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Globally, millions of people suffer from various substance use disorders (SUD), including
mono-and polydrug use of opioids and methamphetamine. Brain regions such as the
cingulate cortex, infralimbic cortex, dorsal striatum, nucleus accumbens, basolateral and
central amygdala have been shown to play important roles in addiction-related behavioral
changes. Clinical and pre-clinical studies have characterized these brain regions and their
corresponding neurochemical changes in numerous phases of drug dependence such as
acute drug use, intoxication, craving, withdrawal, and relapse. At present, many studies
have reported the individual effects of opioids and methamphetamine. However, little is
known about their combined effects. Co-use of these drugs produces effects greater than
either drug alone, where one decreases the side effects of the other, and the combination
produces a prolonged intoxication period or a more desirable intoxication effect. An
increasing number of studies have associated polydrug abuse with poorer treatment
outcomes, drug-related deaths, and more severe psychopathologies. To date, the
pharmacological treatment efficacy for polydrug abuse is vague, and still at the
experimental stage. This present review discusses the human and animal behavioral,
neuroanatomical, and neurochemical changes underlying both morphine and
methamphetamine dependence separately, as well as its combination. This narrative
review also delineates the recent advances in the pharmacotherapy of mono- and poly
drug-use of opioids and methamphetamine at clinical and preclinical stages.
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INTRODUCTION

Dependence on drugs and alcohol is a serious worldwide problem
from social, economic, and health perspectives (Pakri Mohamed
et al., 2018; Das and Horton, 2019; Sontate et al., 2021). Globally,
the number of methamphetamine and opiate users has continued
to grow at an alarming rate despite numerous stringent drug
abuse laws (Bach et al., 2020; Dezman et al., 2020). A recent report
indicates a nearly four-fold increase in methamphetamine-related
hospitalizations and a more than 10-fold increase in stimulant-
related deaths (Winkelman et al., 2018; Ruhm, 2019) surpassing
the overdose death rate of prescription opioids (Hedegaard et al.,
2020). Likewise, the prevalence of opioid overdose and overdose-
related deaths were also escalated in the past years (Stevens et al.,
2017; Sivaraman et al., 2021). What’s more concerning is, almost
half of psychostimulant use-related deaths involve opioids, and
an increase in trend is also observed in opioid use related-deaths
involving methamphetamine (Ihongbe and Masho, 2016; Lancet,
2018; Gladden et al., 2019; Kariisa et al., 2019), indicating a spike
in polysubstance use (Palamar et al., 2018; Zuckermann et al.,
2019; Compton et al., 2021). It is estimated that the global cost for
the treatment of 4.5 million drug users is about $35 billion
annually (INCB, 2013), which is accounted for only one in six
drug users. If all of the dependent drug users were to seek
treatment, it would cost an estimated 0.3–0.4% of the global
gross domestic product ($200 billion) (INCB, 2013). The cost of
untreated and continuing use is significantly higher than
investment in treatment alone, research finds. Reports from
the United States National Drug Intelligence Center (NDIC)
indicate the drug-related healthcare cost includes both direct
and indirect costs related to inpatient drug treatment, medical
intervention such as emergency services, and research for
prevention and treatment (NDIC, 2011).

Currently, one of the most well-researched treatment options
for substance dependence is opioid dependence. Methadone
maintenance therapy (MMT) has been employed as one of the
harm reduction approaches to manage opiate addiction (Ali et al.,
2018), with some reporting its efficacy in reducing high-risk
behaviors (Zhang et al., 2019), and whereas some have argued
that for long term treatment, MMTmay not significantly improve
the quality of life among patients (Teoh Bing Fei et al., 2016).
MMT also requires lifelong commitments from drug users. Other
drugs such as buprenorphine or buprenorphine-naloxone are
mainly used in private settings due to the high cost, as a
maintenance therapy (Vijay et al., 2015). Buprenorphine is an
opioid agonist like methadone, whereas naloxone is a short-acting
opioid antagonist commonly given by injection to reverse opioid
overdoses (Webster et al., 2016). In several countries,
buprenorphine or buprenorphine-naloxone combinations were
injected illicitly by the majority of opioid users, increasing the
incidences of opioid dependence (Yokell et al., 2011). Oral
treatment of naltrexone for opioid dependence is ineffective
due to poor treatment adherence (Minozzi et al., 2011).
Naltrexone implant, on the other hand, has produced some
positive results in the treatment of opioid or polydrug abuse
(Kelty et al., 2019; Krupitsky et al., 2019). Nevertheless, the
clinical efficacy of the implant in the long-term has not been

reported and the potential opioid overdose associated with
naltrexone implant has not been sufficiently explored (Saucier
et al., 2018).

To date, there are no significantly convincing treatment
outcomes in the pharmacotherapy of methamphetamine use
disorder (MUD) (Morley KC. et al., 2017; Ballester et al.,
2017). Systematic analysis of existing literature revealed some
positive outcomes with dexamphetamine, methylphenidate,
naltrexone, and topiramate, whereas anti-depressants, such as
selective serotonin reuptake inhibitors, and tricyclic
antidepressants were being the least effective in the
management of MUD (Siefried et al., 2020). Individual clinical
studies have reported efficacy in the use of buprenorphine
(Ahmadi and Razeghian Jahromi, 2017; Ahmadi et al., 2019),
N-acetylcysteine (Salehi, 2015), and methylphenidate (Rezaei
et al., 2015) in reducing the craving score of
methamphetamines, whereas some have reported lack of
efficacy among drugs such as bupropion (Anderson et al.,
2015), modafinil (Heinzerling et al., 2010; Anderson et al.,
2012), varenicline (Briones et al., 2018) in methamphetamine
dependence treatment.

Therefore, this present review discusses the human and animal
behavioral and neurochemical changes underlying both
morphine and methamphetamine dependence separately, as
well as its combination. This review also delineates the recent
advances in the pharmacotherapy of mono and poly drug-use of
opioids and methamphetamine at clinical and preclinical stages.

OPIOID USE DISORDER

Opioid abuse originates from over prescription for the patients’
pain relief, while the increasing availability of low-cost opioids
also has exacerbated its potential for abuse (Darcq and Keiffer,
2018). Patients develop tolerance to the opioid’s analgesic effect
after treatment over an extended period. Administration of
opioids at a higher dose is used to overcome this tolerance,
however, patients will then be vulnerable to severe side effects
such as withdrawal symptoms, and the threat of respiratory
depression (Hayhurst and Durieux, 2016). Worldwide, the
prevalence of opioid use was the highest in North America
(UN World Drug Report, 2021). Analysis of individual data
from the United Kingdom, United States, Australia, Germany,
and France revealed that almost 1 in 5 reported abuse and 1 in 4
individuals reported misuse of opioid analgesics obtained
through a prescription (Morley KI. et al., 2017). Heroin,
fentanyl and morphine were the most commonly used opioids
amongst others which include methadone, buprenorphine,
codeine, tramadol, oxycodone, and hydrocodone (UN World
Drug Report, 2019). According to WHO estimates, there were
approximately 115,000 casualties from opioid overdoses globally,
and COVID-19 has further exacerbated the fatality rate (Centers
for Disease Control and Prevention, 2020; UN World Drug
Report, 2021).

Morphine abuse negatively affects the users once the addiction
cycle is engaged due to the tolerance developed following
prolonged use of morphine, which is defined as the need to
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increase the dose to achieve the same initial effect due to
decreased analgesic efficacy (Dai et al., 2018). The Food and
Drug Administration (FDA) defines a person is opioid-tolerant if
the person has been receiving oral morphine 60 mg/day for
1 week, where different types of opioids have different
durations such as transdermal fentanyl, oral oxycodone, oral
hydromorphone, oral oxymorphone with 25 mg/h, 30 mg/day,
8 mg/day, 25 mg/day, respectively (Rabin et al., 2017). The users
potentially succumb to dependence due to the severity of the
withdrawal symptoms including abdominal pain, nausea,
diarrhea, lacrimation, and generalized piloerection. In contrast
to the drug pain-relieving effects, drug cessation in the morphine-
dependent state results in the genesis of negative effects such as
anxiety, agitation, and dysphoria (Verster et al., 2021).
Psychological dependence on the other hand refers to the state
of the patient where they are craving for the drug, to relieve its
withdrawal symptoms, or for its gratifying effects (Jacobs, 1986).
The withdrawal symptoms that are brought forth from abstinence
lead to craving with disinhibition, leaving the user vulnerable to
relapse (Kalant, 2010; Campbell et al., 2013). Moreover, there was
heightened impulsivity and impaired strategic planning in
opioid-dependent patients (Tolomeo et al., 2016), along with
increased anhedonia (Kras et al., 2018; Kiluk et al., 2019).
Withdrawal symptoms are a key driver behind continued
abuse, and a barrier to opioid discontinuation (Pergolizzi
et al., 2020).

