ=2; � � � ;
Xn

s¼2
wis þ wi1=2g:

ð2Þ

For Fi, it is a 2n-dimensional vector, and the sum of its elements is n.

For Wi, the last element of its cumulative probability is 1, it may lose part information of win,

so we select the modified cumulative probability. Since the elements of W 0

i and Y 0

i are the

monotonous unabated, and

Xn� 1

s¼1
wis þ win=2 � 0:5 � win=2;

the curve shape of Fi is almost like capital N. That is, F-points weaken the curve shape differ-

ence of the similar expression behavior genes. Without doubt, the curve shapes of the dissimi-

lar expression behavior genes are similar also. However, F-points enlarge the element

discrepancy of dissimilar genes by their two modified cumulative probability. That is, the

curve shapes of dissimilar expression behavior genes are different N.

PCCF measure

Here, PCC between Fi and Fj(or W 0

i and W 0

j ) is defined as PCCF(or PCCP) of Xi and Xj. More-

over, Euclidean distance between Fi and Fj(or W 0

i and W 0

j ) is defined as EuF(or EuP) of Xi and

Xj also.

In fact, W 0

i and Fi is able to describe as

W 0

i ¼ fw0i1;w
0

i2; � � � ;w
0

ing;

Fi ¼ fw
0

i1;w
0

i2; � � � ;w
0

in; 1 � w0in; 1 � w0iðn� 1Þ
� � � ; 1 � w0i2; 1 � w0i1g:

ð3Þ

(

Based on Eq (3), EuF and EuP between Xi and Xj satisfy

EuFði; jÞ ¼
ffiffiffi
2
p

EuPði; jÞ:

That is, EuF and EuP are the same distance in essence.

PCCF measure and PCA-F projection
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But for PCCP and PCCF of Xi and Xj, they are

PCCPði; jÞ ¼

Xn

s¼1
ðw0is �

1

n

Xn

t¼1
w0itÞðw

0

js �
1

n

Xn

t¼1
w0jtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
Xn

s¼1
ðw0is �

1

n

Xn

t¼1
w0itÞ

2
Þð
Xn

s¼1
ðw0js �

1

n

Xn

t¼1
w0jtÞ

2
Þ

r ;

PCCFði; jÞ ¼

Xn

s¼1
ðw0is � 0:5Þðw0js � 0:5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
Xn

s¼1
ðw0is � 0:5Þ

2
Þð
Xn

s¼1
ðw0js � 0:5Þ

2
Þ

q ;

8
>>>>>>>>><

>>>>>>>>>:

ð4Þ

where the mean of Fi is 0.5. Since the means of W 0

i and W 0

j are not likely 0.5 at the same time,

PCCP and PCCF of Xi and Xj have significant difference.

PCA-F and PCA-FO

Here, (fi(1), fi(2)) is called as PCA-F projection of Xi, where fi(1) and fi(2) are the first and sec-

ond principal components of Fi, respectively. Moreover, (Fi(1), Fi(2)) is extracted as PCA-FO

projection of Xi, where

Fið1Þ ¼
fið1Þ

max
1�j�m

fjð1Þ
þ

nðfið1ÞÞ

m
;

Fið2Þ ¼
fið2Þ

max
1�j�m

fjð2Þ
þ

nðfið2ÞÞ

m
;

8
>>>>><

>>>>>:

ð5Þ

m is gene number of data set, n(fi(1)) and n(fi(2)) are the ordering number of fi(1) and fi(2),

respectively. That is, all fi(1)(or fi(2)) are irstly ordered from the smallest value to the largest

one, then n(fi(1))(or n(fi(2))) is obtained by the ordering number of fi(1)(or fi(2)). For instance,

if fi(1) is the u-th smallest value in all fj(1), n(fi(1)) is u.

S-value

The average silhouette value is a quantitative way to compare different clustering solutions

[16]. For a data set, we use the average silhouette value to quantify clustering results of its nor-

malized points, P-points and F-points. Here, we use S1-value to denote the average silhouette

value of the data set, where

S1 ¼
1

m

Xm

i¼1

ðbi � aiÞ

maxðai; biÞ
;

ai is the average distance from Yi to the other points in the same cluster as Yi, bi is the mini-

mum average distance from Yi to points in a different cluster, minimized over clusters, Yi is

the i-point of a data set, and m is gene number of the data [16].