Behavior parameters established using various models of
abuse under controlled environmental and drug
administration regimens mimic the psychological status of
humans in the presence or absence of substances depending
on the animal models (Kumar et al., 2013; Kumar et al., 2016;
Iman et al., 2021). Likewise, in opioid dependence animal models,
depressive-like behaviors are significant at 1 week after prolonged
withdrawal where experiments showed that there was a
decreasing level of social interaction and elevation in
immobility time which reflects a state of lowered mood or
depression-like behavior (Anraku et al., 2001). The social
avoidance symptoms and emotional despair mirrored by these
mice reflect depression (Jia et al., 2013). Anxiety is another
prominent affective symptom that manifests during abstinence
from chronic morphine administration. Animal studies have
shown that there is a significant increase in anxiety-like
behaviors in the elevated plus maze and light/dark box
paradigms (Zhang et al., 2008; Buckman et al., 2009; Miladi-
Gorji et al., 2012). Apart from that, another prominent
withdrawal symptom that accompanies abstinence is impulsive
behavior, which encapsulate poor inhibitory response control
(impulsive action) and impulsive decision making (impulsive
choice) where observations suggest that the opioid system
plays a significant role in decision making (Pattij et al., 2009).
Morphine exposure also increases motor impulsivity in animal
models (Kieres et al., 2004; Colin et al., 2012; Moazen et al., 2018),
as well as deficits in learning and memory (Iman et al., 2021).

In Europe, fentanyl abuse was related to over 250 fatalities,
while in 2017 alone there have been 25 fatalities associated with
fentanyl and its synthetics analogs such as carfentanil, butyryl
fentanyl, fluorobutyrylfentanyl, furanylfentanyl, and alfentanil

(European Monitoring Centre for Drug and Drug Addiction,
2018; Hikin et al., 2018). According to the National Survey on
Drug Use and Health in the United States, fentanyl use appears to
be on the rise although the most commonly misused prescription
opioids are hydrocodone, oxycodone, codeine, and tramadol (UN
World Drug Report, 2018). Fentanyl and fentanyl analogs are full
agonists at the MOR with varying degrees of potencies, where
acetylfentanyl is 5–15 times more potent than heroin (Yonemitsu
et al., 2016), butyfentanyl is 7 times more potent than morphine
(Steuer et al., 2017) and ocfentanil is almost 90 times more potent
than morphine (Fletcher et al., 1991). There is a high demand for
opioids that are popularly derived from fentanyl, which are
available at a cheaper cost compared to heroin (Marchei et al.,
2018; Rothberg and Stith, 2018). Fentanyl is 50 times more potent
than heroin (Rothberg and Stith, 2018), it is often found in heroin
samples as a cutting agent that is meant to give heroin a much
higher potency, which is more favorable to drug abusers (Marchei
et al., 2018). Fentanyl also causes drowsiness, sedation, euphoria
(lesser than heroin and morphine), respiratory depression,
anxiety, hallucinations and have associated with withdrawal
symptoms such as diarrhea, abdominal cramps, anxiety,
sweating, bone pain, and shivers (Stanley, 2014; Suzuki and
El-Haddad, 2017; Kuczynska et al., 2018).

Rats that undergo short-term withdrawal from fentanyl self-
administration (0.0032 mg/kg/infusion followed by 24 h
abstinence) were found to have a disrupted brain immune
response where there was an increase of inflammatory
responses in the NAc simultaneously resulting in
immunosuppression in the hippocampus (Ezeomah et al.,
2020). It was suggested that the changes in immune outcomes
in the central nervous system contribute to the relapse in OUD,
however, the authors interestingly noted that the inflammation
levels did not correlate with the opioid receptor expression (Grace
et al., 2015; Liang et al., 2016). Cisneros and colleagues proposed
that the fentanyl-associated change in the immune response
contributes to neuroimmune adaptations that might drive the
development of OUD, and increase the onset and severity of
neurocognitive disorders (Cisneros and Cunningham, 2021).
Chronic self-administration of fentanyl in rats (2.57 μg/kg per
i.v. infusion, 30 days), significantly decreased ultrasonic
vocalization, suggesting an aversive response to repeated
fentanyl use, thus indicating negative reinforcement (Dao
et al., 2021). Cessation of fentanyl administration (1.2 mg/kg/
day for 14 days) also resulted in a time-dependent elevation in
brain reward thresholds and somatic withdrawal signs, displaying
severe deficits in brain reward function (Brujinzeel et al., 2006). In
addition, chronic administration of high dose fentanyl
(0.3 mg/kg/i.p. for 28 days) reduced anxiety-like behavior in
rats in the open field and elevated plus maze tests (Colasanti
et al., 2011; Fujii et al., 2019), reduced muscle strength and
locomotion (Fujii et al., 2019) On the contrary, during
withdrawal, increase in anxiety-like behavior and hyperalgesia
was noticed in mice, and neither high nor low doses of fentanyl
had any negative effects on the animals’ cognition (Fujii et al.,
2019). In a separate study, 25 μg/kg of fentanyl reduced the
grimace scale in mice and rats inflicted with injury of the
infraorbital nerve (Akintola et al., 2017). In a more recent
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study, extended access to self-administration of a vaporized
fentanyl to rats altered their behavioral economic metrics
consistent with the development of an addiction-like state
(McConnell et al., 2021).

The Centre for Disease Control and Prevention reported that
there were a cumulative 14000 heroin users died from an
overdose in the United States (Centers for Disease Control
and Prevention, 2020). In addition, there is a 97.5% increase
in heroin use among non-medical users of other prescription
drugs suggesting increased polydrug abuse (Jones et al., 2015).
Key factors behind the polydrug use of heroin and other
substances are the high cost and low availability of heroin,
making drug abusers seek cheaper and more lasting highs
(Siegal et al., 2003; Lankenau et al., 2012; Mateu-Gelabert
et al., 2015). Symptoms of heroin withdrawal include
restlessness, insomnia, diarrhea, muscle and bone pain and
cold flashes, depression, and nausea, peaking around 48–72 h
after the last dose and may last 5–10 days (National Highway
Traffic Safety Administration, 2004). Chronic administration of
heroin (5 mg/kg at 12 h intervals for 34 days) impaired spatial
learning and memory along with increased expression of
proapoptotic proteins, relating the cognitive detriment to
neural apoptotic damage (Garcia-Fuster et al., 2003; Astals
et al., 2008). Withdrawal from intravenous self-administration
of heroin (5 daily sessions, limited to 25 number of infusions
0.04 mg/infusion after 7 days increased to 75 number of infusions
maximum), results in motivational deficit shown by a significant
increase in latency to collect earned food, which was hypothesized
as a consequence of the diminished perceived value of the food
reward (Goldberg and Schuster, 1967; Harris and Aston-Jones,
2003; Dalley et al., 2005).

METHAMPHETAMINE USE DISORDER

Methamphetamine is a powerful psychostimulant that has
been abused as a recreational drug instead of its intended
use as a second-line treatment for attention deficit
hyperactivity and obesity (Kish et al., 2001).
Methamphetamine remains a significant public health
concern over its abuse, especially in its crystalline form,
where its use is rapidly increasing in East and South-East
Asia (UN World Drug Report 2021). According to the UN
World Drug Report 2021, the highest prevalence of
Amphetamine Type Stimulant (ATS) abuse was reported in
North America and the lowest in Africa. But the prevalence of
non-medical use of pharmaceutical stimulants and
methamphetamine was the highest in North America as
well as South East Asia. Malaysia, however, reported 65.2%
ATS use among its drug and substance abusers according to
the National Anti-Drug Agency Report (National Anti-Drug
Agency, 2019).

Clinical findings have associated chronic use of
methamphetamine with manifestations of withdrawal
symptoms including fatigue, sleep disturbance, dysphoria,
agitation or psychomotor retardation, increased appetite,
depression, and anxiety (American Psychiatric Association,

2013; Zhao et al., 2021). Anxiety and depression appear to be
prominent and severe especially during the early withdrawal
period (Zhang et al., 2015; Ren et al., 2017; Luan et al., 2018;
Luan et al., 2018), where longer duration of methamphetamine
use was associated with a higher odds ratio of depression, and
co-occurring anxiety and psychotic symptoms (Ma et al.,
2018). Whereas, symptoms such as craving and sleep
disturbance were reported to persist as long as 4 weeks of
post-abstinence (Zorick et al., 2010; Mancino and Gentry,
2011). Increased impulsivity also was reported among
methamphetamine users during abstinence which is
suggested to be a negative reinforcer to maintain drug use
(Jones et al., 2016). In a study using the Iowa gambling task,
methamphetamine dependence significantly affected
inhibitory control and decision making, suggesting
abnormal reward processing and inhibitory control
(Fitzpatrick et al., 2020). Methamphetamine dependence
also affects the cognitive ability of dependent users such as
visual memory (Moon et al., 2007), attention/processing speed
learning/memory, working memory, timed and executive
function (Kalechstein et al., 2003), and decision making
(Mizoguchi and Yamada, 2019). Moreover, it was also
reported that a month of abstinence did not improve the
impaired cognition of methamphetamine-dependent
subjects (Simon et al., 2010).

Studies employing mice, induced methamphetamine
withdrawal through various dosage regimens, where some
researchers achieved this by administering the substance
through varied durations such as 8 weeks (5 mg/kg, i.p, once
a day, 5 days per week; Ru et al., 2019), 2 weeks (2 mg/kg, 12-h
intervals; Hosseini et al., 2021), and 10 days (5 mg/kg, i.p, once
a day; Georgiou et al., 2016; Jacobskind et al., 2019). Whereas,
some tested escalating dose regimen for 10 days (D1: 2 mg/kg,
D2: 4 mg/kg, D3-10: 6 mg/kg). Researchers using rats opted for
10 days of methamphetamine exposure (2 mg/kg,
intramuscular; Li et al., 2021), some for 14 days (2 mg/kg,
12 h interval; Damghani et al., 2016), 21 days (10 mg/kg; Yasuj
et al., 2019), 14 days (inhalation of methamphetamine, 1W:
5 mg/kg, 2W: 10 mg/kg; Rezaeian et al., 2020), 7 days (2 mg/kg
once per day, i.p; Etaee et al., 2019), and 4 days (2.5, 5 or
7.5 mg/kg every 3 h, 3 times per day, i.p; García-Cabrerizo and
García-Fuster, 2019). Withdrawal from chronic
methamphetamine (various doses of methamphetamine
given for 8 weeks, 21, 14, and 4 days) resulted in changes in
behaviors such as anxiety and depressive symptoms when
tested in the open field, sucrose preference test, forced swim
test, and splash test (Damghani et al., 2016; Shabani et al.,
2018; Ru et al., 2019; Yasuj et al., 2019; Rezaeian et al., 2020;
Hosseini et al., 2021). In addition to this, some reported no
changes in the locomotion of animals during the withdrawal
period (Hosseini et al., 2021; mice; 2 mg/kg, 12-h intervals),
whereas some reported increase in locomotion in
methamphetamine treated animals (Rezaeian et al., 2020;
rats; inhalation of methamphetamine, 1W: 5 mg/kg, 2W:
10 mg/kg). These discrepancies could be due to the
differences in strains of animals tested, mode of
methamphetamine intake, dose, and duration of intake as well.
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CO-ABUSE OF OPIOID AND
METHAMPHETAMINE

Polysubstance use is a serious public health concern across the
globe (Morley KC. et al., 2017; Lyons et al., 2019; Zuckermann
et al., 2019), especially among young adults and adolescents
(Tomczyk et al., 2016; Silveira et al., 2019; Willis et al., 2019;
Zuckermann et al., 2019). Among the adolescents, the common
polysubstance use comprised cigarettes/E-cigarettes/tobacco,
alcohol, and marijuana (Tomczyk et al., 2016; Zuckermann
et al., 2019, 2020; Tan et al., 2020). Systematic analysis of data
from the US, United Kingdom, France, Germany, and Australia
associated benzodiazepine with four-fold greater odds of misuse
and six-fold greater odds of abuse with prescription opioid
analgesics (Morley KI. et al., 2017). Data from the National
Survey on Drug Use and Health (2015–2018; 18–64 years old)
revealed that the prevalence of opioid and methamphetamine use
was higher among those from the age group 18–49 (Shearer et al.,
2020). In the US, methamphetamine use was significantly
increased among treatment-seeking opioid users, from 18.8%
in 2011 to 34.2% in 2017 (Ellis et al., 2018). In line with this, an
increase in methamphetamine use was reported among primary
treatment admissions, from 1 in 50 in 2008 to 1 in 8 in 2017
(Jones et al., 2020). InMalaysia, a steep increase in polydrug abuse
was reported, with 8,841 polydrug abusers in 2018, by 2019 it has
increased to 15,166 polydrug abusers which is around a 71.5%
increase in a year’s time (National Anti-Drugs Agency, 2019).
Moreover, in the US, almost half of the psychostimulant use-
related deaths involve opioids, and likewise, opioid use related-
deaths involve methamphetamine co-use (Ihongbe and Masho,
2016; Lancet, 2018; Gladden et al., 2019; Kariisa et al., 2019;
Compton et al., 2021).

Polydrug abuse refers to the fairly common activity where
drug users combine the desired effects of multiple different drugs
in one administration or on separate occasions. The combination
that is most popular among polydrug users is the co-use of
stimulants and opioids, which is known as “speedball:
combination of opioids and cocaine” (Trujillo et al., 2011) or
“goofball: combination of opioids and methamphetamine” (Glick
et al., 2021). Individuals with OUD often co-use
methamphetamine through separate use or co-injection (Al-
Tayyib et al., 2017), to balance the two drugs’ relative effects,
attaining a synergistic high or mitigate the risk of overdose or
withdrawal (Ellis et al., 2018; Palmer et al., 2020; Baker et al.,
2021). Patients taking medications for OUD, use
methamphetamine to attain an alternative high to opioids
and/mitigate the sedative effects of the medications (McNeil
et al., 2020; Palmer et al., 2020). Polydrug abuse also refers to
the sequential use of drugs, which is the consumption of a
substance after the peak effect of another substance, reportedly
to alleviate withdrawal symptoms or to prolong a state of
euphoria (Preston et al., 2016). Combinations most popularly
included stimulant and depressant substances (Rigg and Ibañez,
2010; Silva et al., 2013) with the main motivation behind this
sequential combination being the alleviation of withdrawal
symptoms. However, the sequential polydrug combination
does not exclude substances of the same class which aim to

ease the effects of the drug (Lankenau et al., 2012; Kecojevic et al.,
2015). Prolonging a high also was a motivation behind the
sequential use of stimulants and opioids, which manages the
opposing psychotropic effects (Valente et al., 2020). Moreover, it
was reported that methamphetamine users with a history of
polysubstance use (such as heroin, ketamine, and ecstasy) are
more prone to develop anxiety symptoms during the early period
of abstinence (Su et al., 2017). In line with this, polydrug use was
associated with anxiety and depression by a 10-years prospective
study (Burdzovic Andreas et al., 2015). A study involving
psychostimulant-dependent patients with a history of polydrug
use revealed that the severity of negative symptoms in
psychostimulant-associated psychosis is not related to the
psychostimulant use, but rather due to the use of opioids
(Willi et al., 2016). Furthermore, it was also reported that co-
use of methamphetamine and morphine results in differential
physical symptoms compared to the use of morphine or
methamphetamine alone. For instance, co-used patients
reported increased catecholaminergic hyperstimulation of
respiratory, cardiovascular, and peripheral nervous systems,
and more severe neuropsychiatric symptomatology (Liu et al.,
2015).

Although there have been a number of preclinical studies that
attempt to characterize the polydrug abuse phenomenon, there is
still insufficient evidence to completely understand the behavioral
and neurochemical consequences that come with it. Chronic
administration of morphine and methamphetamine increased
the incidence of jumping behavior (Kaka et al., 2014), where
morphine assigned rats were given cumulative doses of 5, 10, 20,
30, and 40 mg/kg per day within 5 days while methamphetamine
was assigned rats were given cumulative doses of 1, 2, 4, 6 and
8 mg/kg per day for 5 days, and lastly, on day 6, a combination of
8 mg/kg methamphetamine and 40 mg/kg morphine was
injected. It is indicative of an attempt to escape the test
chamber due to withdrawal-induced anxiety and stress (Liu
et al., 1999). Manifestation of withdrawal symptoms in the
methamphetamine or morphine alone administered animals
were dissimilar to the animals exposed to both
methamphetamine and morphine. None of the
methamphetamine-administered animals displayed escape
behaviors and other behaviors such as ptosis and chewing
were more pronounced in the morphine-treated animals (Kaka
et al., 2014). The co-use of drugs oftenmasks the unwanted effects
of the other drug. In line with this, it was reported that the co-use
of morphine and low dose methamphetamine (7.5 mg/kg and
1.0 mg/kg respectively) caused sensitization of the opioid receptor
system with the psychostimulant masking the sedative effects of
morphine (Ridzwan et al., 2018). The effects of
methamphetamine and morphine co-use depend on the drugs’
dose and behaviors assessed, and very often synergistic effects of
the drugs have been reported with concurrent co-use. An acute
combination of morphine (5 mg/kg) and methamphetamine
(1 mg/kg) injected subcutaneously resulted in more than twice
of ambulation and more than 50% of rearing than the animals
administered with each drug alone, indicating synergistic effects
from the co-use (Trujillo et al., 2011). Furthermore, it was also
reported that methamphetamine (0.032 mg/kg/infusion) had no
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reinforcing effects on rats withdrawn from morphine or
morphine-dependent rats, whereas fentanyl produced high
reinforcing effects on morphine withdrawn animals, and
reduced effects on morphine-dependent animals. These results
suggest that the reinforcing effects of methamphetamine are
independent of the withdrawal or dependence state of opioid
use (Seaman et al., 2021). Likewise, morphine (0.75 mg/kg i.p.)
also produced synergistic effects on methamphetamine-induced
(5 mg/kg i.p.) conditioned place preference and sensitization of
stereotyped behaviors along with methamphetamine (Lan et al.,
2009).