Moreover, we use S2-value to evaluate the projections in the same regions whether that

come from similar points, Here, projections are firstly divided into clusters by Euclidean dis-

tance, then the cluster membership of Yi is k if its projection belongs to the k-th cluster. And

then, S2-value is obtained by the average silhouette value of Yi. Here, when we use S2-value to

evaluate the quality of projections, this S2-value is abbreviated as S2-value of PCCF if the simi-

larity of genes is defined by PCCF measure, and so on.

PCCF measure and PCA-F projection
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D-plot

For a dimension reduction technique, we term it as a ‘locally valid’(or ‘globally valid’) visuali-

zation if it satisfies that the i-th closest neighbour(or farthest point) of a point is its j-th closest

neighbour(or farthest point) in 2D space, and i, j and |i − j| are the relative small number,

where point neighbours are located by PCC measure, while projection neighbours are located

by Euclidean distance.

The local and global validity can be respectively quantified by D1-plot and D2-plot, where

D1ðbÞ ¼
Pm

i¼1

Pb
a¼1

r2ði; aÞ
Pm

i¼1

Pb
c¼1

rnði; cÞ
; b ¼ 2; 3; � � � ; k; 1 � a; c � b;

D2ðbÞ ¼
Pm

i¼1

Pb
e¼1

r2ði; eÞ
Pm

i¼1

Pb
f¼1

rnði; f Þ
; b ¼ 2; 3; � � � ; k; 1 � e; f � b;

8
>>>><

>>>>:

ð6Þ

m is point number of the data, k is a certain limit of local validity, ρ2(i, a) is PCC between Xi

and its a-th closest neighbor in 2D space, ρn(i, c) is PCC between Xi and its c-th closest neigh-

bor in high dimensional space, ρ2(i, e) is PCC between Xi and its e-th farthest points in 2D

space, ρn(i, f) is PCC between Xi and its f-th farthest points in high dimensional space.

In general, when we use PCC to locate point neighbours, the closest neighbors of projec-

tions do not necessarily come from real point neighbors. That is, for the c-th closest neighbor

of Xi in high dimensional space, if its projection is the s(s> k)-th closest neighbor of the pro-

jection Xi, ρn(i, c) does not appear in
Pb

a¼1
r2ði; aÞ. Thus,

Xb

a¼1

r2ði; aÞ �
Xb

c¼1

rnði; cÞ;

Moreover, for a large scale gene expression data and a relative small k, ρn(i, c) is usually non-

negative. Thus,

D1ðbÞ � 1; b ¼ 2; 3; � � � ; k:

Here, we connect these (b, D1(b)) into a broken line, and the broken line is named as D1-plot.

Obviously, D1-plot is more close Y = 1, the more high dimension nearest neighbours are

located close to one another in 2D maps. Similarly, D2-plot is defined, and it is more close

Y = 1, the relationship of distant points is depicted as more accurately.

Results

Here, all clustering results were generated from K-means with the normalized points, and

PCCF, PCC, PCCP, EuF, Euclidean distance, TransChisq and PoissonC were chosen as dis-

tance or similarity measure of genes. Moreover, the number of clusters mainly came from the

corresponding references. In details, Limb JK et al had divided data set 2 into 8 clusters by

Euclidean [13]; Natascha B et al had divided data set 3 into 3 clusters, and data set 4 into 6 and

10 clusters by Euclidean [8]; and data set 5 had been grouped into 30 clusters by TransChisq

and PoissonC measure [7, 17], respectively. Furthermore, for any clustering result, K-means

iterated 1000 times at least.

The statistical reliability of PCCF

Here, we used S1-value to demonstrate the statistical reliability of clusters of PCCF. For com-

parison, the normalized genes of each experimental data set were divided into clusters by

Euclidean, PCC, PCCP, EuF and PCCF, simultaneously. For these clustering results, their

PCCF measure and PCA-F projection
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S1-values were summarized in Table 1. For S1-value of clustering results within the same data,

Table 1 showed that clusters of PCCF was the largest, and far more than other measures. That

is, clusters of PCCF were better separated than other measures.