NEUROLOGICAL CHANGES IN DRUG
DEPENDENT BRAINS

Addiction experts at the World Health Organization proposed
in 1950 that drug addiction is primarily characterized by
psychological dependence, regardless of the type of drug
(Eddy and Isbell, 1959). Due to this, early psychological
hypotheses linked addiction to symptoms like psychic
tolerance (which was thought to be the source of increasing
drug consumption) and abstinence agony (also known as
withdrawal syndrome) (the presumed main obstacle to
abstinence) (Solomon and Corbid, 1973). For many years,
researchers speculated that the mesotelencephalic dopamine
system was responsible for the rewarding effects of both
opiates (such as heroin and morphine) and
psychostimulants, building on the discovery that electrical
stimulation of certain brain areas may produce reward (for
example, cocaine, amphetamine, and methamphetamine)
(Wise, 1978; Di Chiara and Imperato, 1988). Motivational
effects of drug-associated signals and psychomotor
sensitization to addictive substances were both linked to
this system (Stewart et al., 1984). Using these
neuropharmacological findings, the 1987 psychomotor
stimulant theory of addiction and later theories highlighted
shared psychobiological foundations for addiction, spanning
drug classes, were based on these neuropharmacological
breakthroughs (Wise and Bozarth, 1987; Badiani et al., 2011).

Opioid Dependence
Acute administration of morphine to healthy volunteers (not
on any type of opioids) results in positive signal changes in
reward-associated regions, including the amygdala, nucleus
accumbens, hippocampus, and orbitofrontal cortex (Becerra
et al., 2006). Similarly, acute opioid withdrawal (naloxone-
precipitated) in healthy male subjects (21–34 years old)
increased neural activity in rewards-prediction and reward-
association regions, including the pregenual cingulate,
caudate, middle orbital gyrus, orbitofrontal gyrus, and
putamen. Whereas, reduced neural activity was seen in the
areas involved in the sensorimotor integration, network
dysregulation, and body attentional monitoring such as the
bilateral precentral and postcentral gyri, posterior insula, left
anterior precuneus, and bilateral temporal lobe (Chu et al.,
2015). Chronic opioid-dependent patients undergoing

abstinence also recorded reductions in the midbrain-
thalamic grey matter connectivity (Tolomeo et al., 2016). In
a separate study on opiate-dependent patients (18–59 years
old; 18 males, 11 females), baseline drug use severity and
opioid withdrawal symptoms were positively correlated with
the neural response to drug cues in the orbitofrontal cortex,
nucleus accumbens, and amygdala. Craving, however, did not
mediate such changes (Shi et al., 2021). The neurological and
behavioral changes seen in opioid abstinent patients are time-
dependent as well. For instance, recently withdrawn opioid-
dependent patients showed reduced hedonic response to
natural rewards, increased drug-related cues, increased
cortisol levels compared to opioid-dependent patients that
have been abstinent for 2–3 months. Furthermore, the
recently withdrawn patients also had stronger dorsolateral
prefrontal cortex responses to drug cues and higher cortisol
levels (Bunce et al., 2015), indicating neuroplasticity in
reward- and stress-associated brain regions over the
abstinence period.

Heroin is greatly implicated with impulsive and poor
decision-making due to its deteriorating effects in regions
associated with cognitive functions (Kirby and Petry, 2004;
Pirastu et al., 2006). Past fMRI findings indicate that heroin-
dependent individual (HDI) groups had significant functional
changes in the left prefrontal cortex, bilateral orbital frontal
cortices, and left anterior cingulate gyrus as compared with
control groups, where the HDI groups exhibited a disruption
in the white matter structural networks (Zhang et al., 2016).
Chronic heroin use is associated with white matter structural
connectivity impairment in bilateral frontal lobe sub-gyrus,
cingulate gyrus, medial frontal gyrus, posterior thalamic
radiation, left temporal lobe sub-gyrus, and right superior
frontal gyrus (Li et al., 2011) resulting in different
activation patterns in the networks of reward, motivation,
memory/learning and control that are heavily involved in
drug abuse and addiction (Zhang et al., 2011). Functional
connectivity is also compromised in chronic heroin users
due to the dysregulation of brain regions (prefrontal cortex,
anterior cingulate cortex, supplementary motor area, ventral
striatum, insula, amygdala, and hippocampus) that lead to the
decrease of the monitoring function, impairing inhibitory
control and inducing deficits in stress regulation (Liu et al.,
2009). The aforementioned neurological changes weakened
the executive control, which manifests as increased
impulsivity, based on findings from the Iowa Gambling
Task (IGT) and the Barrett Impulsiveness Scale (BIS),
where a positive correlation was found between poor
performance in the IGT (indicating impaired decision
making) with heroin use (Qiu et al., 2011; Ma et al., 2015).
As for the BIS, studies investigating impulsivity in heroin-
dependent individuals showed that weakened executive
control is positively correlated with the BIS score (Qiu
et al., 2013; Wang et al., 2016).

Acute fentanyl treatment (50 ug/kg/i.p) to rats decreased
[123I]b-CIT binding to dopamine transporter in the striatum
by 30%. Similarly, in a human subject, reduced [123I] b-CIT
binding was noticed in the basal ganglia by 37% in the presence of
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fentanyl. Whereas, subacute (10 ug/kg, twice a day, i.p) in animals
and following 2 weeks of drug-free period (human) recorded no
significant alterations in the dopamine transporter activity. The
findings indicate the differential effects of fentanyl on the
reuptake of dopamine sensitive to the time frame of
administrations as well (Bergström et al., 1998). In a more
recent study, in nonhuman primates, intravenous self-
administration of fentanyl (1 ug/kg) recorded reduced
functional connectivity in the brain regions associated with the
effects of opioid agonists such as the striatum, cingulate cortex,
and midbrain, indicating a reduced function in motoric,
cognition, and sensory-related faculties. Whereas, functional
connectivity of nucleus accumbens with other regions were
increased, suggesting escalation in the activities of regions
associated with reward processing, drawing similarity with
other types of opioid that promote addiction (Withey et al.,
2022). Furthermore, chronic intake of fentanyl also has caused
cognitive detriments such as opioid-related acute amnestic
syndrome with MRI findings of a patient revealing restricted
diffusion of the hippocampi, and 10% loss of volume in the cornu
amnomis, subiculum hippocampal subfields, and dentate regions
(Butler et al., 2019).

Methamphetamine Dependence
One of the most frequently methamphetamine-associated
changes in the brain is cognitive deterioration, which was
shown to affect brain regions such as the prefrontal cortex and
anterior cingulate cortex that involved in cognitive control, and
prefrontal cortex, anterior cingulate cortex, and striatum in
decision making (Sabrini et al., 2019). Chronic
methamphetamine intake also caused severe gray matter
deficits in the limbic, cingulate, and paralimbic cortex, reduced
the hippocampal size, and the neurological findings correlated
with cognitive impairment (Thompson et al., 2004). Some
researchers reported significant improvement in cognitive
function after withdrawal from methamphetamine use over
6 months (Proebstl et al., 2019), especially abstinence as long
as 1 year was shown to normalize the cognitive function
(Ludicello et al., 2010). Some reported slight improvement just
after 1 month of abstinence (not significant) (Simon et al., 2010),
whereas some findings indicate that even with an average
abstinence period of 46 days, both abstinent and dependent
patients still perform worse than the control group in
cognitive assessments (Farhadian et al., 2017), suggesting a
longer duration of abstinence needed to reverse the chronic
methamphetamine-induced cognitive deficits. In line with this,
a separate study reported that prolonged abstinence from
methamphetamine use improved the grey matter volume of
cognition-associated regions (Zhang et al., 2018). Such
findings also imply the important roles of these brain regions
in the development of methamphetamine dependence (London
et al., 2015). Compared to adults, adolescent brains are more
vulnerable to methamphetamine-induced alterations, even with a
shorter duration of use and smaller doses, particularly affecting
the frontostriatal system (Lyoo et al., 2015), which is also been
reported in adults (London et al., 2015). Using an animal model,
it was reported that withdrawal from chronic psychostimulant

use remodels the functional architecture of the brain, causing a
shift from cortical (sensory/motor) regions to the more
subcortical network (Kimbrough et al., 2021). Another
common symptom associated with methamphetamine
dependence, that is psychosis was reported due to decreased
activity in the left precentral gyrus and the left inferior frontal
gyrus, and increased activity in the putamen and pallidum
(Vuletic et al., 2018).

NEUROCHEMICAL CHANGES IN DRUG
DEPENDENT BRAINS

Dopamine
The dopaminergic neurotransmitter system innervates brain
regions associated with addiction, including the striatum,
hippocampus, prefrontal cortex, amygdala, and others (Ogawa
and Watabe-Uchida, 2017; Menegas et al., 2018). Variations in
the inhibitory and excitatory outputs from D1 and D2 receptors
of the dopamine system (Kravitz et al., 2012) somehow produces
differential responses to rewards, aversive stimuli, and prediction
of rewards and punishment (Ljungberg et al., 1992; Mileykovskiy
& Morales 2011). D1 receptors are relatively denser in the
striatum, nucleus accumbens, olfactory bulb, amygdala,
hippocampus, substantia nigra, hypothalamus, and frontal
cortex, while D2 receptor and its subtypes are expressed
mainly in the cortex, substantia nigra, and hypothalamus
(Mishra, et al., 2018).

Acute intake of opioids by opioid naïve subjects was shown to
increase the dopamine release in the striatum in preclinical
(Spanagel et al., 1992) and clinical (Spagnolo et al., 2019)
studies, mediating the reinforcing effects of the drug. In
contrast, prolonged exposure to opioids dampens the striatal
dopamine release (Jia et al., 2005; Shi et al., 2008; Yeh et al., 2012)
due to drug-induced adaptations in the dopamine
neurotransmitter system. Such hypodopaminergic state was
associated with reward deficiency syndrome, which
behaviorally manifests as insufficiency in the feeling of
satisfaction (Blum et al., 2015). Nevertheless, there have been
conflicting findings in the dopamine levels of chronic opioid
users, consistent with a human postmortem study that reported
no difference in striatal dopamine transporters between opioid
users and healthy deceased subjects (Kish et al., 2001; Cosgrove,
2010). However, reduced dopamine levels may induce feedback
mechanisms to increase dopamine receptor expressions, which
has been reported in a postmortem study of opioid users, where
both D1 and D2 receptors were upregulated in the ventral
tegmental area, nucleus accumbens and the amygdala (Sadat-
Shirazi et al., 2018).

Psychostimulants invoke higher dopamine release in the
ventral striatum compared to opioids, upon acute intake
(Martinez et al., 2003; Spagnolo et al., 2019), which could be
due to the direct actions of the stimulants on the dopamine
transporters (Tsukada et al., 1999). Studies indicate that there is a
general downregulation of dopamine receptors with stimulant
use, where the action of methamphetamine is dose-dependent
with methamphetamine acting primarily as a dopamine
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transporter blocker at low concentrations and reversing
dopamine transport at high concentrations (Calipari et al.,
2013; Ashok et al., 2017). Such changes cause deficits in
functions of the dopamine receptors-enriched brain areas,
which could be the reason why drug-dependent users crave or
even relapse because the endogenous dopamine is no longer
sufficient for stimulation (Wang et al., 2012; Härtel -Petri et al.,
2017). The reductions in both pre-and postsynaptic dopamine
receptors possibly due to the loss of dopamine neurons or damage
to the dopaminergic terminals, mediated by methamphetamine-
induced apoptosis through activation of caspases and formation
of free radicals (De Vito and Wagner, 1989; Tata and Yamamoto,
2007; Cunha-Oliveira et al., 2008). Chronic administration of
methamphetamine reduces the levels of dopamine transporters in
the striatum, orbitofrontal and dorsolateral prefrontal cortex, and
amygdala (McCann et al., 1998; Sekine et al., 2001; Volkow et al.,
2001; Sekine et al., 2003). Animals that self-administered
methamphetamine exhibited dose-dependent decreases in
striatal dopamine and striatal dopamine transporter levels, as
well as significant reductions in dopamine and dopamine
transporter levels in the cortex (Krasnova et al., 2010).
Exposure to methamphetamine reduced the levels of
dopamine transporter availability which is suggested to be the
mechanism behind deficits in inhibitory control that emerge in
dependent individuals (Groman et al., 2012). However, there
have been studies that reported no effects of methamphetamine
treatment in the striatum and nucleus accumbens (Melega et al.,
2008).

Opioid Receptors
Opioid receptor subtypes are mu (MORs), kappa (KORs), and
delta (DORs) (For review on opioids alone, kindly refer to Darcq
and Keiffer, 2018). The MORs mediate behavioral changes such
as motivational aspects (Laurent et al., 2015), impulsivity
(Olmstead et al., 2009), aversion processing (Boulos, 2016),
and despair-like behavior (Lutz et al., 2014). The MORs bind
readily to endorphins and are mainly found in the
mesocorticolimbic networks (Le Merrer et al., 2009). The
KORs bind to dynorphins and act as an “anti-reward” system
(Koob and Le Moal, 2008; Koob et al., 2014), mediating negative
affective states such as depression, stress, dysphoria, and aversion
(Crowley and Kash, 2015), that are more pronounced during the
abstinence period of opioid dependence (Chavkin and Koob,
2016). The KORs are present in the striatum, hypothalamus, and
periaqueductal gray (Wang, 2019). The MORs potentiates
dopamine release in the nucleus accumbens, whereas the
KORs inhibit dopamine release terminals in the nucleus
accumbens and prefrontal cortex, hence causing dysphoria
(Spanagel et al., 1992; Bals-Kubik et al., 1993). The initial
positive, and negative reinforcing effects in the later stage of
addiction allow the transition from recreational drug use to
dependence (Gerrits et al., 2003). In rats, exposure to
morphine significantly elevated the levels of accumbal MORs,
but decreased levels in the ventral tegmental area (Vassoler et al.,
2016). Withdrawal from chronic morphine, however, enhanced
the MOR activity in the ventral tegmental area suggesting it may
be an adaptive response to the elevation of cAMP levels during

morphine withdrawal (Meye et al., 2012). Furthermore,
withdrawal from morphine also increased MOR mRNA levels
in the other reward-associated regions including the lateral
hypothalamus, nucleus accumbens core, and caudate-putamen
(Zhou et al., 2006). Nevertheless, the chronic opioid or
withdrawal-induced mRNA changes have been inconsistent
where some reported a decrease (Duttaroy & Yoburn, 2000),
an increase (Sehba et al., 1997) while another reported no changes
(Castelli et al., 1997), which could be due to the differences in the
brain regions examined, exposure time, dose and route of opioid
agonist administration.

Prolonged administration of opioids also decreased
endogenous endorphin production, where administration of
Fentanyl slowed down the endorphin production in patients
under general anesthesia (Ballantyne, 2017). Furthermore,
there is also downregulation of MORs along with the
uncoupling of MORs from their ligand-gated voltage channels
(Sprouse-Blum et al., 2010), causing the users to be dependent on
the exogenous opioids to replicate the endogenous opioids that
are unresponsive, mediating the risk for drug tolerance and
addiction (Toubia and Khalife, 2019). Contrary to MORs and
KORs, the DORs are not associated with the drug reward system,
but more towards learning and memory (Klenowski et al., 2015;
Pellissier et al., 2016), and also attenuates negative mood (Lutz
et al., 2014). The DORs bind to enkephalin and are expressed in
the basal ganglia (Wang, 2019), mood, motivation, and learning-
related regions (Erbs et al., 2015). Chronic intake of morphine
decreased the density of DOR-expressing neurons in the mice
hippocampus, which persisted even after 4 weeks of abstinence
(Erbs et al., 2015). This contributes to reduced inhibition of the
firing activity of the hippocampus, resulting in disturbances in
memory processes (Erbs et al., 2015), which is commonly
reported as cognitive deficits in opioid-dependent patients,
especially during the early period of abstinence (Rapeli et al.,
2006).

Neuroadaptation occurs with the persistent increase in striatal
MOR following methamphetamine treatment, which occurred
concurrently with the emergence of anxiety-related symptoms
during withdrawal (Georgiou et al., 2016). Opioid receptors do
not respond similarly to methamphetamine, where a study using
a 7-days regimen revealed that binding of MOR was not changed
on day 2 and 5 but downregulated on day 8 then gradually
returned to normal on day 11—while there were no changes in
KORs and sigma opioid receptors on any given day examined
(Chiu et al., 2006). Activation of the dopamine receptor is
required for the increased expression of MOR mRNA, at least
in the nucleus accumbens (Azaryan et al., 1996), in the presence
of stimulants such as cocaine, indicating a substantial interaction
between the dopaminergic and opioid system mediating the
rewarding effects of stimulants. Moreover, it was also reported
that the MOR is important in modulating the development of
methamphetamine-induced behavioral sensitization through the
dopaminergic neurotransmission (Tien and Ho, 2011). Further
corroborating this were findings by Park and colleagues, who
reported a decrease in the dopamine 1 receptor-ligand binding in
the striatum of methamphetamine-treated MOR knockout mice
(Park et al., 2011).
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In a tail withdrawal test, methamphetamine (5 mg/kg) was as
analgesic as 10 mg/kg morphine. However, the lower doses of
methamphetamine (1 and 2 mg/kg) were not. The analgesic
effects of methamphetamine were reversed by administration
of naltrexone (1 mg/kg; non-selective opioid receptor antagonist),
indicating the interaction between MORs and methamphetamine
at higher doses. The analgesic effects of 5 mg/kg of
methamphetamine were equipotent to the morphine
(10 mg/kg) (Ridzwan et al., 2018). It was previously reported
that daily intake of methamphetamine (2.5 mg/kg) significantly
reduced the expression of MORs (Chiu et al., 2006). The
researchers reported a profound decrease in the expression of
MORs on day 8, not day 2 or 5, whereas Ridzwan et al. (2018)
conducted the tail withdrawal test minutes upon drug
administrations. At present, it is unclear whether
methamphetamine able to reduce the threshold for analgesic
activity by downregulating the MORs within a shorter
time frame.