The biochemical reliability of PCCF

In general, the patterns revealed by the clusters under different measures roughly agreed with

each other. For instance, data set 5 had been grouped into 30 clusters by TransChisq and Pois-

sonC measure, and these studies used five mouse photoreceptor and thirty-four cell-specific

genes to demonstrate TransChisq and PoissonC measure were more efficient for analyzing

SAGE data than PCC and Euclidean distance [7, 17]. The gene expression pattern of five pho-

toreceptor genes showed high tag counts in late retinal development(adult), and thirty-four

tags showed the most dynamic and cell-specific expression in the mouse neonatal retina(devel-

opmental stages P0 − P6) [7]. For comparison, we used PCCF and PCCP to group these 1,467

tags into 30 clusters also.

For these five rhodopsin tags, only PCCF was able to group them together, while other mea-

sures divided them into two clusters(Table 2). Moreover, these thirty-four ‘cell-specific’ tags

were used to test the sensitivity and specificity of these measures. The comparison statistics of

‘cell-specific’ tags were summarized in Table 2. Here, for each of the different measures, its

three most dynamic clusters that contained ‘cell-specific’ tags were selected. In Table 2, clusters

of PCCF, TransChisq and PoissonC had no significant difference in these cell-specific genes.

That is, PCCF was appropriate and reliable for analyzing SAGE data also.

The projecting reliability of PCA-F

The cumulative variance of principal components were commonly used to assess the project-

ing reliability of PCA [18]. Here, for all data sets in this paper, their cumulative variances of

PCA-F, PCA-P and PCA-N were summarized in Table 3, where PCA-P and PCA-N are PCA

of P-points and normalized points, respectively. For any data set, Table 3 showed that the

cumulative variance of PCA-F and PCA-P had no significant difference, and PCA-P was

slightly greater than PCA-F. Importantly, the cumulative variances of PCA-F and PCA-P were

greater than 85% for any data set. However, for any data set, the cumulative variance of

PCA-N was far less than PCA-F and PCA-P and only the data set 4 was slightly greater than

85%.

Furthermore, we used data set 1 to assess the statistical reliability of PCA-F. Here, according

to population membership of points, data set 1 was mapped on PCA-F, PCA-P and PCA-N

(Fig 1), respectively. From Fig 1(a) and 1(c), although there was little intermixing within

Table 1. The S1-values of Eu, PCC, PCCP, EuF and PCCF.

Data Clustering number Euclidean PCC PCCP EuF PCCF

2 8 0.24431 0.35390 0.53346 0.35242 0.55740

2 12 0.24431 0.40716 0.45752 0.32682 0.51160

3 3 0.26024 0.47487 0.41759 0.35794 0.54141

3 7 0.21686 0.29587 0.32646 0.25695 0.42808

4 6 0.36134 0.36943 0.57720 0.47554 0.70448

4 10 0.18602 0.24727 0.40940 0.36098 0.54290

4 20 0.15153 0.17858 0.42421 0.30078 0.43652

5 13 0.16743 0.29848 0.36342 0.25944 0.43290

5 30 0.15010 0.24475 0.32660 0.21132 0.40168

https://doi.org/10.1371/journal.pone.0175104.t001

PCCF measure and PCA-F projection
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adjacent populations, PCA-F and PCA-P were able to project most points of the same popula-

tions together. Importantly, even if all elements of points were relatively equivalent, PCA-F

and PCA-P was able to project them together. For instance, PCA-F and PCA-P projected most

points of (N(20,2),N(20,2),N(20,2),N(20,2)) together, where these points were marked by 11 in

Table 2. Statistics of 5 rhodopsin tags and 34 cell-specific genes.

5 rhodopsin genes Measure Numbers Total Sensitivity Specificity

PCCF 5 51 100% 9.80%

PCCP 3 25 60% 12.0%

2 16 40% 12.5%

TransChisq 3 19 60% 15.8%

2 10 40% 20%

PoissonC 3 18 60% 16.7%

2 17 40% 11.8%

34 Cell-specific genes PCCF 11 37 32.4% 29.7%

6 49 17.7% 12.2%

5 48 14.7% 10.4%

PCCP 6 22 17.6% 27.3%

5 38 14.7% 13.2%

6 58 17.6% 10.3%

TransChisq 11 48 32.4% 22.9%

4 36 11.8% 11.1%

2 18 5.9% 11.1%

PoissonC 10 45 29.4% 22.2%

3 17 8.8% 17.6%

2 24 5.9% 8.3%

The numbers in the third column were the numbers of rhodopsin genes(or cell-specific genes) in a cluster; total, the total number of cluster members;

sensitivity, Numbers/5(or 34); specificity, Numbers/Total.

https://doi.org/10.1371/journal.pone.0175104.t002

Table 3. The cumulative variances of PCA-F and PCA-N.