Polydrug Use
Co-use of methamphetamine and morphine may alter the brain
and behavior differently compared to the use of either drug alone.
Previous studies have reported greater rewarding effects from the
co-use of morphine and methamphetamine compared to the
individual doses of the drugs (Negus et al., 1998; Ranaldi and
Wise, 2000). A combined administration of methamphetamine
(0.75 mg/kg) and morphine (5 mg/kg) produced higher
conditioned place preference (CPP) and slower decline of CPP
than equivalent individual doses of the drugs (Lan et al., 2009).
Such drug-induced reinstatement has also been reported in other
preclinical studies testing low doses of morphine (2 mg/kg) and
methamphetamine (0.5 mg/kg) (Manzanedo et al., 2005; Tatsuta
et al., 2007), which coincides with human findings where low
doses of morphine and methamphetamine were reported to
mediate the reinforcing effects (Lamb et al., 1991; Melega
et al., 2007). Similarly, repeated administration of combined
low doses of methamphetamine (0.75 and 2.5 mg/kg/day) and
morphine (5 mg/kg/day) for 5 days was reported to elevate
dopamine level in the nucleus accumbens compared to either
drug alone (Zhu et al., 2015), indicating the higher reinforcing
effects of the drugs when taken together.

Challenge administration of morphine (5 mg/kg) and
methamphetamine (0.75 mg/kg) on day 40 (post chronic drugs
administration) significantly increased striatal dopamine levels
compared to either drug alone, but decreased dopamine turnover
in the striatum (Lan et al., 2009). Whereas, challenge
administration of methamphetamine alone (0.75 mg/kg)
significantly decreased dopamine turnover, but morphine
(5 mg/kg) produced no profound changes. The reduction in
combined drug-induced dopamine turnover was lesser than
methamphetamine-induced (Lan et al., 2009), indicating
differential effects of the combination of drugs than either
drug alone on striatal dopaminergic neurotransmission in the
development of behavioral sensitization. Similar findings were
also reported in a previous study, however on individual doses of
methamphetamine (2 mg/kg) and morphine (10 mg/kg), where
methamphetamine significantly increased dopamine release and

reduced dopamine turnover in the striatum. Whereas, morphine
slightly increased the dopamine levels in the striatum, and had no
effects on dopamine turnover. Furthermore, the effects of
methamphetamine on dopamine release and turnover were
greater in the striatum than nucleus accumbens, whereas for
morphine, a significant increase in the release and turnover of
dopamine was seen in the nucleus accumbens than striatum
(Mori et al., 2016). The findings indicate the differences in the
effects of psychostimulants and opioids in the mesolimbic and
nigrostriatal dopamine systems.

Effects of low doses of cocaine are enhanced in an additive
manner by the addition of low dose heroin, where the drug
combination significantly increased the extracellular levels of
nucleus accumbens dopamine (Smith et al., 2006). The author
suggests that the neurochemical effects are likely through MORs
and DORs in the nucleus accumbens. However, a study showed
that only the MORs in the nucleus accumbens is involved in the
reinforcing effects of combined administration of heroin and
cocaine where the author suggested that the DOR had no effect on
speedball self-administrations because doses might have been too
low and DORs is regionally specific to the shell area of the nucleus
accumbens (Cornish et al., 2005). Dopamine receptors such as the
D1 and D2 receptors play different roles in the combined
administration of heroin and cocaine, particularly D1
receptors enhance the individual self-administration of heroin
or cocaine, whereas stimulation of D2 receptors inhibits the
reinforcing effects of heroin when administered together
(Rowlett et al., 2007).

PHARMACOTHERAPY FOR OPIOID USE
DISORDER AND METHAMPHETAMINE
USE DISORDER
Opioid Use Disorder
Methadone doses that are considered low, intermediate, and high
are <50, 50–100, and >100 mg/day, respectively whereas the dose
for methadone maintenance treatment varies between 30 and
125 mg/day (Robles et al., 2002). Oral intake of methadone for
over 3 months improved the quality of life and reduced
transmission of blood-borne diseases among opioid-dependent
patients (Ali et al., 2018). Despite the efficacy of MMT in harm
reduction, there are still other clinical concerns regarding the
safety of the therapy. The patients undergoing MMT often have
co-morbidities, where they are already on prescription drugs,
therefore when added with methadone it might lead to unwanted
drug-drug interactions, such as the development of “opioid
withdrawal-like symptoms” in the case of efavirenz and
zidovudine which are common treatments for HIV patients
who are highly prevalent under the MMT program (George
et al., 2018). Patients with opioid dependence also tend to
have higher rates of mood disorders and other illicit substance
abuse, where a combination of these factors may lead to the
possibility of central nervous system effects and worsening
behavioral symptoms (George et al., 2018). Other potential
adverse effects of methadone include nephrotoxicity (Atici
et al., 2005; Lentine et al., 2015) and cardiotoxicity (Kumar, 2010).
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TABLE 1 | Current treatment in opioid dependence.

No Reference Drug
name

Design
of study

Number
of

patients

Drug
administration

Dosage Duration
of study

Mechanism
of action

Results Conclusion

1 Ali et al
(2018)

Methadone Cross-
sectional

1,233
(99.1%
Male)

Oral — 3 months Opioid
agonist

Improved quality of
life, effective in
reducing
transmission of
blood borne
viruses

Recommended
MMT to be
continued

2 Crist et al.
(2018)

Methadone Randomized,
open label trial

764
(68.7%
Male)

Oral Flexible
dosing

24 weeks Opioid
agonist

Genotype for 5-
HTTLPR in the
SLC6A4 gene was
nominally
associated with
dropout rate when
the methadone and
buprenorphine/
naloxone groups
were combined

Patients with the S/
S genotype at 5-
HTTLPR in SLC6A4
or the Val/Val
genotype at
Val158Met in COMT
may require
additional treatment
to improve their
chances of
completing
addiction treatment

3 Ledberg,
(2017)

Methadone — 441 Oral — — Opioid
agonist

Not being in
treatment was
associated with a
significantly
increased hazard of
dying

Changes in
regulations that
minimizes the time
off treatment are
therefore likely to
reduce the mortality
rates among clients
of MMT-programs

4 George
et al. (2018)

Methadone Case series 7 (6 Male,
1 Female)

Oral — — Opioid
agonist

In each individual
case, there is a
need to avoid
adverse effects,
drug–drug
interactions and
overdosing,
especially in the
presence of
comorbidities

despite methadone
being an effective
therapy for opioid
dependence, there
is a need for other
effective therapies,
such as naltrexone
and buprenorphine–
naloxone, to be
made available to
physicians in both
the public and
private sector

5 Schwartz
et al. (2017)

Methadone Two arm
open label
randomized

trial

300 (59%
Male)

Oral — 12 months Opioid
agonist

There were no
significant
differences

Patient centred
treatment does not
appear to be more
effective than
methadone
treatment as usual

6 Chen et al.
(2013)

Contingency
management

— 126
(92.3%
Male;
Mean

age 38.1
years)

— — 12 weeks — The retention rate
and negative urine
testing rate were
higher in the CM
group compared to
the usual
treatment.
Compared
participants who
received usual
treatment, CM
participants missed
less visits and more
likely to submit a
negative urine
sample

CM intervention
significantly
improved
attendance and
reduced drug use in
China

(Continued on following page)
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Buprenorphine is an opioid partial agonist that sustains
abstinence, delays the time of resumption to opioid use, and
retains patients in treatment (Schottenfeld et al., 2005).
Buprenorphine has a long half-life of 24–60 h and typical
dosages for maintenance treatment are 8–16 mg/day (Walsh
et al., 1994; Kampman and Jarvis, 2015). Due to problems
associated with diversion and abuse with buprenorphine
treatment, the buprenorphine/naloxone combination tablet
was introduced (Vicknasingam et al., 2010). Other
combinations of buprenorphine exist as well; however, they
were injected illicitly, which instead increased opioid
dependence (Yokell et al., 2011).