Data Var of the first PC Var of the second PC Cumulative variances

PCA-F 1 87.087% 8.379% 95.466%

PCA-P 1 91.394% 5.390% 96.784%

PCA-N 1 64.701% 12.499% 77.200%

PCA-F 2 66.624% 23.132% 89.756%

PCA-P 2 77.904% 14.005% 91.909%

PCA-N 2 37.410% 23.540% 60.950%

PCA-F 3 87.662% 5.030% 92.692%

PCA-P 3 89.625% 3.354% 92.979%

PCA-N 3 45.649% 11.261% 56.910%

PCA-F 4 95.305% 3.434% 98.739%

PCA-P 4 96.704% 2.151% 98.855%

PCA-N 4 84.136% 5.548% 89.684%

PCA-F 5 66.623% 18.654% 85.277%

PCA-P 5 74.742% 11.426% 86.168%

PCA-N 5 27.313% 15.473% 42.786%

Var of the first PC: the variance of the first principal components; Var of the second PC: the variance of the second principal components.

https://doi.org/10.1371/journal.pone.0175104.t003
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Fig 1(a) and 1(c). Moreover, PCA-N clearly projected points onto seven regions, but each of

regions contained projections of two or more populations that had significant intermixing

(Fig 1(e)).

The feature of F-points

Here, the down-regulate genes of data set 2 were selected to explore the feature of F-points,

where data set 2 were divided into 12 clusters by PCCF and PCC, respectively. Moreover, these

3 clusters of PCCF and 4 clusters of PCC that contained down-regulate genes were selected,

and the curve shape of F-points and normalized points of these clusters were shown in Fig 2.

For clusters of PCCF, Fig 2 showed that the curve shape of F-points within any cluster were

almost like capital N. But for F-points of different clusters that generated from PCCF, their ele-

ments had significant difference.

Furthermore, Fig 2 showed that the similarity between F-points and normalized points had

significant difference. For instance, for genes in the second cluster of PCCF, the curve shape of

their normalized points were with no specific patterns (Fig 2(b)), but there were only small dif-

ferences for their F-points (Fig 2(i)).

The consistency between PCA-F and PCCF

When we use a measure to define the similarity of genes, a good visualization was that it was

able to project similar points into the same regions. This was able to visually display by 2D

maps of clustering results. Here, for data set 1, 2 and 5, their clusters of PCCF, PCCP and PCC

were shown on PCA-F, PCA-P and PCA-N maps, where the clustering numbers of data set 1,

Fig 1. Overlay of clusters of data set 1 onto PCA-F, PCA-P and PCA-N maps, where data points were colored according to

cluster membership. (a) PCA-F map of 14 populations. (b) Overlay of 7 clusters of PCCF onto PCA-F map. (c) PCA-P map of 14

populations. (d) Overlay of 7 clusters of PCCP onto PCA-P map. (e) PCA-N map of 14 populations. (f) Overlay of 7 clusters of PCC

onto PCA-N map.

https://doi.org/10.1371/journal.pone.0175104.g001
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2 and 5 were 7, 8 and 13, respectively. Results showed that PCA-F gave a good visualization for

any clustering result of PCCF (Figs 1(b), 3(a) and 3(b)), PCA-P maps had significant intermix-

ing for any clustering result of PCCP (Figs 1(d), 3(c) and 3(d)), and PCA-N gave poor visuali-

zations for clusters of PCC (Fig 1(f)). In fact, for clusters of PCCF, PCA-F was able to give a

good visualization even if the clustering number was not very appropriate. For instance, for

clusters of data set 1 that generated by PCCF, PCA-FO gave clear cluster boundary for cluster-

ing number from 2 to 12. These results clearly demonstrate that PCA-F was able to project

similar points into the same regions.

Moreover, for a good visualization, its close projections should come from the similar

points, and the feature could be evaluated by S2-value. Here, for each data set in this paper, its

normalized points were divided into clusters by Euclidean, PCC, PCCP, EuF and PCCF,

simultaneously. Then, S2-values of these clustering results were summarized in Table 4. For

Fig 2. The profile plots of the normalized points and F-points. The X-axis represents the different time

points. The Y-axis represents the expression level. (a, b and c) The profiles of normalized plots of three

clusters of PCCF. (d, e, f and g) The profile of normalized plots of four clusters of PCC. (h, i and j) The F-

points profile plots of three clusters of PCCF. (k, l, m and n) The F-points profile plots of four clusters of PCC.

https://doi.org/10.1371/journal.pone.0175104.g002
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S2-value of any data, Table 4 showed that clusters of PCCF were the largest, and far more than

other measures. That is, for projections of PCA-F, if they were close neighbours in 2D space,

their corresponding F-points were Pearson correlation also.