Methamphetamine use was reported among treatment-
seeking OUD patients with a prevalence of 85% in the
United States (Ellis et al., 2018), where most of these
patients recorded a significantly higher percentage of
positive results in the urine morphine test which indicated
relapse of opioid use (Liu et al., 2018). In addition,
methamphetamine use was also associated with a higher
risk of buprenorphine non-retention (Tsui et al., 2020).
Whereas, another study found no such associations between
methamphetamine use and opioid abstinence in OUD
pharmacological management (methadone) (Smyth et al.,
2018). The overall impact of methamphetamine use on
OUD treatment outcomes are still unclear, but patients
have described a balancing effect of the drugs (increases
functionality of the drug that is associated with a lower
perceived need for medications for OUD) that lead towards
non-retention of treatment (Mcneil et al., 2020) (Table 1).

A retrospective study in Rhode Island was the first to
investigate the efficacy of MMT in fentanyl abuse, which
reported that the majority of patients that underwent
6 months of methadone maintenance achieved abstinence
(89%), but the relapse rate was still high (59%) (Stone et al.,
2018). Silverstein and colleagues analyzed qualitative data from

63 interviews, to investigate the presence of illicit non-
pharmaceutical fentanyl in the current environment and how
it has affected practices of non-prescribed use of buprenorphine.
The participants consisted of OUD patients on non-prescribed
buprenorphine, where they used illicit opioids such as
buprenorphine not in seek of euphoria, instead as a form of
self-treatment. However, some reported that non-pharmaceutical
fentanyl defeated the harm reduction brought by buprenorphine
as there were unanticipated experiences of withdrawals
(Silverstein et al., 2019). However, the Zurich or Bernese
method has been considered a valuable modification to
buprenorphine induction for the treatment of fentanyl abuse
where it utilizes micro-dosing of buprenorphine. Micro-dosing or
micro-induction of buprenorphine is a method of administering
buprenorphine in small incremental doses during initiation of
treatment that slowly builds buprenorphine at opioid receptors
without precipitating withdrawal (Ahmed et al., 2021).
Overlapping induction of buprenorphine while being on full
mu agonists such as methadone is feasible, where patients
experienced very mild opioid withdrawal and craving
(Hämmig et al., 2016).

Psychosocial interventions in conjunction with medications
for the treatment of opioid addiction are approved as a part of
comprehensive treatment for opioid addiction such as
contingency management (CM) and cognitive behavioral
therapy (CBT), with the majority focusing on methadone
treatment (Dugosh et al., 2016). Studies showed that CM
participants attended more days of treatment and had
longer durations of continued abstinence (Hser et al., 2011;
Chen et al., 2013) while CBT participants displayed
significant improvements in their positive appraisal at the
6-months assessment and lower emotional discharge at the
12-months assessment compared to control group MMT alone
(Kouimtsidis et al., 2012). Other psychosocial interventions
include behavioral drug and HIV risk-reduction counseling,

TABLE 1 | (Continued) Current treatment in opioid dependence.

No Reference Drug
name

Design
of study

Number
of

patients

Drug
administration

Dosage Duration
of study

Mechanism
of action

Results Conclusion

7 Hser et al.
(2011)

Contingency
management

— 259
(76.2%
Male;
Mean
age 38;

All
reported
drug use
30 days
prior)

— — 12 weeks — Relative to
treatment as usual,
better retention
was observed
among the
incentive group, as
well as submission
of negative urine
samples and longer
duration of
sustained
abstinence

Contingency
management
improves treatment
retention and drug
abstinence in
methadone
maintenance
treatment clinics in
China

8 Chawarski
et al. (2011)

Behavioral
drug and HIV
risk reduction
counseling

— 37 (81%
Male;
Mean

age 36.7
years)

— — 3 months — Participants
achieved greater
reductions in HIV
risk behaviors and
illicit opiate use

A promising
approach to
improve the efficacy
of standard MMT
services in China
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motivational interviewing, acceptance and commitment
therapy, general supportive counseling, and web-based
behavioral interventions (Chawarski et al., 2011; Stotts
et al., 2012; Gu et al., 2013; Marsch et al., 2014).

Methamphetamine Use Disorder
In addition to OUD, MMT is also prescribed to chronic
methamphetamine users as treatment (Singh et al., 2020).
Comparison between the methadone (a full agonist of the
MORs) and buprenorphine (a partial agonist of the MORs) in
the reduction of methamphetamine craving revealed more
significant craving-attenuating effects of buprenorphine during
methamphetamine withdrawal (Ahmadi and Razeghian Jahromi,
2017). In another study, buprenorphine significantly reduced
methamphetamine cravings compared to bupropion (weak
inhibitor of dopamine and norepinephrine reuptake) for
14 days (Ahmadi et al., 2019). Bupropion also did not
significantly increase abstinence duration in
methamphetamine-dependent patients compared to placebo
(Anderson et al., 2015).

N-acetyl cysteine (NAC) reduces the synaptic release
of glutamate (Dean et al., 2012). Preclinical studies and early
pilot clinical investigations suggested that NAC may be useful in
the treatment of methamphetamine dependence, showing good
efficacy in suppressing methamphetamine craving however, there
was no report made on methamphetamine use outcomes
(Ebrahimi et al., 2015). A combination of NAC and
naltrexone was found to be no more superior than a placebo
in reducing methamphetamine craving (Grant et al., 2010).
Modafinil (dopamine reuptake inhibitor), was not effective in
decreasing methamphetamine consumption compared to the
placebo (Heinzerling et al., 2010). Whereas, another study
reported that those who were compliant in taking the
modafinil drug were more likely to reduce drug use (Anderson
et al., 2012). Both controlled trials were comparing modafinil
daily doses ranging from 200 to 400 mg.

Varenicline at 1 mg (an α4β2 nicotinic receptor partial agonist
and α7 nicotinic receptor full agonist) taken twice daily for
9 weeks had no significant effects on end-of-treatment-
abstinence and treatment effectiveness score compared to
placebo in methamphetamine dependence (Briones et al.,
2018). Sustained release of methylphenidate (daily dosing
regimen of 18 mg at week 1, 36 mg at week 2, and 54 mg for
the remaining weeks) on the other hand was safe and well-
tolerated among active methamphetamine users and
significantly reduced methamphetamine use, craving, and
depressive symptoms (Tiihonen et al., 2012; Miles et al., 2013;
Rezaei et al., 2015). Methylphenidate is a dopamine reuptake
inhibitor (Karila et al., 2010).

Sixteen weeks of CBT reduced methamphetamine
dependence and improved the psychological well-being of
patients undergoing methadone therapy. The 30
participants in the treatment group became abstinent at
post-test and remained abstinent at the 3-months follow-up
(Shakiba et al., 2018). The CBT also reduced craving among
methamphetamine abusers living with HIV/AIDS (Jalali et al.,
2018). Significant reductions in methamphetamine use and

psychiatric symptoms were seen following the psychosocial
interventions (Polcin et al., 2014; Rawson et al., 2021). The
matrix model, which is a multi-component treatment adopting
elements of CBT, MI, family, and group therapy, was found to
be more effective in increasing methamphetamine abstinence
compared to treatment as usual (CBT only) (Rawson et al.,
2021). It is reported that sessions of both MI and CBT
significantly increased abstinence as well (Baker et al., 2004,
2005). The treatment combining MI and CBT was found to be
effective in improving abstinence where participants reported
fewer negative consequences of methamphetamine use at
follow-up and intensive matrix program produced a higher
abstinence rate compared to CBT alone (Smout et al., 2010)
(Table 2).

Polysubstance Abuse
Naltrexone subcutaneous implants (1,000 mg) for 12 weeks
showed higher retention of patients with decreased use of
heroin and methamphetamine, providing some of the earliest
evidence for effective pharmacological treatment (Tiihonen
et al., 2012). Furthermore, a combination of 0.3 mg/kg
buprenorphine and 1.0 mg/kg naltrexone treatment in an
18-days experiment was reported to reduce relapse in the
cocaine and morphine co-administration (McCann, 2008;
Cordery et al., 2014). Apart from that, based on heroin-
dependent polydrug abusers with contingency management
and buprenorphine maintenance (2 mg for 5 weeks), it was
suggested that for patients who have already achieved
polydrug abstinence, contingency management may enhance
treatment outcomes. However, participants generally did not
produce any significant treatment outcomes which could
possibly be due to the population sample where
buprenorphine-maintained polydrug abusers continued to
use illicit opiates at fairly high levels (Downey et al., 2000).
The use of 0.3 mg/kg buprenorphine and 1.0 mg/kg naltrexone
treatment was studied in morphine and methamphetamine
polydrug dependent mice and results show that the
combination successfully attenuated polydrug-reinstatement
(Suhaimi, 2017).

Methadone maintenance at a relatively high dose of
30 mg/kg a day in 3 h, attenuated heroin and cocaine-
seeking behavior, possibly by reducing the incentive value
of drug-related cues (Leri et al., 2004). In a separate study,
hypothermia was observed after 360 min of coadministration
of methamphetamine and morphine. The cooling was
beneficial after 30 min (golden hour) of co-administration.
During this early stage, methamphetamine plus morphine-
induced significant hyperthermia (Namiki et al., 2005).
Another study also proved that the lethal effect induced by
co-administration of methamphetamine and morphine was
significantly and almost completely diminished by cooling
from 30 to 90 min afterward, with normal behaviors such as
grooming, sniffing, and rearing returned with the
normalization of colonic temperature (Mori et al., 2007).
Both studies indicated a “golden hour” of between 30 and
90 min for cooling in the treatment of subacute toxicity and
lethality produced by the co-administration (Table 3).
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TABLE 2 | Current treatment in methamphetamine dependence.

No Reference Drug
name

Design
of study

Number
of patients

Drug
administration

Dosage Duration
of study

Mechanism
of action

Results Conclusion

1 Mousavi et al.
(2015)

N-acetylcysteine Double blind
controlled
crossover

23 (82.6%
male)

Oral 1,200 mg/day 8 weeks Reduction of
gluatamate release
from synapses

Craving score increased
indicating that NAC has a
limited enduring effect for
relapse prevention

NAC showed good
efficacy in suppressing
METH craving, and may be
a useful pharmacological
treatment for METH
dependency

2 Trivedi et al.
(2021)

Naltrexone
Bupropion

Double blind,
placebo
controlled trial

403 (68.7%
Male; Mean

age
41 years)

Oral and
injectables

Naltrexone (380 mg
every 3 weeks)
Burpropion (450 mg
per day)

12 weeks Opioid receptor
antagonist

the response over a period
of 12 weeks among
participants who received
extended-release
injectable naltrexone plus
oral extended-release
bupropion was low but
was higher than
participants who received
placebo

In persons with moderate
or severe
methamphetamine use
disorder, treatment with
the combination of
extended-release
injectable naltrexone and
daily oral extended-release
bupropion over a period of
12 weeks resulted in a
higher response than
placebo

3 Ray et al.,
2015

Naltrexone Double blind,
randomized,
crossover,
placebo
controlled trial

30 (73.3%
Male; Mean

age
36.9 years)

Oral 50 mg 2 weeks Opioid receptor
antagonist

NTX attenuated cue-
induced craving as
compared with placebo,
as well as cue-provoked
increases in heart rate and
diastolic blood pressure

NTX is superior to placebo
in attenuating cue-induced
craving for MA, as well as
several dimensions of MA-
induced subjective effects
(eg, “stimulated” and
“crave drug”) measured
during controlled MA
administration

4 Shakiba et al.
(2018)

Cognitive
behavioral
therapy

Randomized
controlled trial

200 — — 16 weeks — 16 sessions of CBT led to
significant reduction of
methamphetamine use
and improved
psychological well-being

Cognitive behavioral
therapy can be a good
option for
methamphetamine
problem in methadone
treatment

5 Jalali et al.
(2018)

Cognitive
behavioral
therapy

Quasi-
experimental

60 (Mean
age
31.8 years)

— — 12 weeks — methamphetamine craving
reduced among the
abusers living with HIV/
AIDS.

the principle and
techniques of cognitive-
behavioral therapy and the
benefits of group therapy
have an effect on craving
among methamphetamine
abusers living with HIV/
AIDS.
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TABLE 2 | (Continued) Current treatment in methamphetamine dependence.

No Reference Drug
name

Design
of study

Number
of patients

Drug
administration

Dosage Duration
of study

Mechanism
of action

Results Conclusion

6 Polcin et al.
(2014)

Motivational
interviewing

— 217 (51.3%
Male)

— — 8 weeks — Reductions in Addiction
Severity Index psychiatric
severity scores and days of
psychiatric problems
during the past 30 days
were found for clients in the
intensive motivational
interview group

Intensive MI may help
alleviate co-occuring
psychiatric problems that
are unaffected by shorter
MI interventions

7 Ahmadi and
Razeghian
Jahromi,
(2017)

Buprenorphine
Methadone

Double blind
clinical trial

40 (100%
Male)

Oral 8 mg of buprenorphine
daily and 40 mg of
methadone daily

17 days — the craving in the
buprenorphine group was
significantly lower than that
in the methadone group
starting on the 10th day.
Therefore, buprenorphine
was more effective than
methadone

Buprenorphine is effective
for decreasing
methamphetamine craving
during methamphetamine
withdrawal and more
effective than methadone

8 Anderson
et al. (2012)

Modafinil Randomized,
double blind,
placebo
controlled

210 Oral 400 mg 16 weeks Dopamine reuptake
inhibitor

No significant difference
between modafinil group
and placebo

Data suggest that
modafinil, plus group
behavioral therapy, was
not effective in decreasing
methamphetamine use

9 Heinzerling
et al. (2010)

Modafinil Randomized,
double blind,
placebo
controlled

71 (73.5%
Male)

Oral 400 mg 12 weeks Dopamine reuptake
inhibitor

No statiscally significant
effects for modafinil on
methamphetamine use,
retention, depressive
symptoms, cravings

Modafinil was no more
effective than placebo

10 Anderson
et al. (2015)

Bupropion Randomized
double blind
placebo
controlled

204 (65.3%
Male; Mean
age 39.1
years)

Oral 150 mg 12 weeks Weak inhibitor of
norepinephrine and
dopamine uptake

No significant increase in
abstinence in
methamphetamine
dependent participants
compared to placebo

bupropion did not increase
abstinence in MA
dependent participants

11 Ahmadi et al.
(2019)

Buproprion
Buprenorphine

Randomized,
double blind,
placebo
controlled

65 Oral 300 mg bupropion/8 g
of buprenorphine

2 weeks — Reduction of craving in the
buprenorphine group was
significantly more than the
bupropion group

Both medications were
effective in the reduction of
methamphetamine
cravings. Reduction of
craving in the
buprenorphine group was
significantly more than the
bupropion group

12 Briones et al.
(2018)

Varenicline Randomized,
double blind,
placebo
controlled

52 (63%
Male; Mean
age 34.4
years)

Oral starting at 0.5 mg daily
for day 1–3, then
0.5 mg twice daily for
day 4–7, and 1 mg

9 weeks An alpha4beta2
nicotinic receptor
partial agonist and

There was no significant
difference between
varenicline and placebo

1 mg varenicline was not
an effective treatment for
methamphetamine
dependence
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TABLE 2 | (Continued) Current treatment in methamphetamine dependence.

No Reference Drug
name

Design
of study

Number
of patients

Drug
administration

Dosage Duration
of study

Mechanism
of action

Results Conclusion

twice daily from day 8
until completion of the
medication phase

alpha7 nicotinic
receptor full agonist

13 Rezaei et al.
(2015)

Methylphenidate Randomized
double blind
placebo
controlled

56 Oral 18 mg/day during first
week, 36 mg/day in
second week and
54 mg/day for the
remaining 8 weeks

10 weeks Dopamine reuptake
inhibitor

Methylphenidate group
showed less craving
scores compared to the
placebo group, and
greater improvement in the
depressive symptom
scores

Sustained-released
methylphenidate was safe
and well tolerated among
active methamphetamine
users and significantly
reduced
methamphetamine use,
craving and depressive
symptoms

14 Ling et al.,
2014

Methylphenidate Randomized
double blind
placebo
controlled

110 (81.8%
Male; Mean

age
38.7 years)

Oral 18 mg/day during first
week, 36 mg/day in
second week and
54 mg/day for the
remaining 8 weeks

10 weeks Dopamine reuptake
inhibitor

The methylphenidate
group had lower craving
scores than the placebo
group in the last 30 days

Methylphenidate may lead
to a reduction in
concurrent
methamphetamine use
when provided as
treatment for patients
undergoing behavioral
support for moderate to
severe methamphetamine
use disorder

15 Miles et al.
(2013)

Methylphenidate Randomized
double blind
placebo
controlled

79 (62.3%
Male; Mean

age
37.5 years)

Oral 19 mg/day during first
week, 36 mg/day in
second week and
54 mg/day until end of
week 22

22 weeks Dopamine reuptake
inhibitor

No statistically significant
difference in the
percentage of positive
urines between the
methylphenidate and
placebo arms

The trial failed to replicate
earlier findings
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CONCLUSION

The prevalence and risk associated with polydrug use are threats
to the current public health resources worldwide. Thus,
improving and pooling the understanding of mechanisms
behind individual drugs and their combined use is essential to
accurately reflect their effects on the neurochemical systems.
However, this knowledge is still limited, especially in its
polydrug combinations that can contribute to unique
addiction potential and the development of addictive
behaviors. It is important to appreciate novel preclinical
experiments that investigate the pathophysiology and
pharmacotherapy targeting the mono and polydrug abuse of
morphine and methamphetamine. Given how complex
addiction as a disease is with many powerful elements playing
their roles, we need to understand the mechanisms behind the
relationship between polydrug abuse and addiction to determine

better and more effective treatments for this ongoing public
health crisis.
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