Comparison of PCA-FO and PCA-F

Here, data set 4 were divided into 6 and 20 clusters by the PCCF, and these clustering results

were overlaid on PCA-FO and PCA-F maps (Fig 4), respectively. Fig 4 showed that PCA-FO

and PCA-F gave the good visualizations for any clustering result. However, for projections in

Fig 3. Overlay of clusters of data set 2 and 5 onto PCA-F and PCA-P maps. (a) Overlay of 8 clusters of PCCF of data set 2 onto

PCA-F map. (b) Overlay of 13 clusters of PCCF of data set 5 onto PCA-F map. (c) Overlay of 8 clusters of PCCP of data set 2 onto

PCA-P map. (d) Overlay of 13 clusters of PCCP of data set 5 onto PCA-P map. (e) Overlay of 8 clusters of EuF of data set 2 onto

PCA-P map. (f) Overlay of 13 clusters of EuF of data set 5 onto PCA-P map.

https://doi.org/10.1371/journal.pone.0175104.g003

Table 4. The S2-values of Eu, PCC, PCCP, EuF and PCCF.

Data Clustering number Euclidean PCC PCCP EuF PCCF

1 14 0.20427 0.18071 0.17269 0.37355 0.41520

1 7 0.33561 0.42601 0.28892 0.36729 0.44093

2 8 0.21844 0.12117 0.33842 0.34472 0.47512

2 12 0.18822 0.02316 0.27094 0.32635 0.41805

3 3 0.25896 0.22037 0.35470 0.35810 0.54903

3 7 0.17817 0.00127 0.12349 0.22670 0.37853

4 6 0.36049 -0.15155 0.53979 0.47601 0.70383

4 10 0.18378 -0.18443 0.37631 0.36038 0.59199

4 20 0.14921 -0.21595 0.29810 0.28821 0.40441

5 13 0.07048 -0.07371 0.14172 0.24359 0.37795

5 30 0.01168 -0.15203 0.02501 0.17687 0.19856

https://doi.org/10.1371/journal.pone.0175104.t004
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the internal regions, PCA-F maps were crowded (Fig 4(c) and 4(d)), while PCA-FO maps were

relatively loose and clear (Fig 4(a) and 4(b)).

In fact, for any of components of two nearest projections of PCA-FO, their spacing was

greater than l/2m, where l was the largest exhibition size, m was the gene number of data set.

In a limited display space, the feature of PCA-FO would assure that projections were relatively

loose and clear. Furthermore, compared to PCA-F and PCA-FO, the position relationship of

their projections were the same almost. In fact, for the first(or second) components of PCA-

FO, their order of size were the same as PCA-F.

Comparison of PCA-FO and t-SNE

Here, we also used the simple t-SNE to construct 2D projections of F-points, where we named

t-SNE of F-points as t-SNE-F, and the dimension of the F-points was used as the perplexity

value of t-SNE-F.

Here, data set 3 was firstly divided into 3 and 7 clusters by PCCF, and then these clustering

results were overlaid on PCA-FO and t-SNE-F maps (Fig 5). Fig 5(a) and 5(b) showed that

PCA-FO gave these clustering results good 2D projections. However, Fig 5(c) and 5(d) showed

that t-SNE-F maps had significant intermixing for any clustering result.

The local and global validity of PCA-FO

Here, D1-plot and D2-plot were used to assess the local and global validity of different dimen-

sion reduction techniques, where D1-plot and D2-plot of data set 2 were overlaid on Fig 6(a)

and 6(b), respectively. For the local validity of PCA-FO, PCA-F and PCA-N, Fig 6(a) showed

Fig 4. Overlay of clusters of data set 4 onto PCA-FO, PCA-F and PCA-N maps, where clusters were generated by PCCF. (a)

Overlay of 6 clusters onto PCA-FO map. (b) Overlay of 20 clusters onto PCA-FO map. (c) Overlay of 6 clusters onto PCA-F map. (d)

Overlay of 20 clusters onto PCA-F map. (e) Overlay of 6 clusters onto PCA-N map. (f) Overlay of 20 clusters onto PCA-N map.

https://doi.org/10.1371/journal.pone.0175104.g004
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that they had no significant difference, but they were less than t-SNE-F and t-SNE-N. But for

the global validity, PCA-FO, PCA-F and t-SNE-F were almost the same, and they were far bet-

ter than t-SNE-N and PCA-N.

The poor global validity of t-SNE-N and PCA-N was able to explain that they gave the poor

visualization for clusters of PCC. That is, the relationship of distantly normalized genes was

not accurately depicted by t-SNE-N and PCA-N. But for t-SNE-F, its global validity was the

same as PCA-FO, and its local validity was superior to PCA-FO. However, for clusters of

PCCF, t-SNE-F maps had significant intermixing within adjacent clusters (Fig 5(c) and 5(d)).

In fact, for these gene neighbors keep away from any clustering center, t-SNE-F tried to project

them together, but PCCF did not necessarily group them together.

The gene neighbor map of PCA-FO

To readily see which nearby 2D points were truly similar, the nearest and second closest gene

neighbor map was generated by PCA-FO. Here, we constructed the nearest and second closest

gene neighbor map of data set 2, where the map was showed on Fig 7. Fig 7 showed that the

majority of high dimension nearest neighbours were located close to one another in PCA-FO

maps.

The gene neighbor map revealed the pairs of high dimensional points that were truly close,

and which pairs were in fact distant in 2D space. Moreover, PCA-FO maps combined with

nearest neighbour maps provided an intuitive means to understand the relationship between

clusters and the affiliation of genes with specific clusters.

Fig 5. Overlay of clusters of data set 3 onto PCA-FO and t-SNE-F maps, where clusters were generated by PCCF. (a)

Overlay of 3 clusters onto PCA-FO map. (b) Overlay of 7 clusters onto PCA-FO map. (c) Overlay of 3 clusters onto t-SNE-F map.

(d) Overlay of 7 clusters onto t-SNE-F map.

https://doi.org/10.1371/journal.pone.0175104.g005
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Fig 6. D-plot of data set 2. D-plot of PCA-FO, PCA-F, PCA-N t-SNE-F and t-SNE-N were displayed by green line, red line,

gray dotted line, blue line and pink dotted line, respectively. (a) D1-plot of PCA-FO, PCA-F, PCA-N t-SNE-F and t-SNE-N. (b)

D2-plot of PCA-FO, PCA-F, PCA-N t-SNE-F and t-SNE-N.

https://doi.org/10.1371/journal.pone.0175104.g006

Fig 7. The gene neighbors of data set 2. The nearest and second closest neighbors of genes of data set 2, where the

nearest gene neighbor were lined by red line, and second-closest gene neighbor were lined by blue line.

https://doi.org/10.1371/journal.pone.0175104.g007
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Discussion

For the modified cumulative probability, although they are the one-to-one mapping with their

normalized points, their magnitude has significant differences, which can result in PCA-P to

give the poor visualizations for clusters of PCCP. Moreover, for the different position elements

of a normalized point, their superposed opportunity are not consistent in the modified cumu-

lative probability, which can make PCCP excessively dependent on the first few elements of

normalized points. Here, the defect of the modified cumulative probability is removed by F-

points. That is, the magnitude of F-points is the same, and F-points assure that the superposed

opportunity of all elements of normalized points are consistent. Importantly, for data set 2 and

4, PCA-N gave good visualizations for clusters of PCCF also (such as Fig 4(e) and 4(f)). That

is, F-points retain the difference of the normalized genes.

For a complex gene expression data set, a difficult issue in K-means is the estimation of K,

the number of clusters. If K is unknown, starting with arbitrary random K is a relatively poor

method. Here, the defect of K-means are partially weakened by PCCF and PCA-F. That is, for the

similar expression behavior genes, even if the number of clusters is not very appropriate, PCCF

can group them into appropriate clusters, and PCA-F is able to reveal their relationships also.

Conclusion

In this paper, we clearly demonstrate that PCCF is more reliable for analyzing gene expression

data compared to other commonly used measures. Moreover, for clusters of PCCF, PCA-F

give them good visualizations. The success of PCCF and PCA-F indicates that the effective

methods for analyzing large-scale gene expression data must be based on an understanding of

the biological nature of the experimental data.
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