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Abstract 

P rokary otes encode an arsenal of highly diverse immune systems to protect themselves against in v ading nucleic acids such as viruses, plasmids 
and transposons. This includes invader-interfering systems that neutralize invaders to protect their host, and abortive-infection systems, which 
trigger dormancy or cell death in their host to offer population-le v el immunity. Most prokaryotic immune systems are found across different 
environments and prokaryotic phyla, but their distribution appears biased and the factors that influence their distribution are largely unknown. 
Here, we compared and combined the prokaryotic immune system identification tools DefenseFinder and PADLOC to obtain an expanded view 

of the immune system arsenal. Our results show that the number of immune systems encoded is positively correlated with genome size and 
that the distribution of specific immune systems is linked to phylogeny. Furthermore, we reveal that certain invader-interfering systems are more 
frequently encoded by hosts with a relatively high optimum growth temperature, while abortive-infection systems are generally more frequently 
encoded by hosts with a relatively low optimum growth temperature. Combined, our study re v eals se v eral f actors that correlate with differences 
in the distribution of prokaryotic immune systems and extends our understanding of how prokaryotes protect themselves from invaders in 
different environments. 
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rokaryotes are under constant threat from mobile genetic el-
ments (MGEs), including transposons, plasmids and viruses
 1 ). To protect prokaryotes against MGEs, an arsenal of im-
une systems has evolved ( 2 ) and, in turn, various mecha-
isms to escape immunity have evolved in MGEs ( 3 ,4 ). The
onsequential evolutionary arms race between prokaryotes
nd their invaders has resulted in an extreme diversification of
mmune systems, yielding > 100 distinct immune system fam-
lies, with more still being discovered ( 3 ). Although these im-
une system families rely on highly divergent mechanisms to

chieve immunity, they generally adhere to one of two strate-
ies: (i) inv ader i nterference (hereafter referred to as Invi) or
ii) ab ortive i nfection (hereafter referred to as Abi). Invi sys-
ems protect the host by neutralizing the invader, for example
y degrading the invader DNA. Notable examples of Invi sys-
ems include restriction–modification (RM) systems ( 5 ) and
ost CRISPR-Cas [regularly interspaced palindromic repeats

CRISPR) / CRISPR-associated protein] systems ( 6 ). In con-
rast, Abi systems cause metabolic arrest or trigger cell death
n the host cells to prevent propagation and spread of MGEs,
hereby providing population-level immunity ( 7 ). Examples
nclude various AbiX systems (where X indicates the specific
bi system), CBASS systems and short prokaryotic Argonaute

pAgo) systems ( 8–15 ). Prokaryotes typically encode a com-
ination of Invi and Abi systems to provide immunity against
ifferent MGEs ( 16 ). 
Fuelled by both fundamental curiosity and the successful

epurposing of several prokaryotic immune systems as molec-
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ular tools in practical applications ( 17 ,18 ), there has been an
increasing interest in the identification and characterization
of prokaryotic immune systems. Together with the expanding
availability of (meta)genomic data and newly developed meth-
ods to identify putative immune systems, this has led to the
discovery and characterization of numerous novel prokary-
otic immune systems ( 19–22 ). To facilitate rapid identification
of known immune systems in (meta)genomes, bioinformatics
tools have been developed, including CRISPRCasFinder ( 23 ),
CRISPRCasTyper ( 24 ), Prokaryotic Antiviral Defense Loca-
tor (PADLOC) ( 25 ) and DefenseFinder ( 16 ). These tools typi-
cally rely on similar search strategies: they first identify genes
that are involved in prokaryotic immunity through HMM-
profile-based searches and subsequently identify immune sys-
tems by evaluating whether a genomic locus satisfies the ge-
netic architecture of the immune system by scoring essential,
optional and prohibited genes. However, specific search pa-
rameters vary per tool, which could result in the different tools
identifying distinct immune systems in the same dataset. 

Although prokaryotic immune systems are widely dis-
tributed in nature ( 16 , 26 , 27 ) and are frequently subject to
horizontal gene transfer (HGT) between different prokaryotic
species ( 28–31 ), they are not evenly distributed ( 16 , 26 , 27 ).
We hypothesized that in specific prokaryotes, due to physi-
ological and / or environmental factors, certain immune sys-
tems provide a larger selective advantage than other im-
mune systems. Consequentially, an uneven distribution of
prokaryotic immune systems should exist in which the im-
mune system abundance correlates with specific physiological
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ons Attribution-NonCommercial License 
ial re-use, distribution, and reproduction in any medium, provided the 
up.com for reprints and translation rights for reprints. All other 
ink on the article page on our site—for further information please contact 

https://doi.org/10.1093/nargab/lqae105
https://orcid.org/0000-0003-4378-141X
https://orcid.org/0000-0003-4412-9191


2 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and / or environmental factors. Indeed, previous studies have
revealed differences in the total number of immune systems
per genome based on phylogeny, genome size, co-localization
of prophages, lifestyle and habitat ( 16 ,27 ). Other studies have
shown that CRISPR-Cas subtype distribution is distinct de-
pending on their environment ( 24 ,26 ), and that the overall
abundance of CRISPR-Cas systems is higher in prokaryotic
hosts with a high optimal growth temperature (from hereon:
T opt ) ( 28–32 ). In contrast, for RM systems, both a weak posi-
tive and a weak negative correlation between abundance and
T opt have been reported, with both observations being only
marginally statistically significant ( 31 ,32 ). To our knowledge,
no systematic studies on the correlation between host T opt and
abundance of other prokaryotic immune systems have hith-
erto been reported. 

Here, we combined DefenseFinder and PADLOC to iden-
tify prokaryotic immune systems in the species representa-
tive of the Genome Taxonomy database (SR-GTDB) ( 33 ).
Their combined output reveals that immune system distri-
bution varies between different prokaryotic phyla and that
the total number of immune systems encoded per genome
is positively correlated with genome size. Using a previ-
ously generated dataset ( 32 ) in which SR-GTDB genomes
are linked to host T opt , correlations between host T o pt and
immune system abundance were analysed. This reveals that
certain Invi systems and most Abi systems are, respectively,
more and less abundant in genomes of hosts that thrive
at higher temperatures. Analyses of metagenomic datasets
confirms this and reveals similar correlations for other en-
vironmental parameters. The data presented in this study
show that the general strategy of specific immune sys-
tems affects their distribution, and thereby suggest that Abi
and Invi systems provide different fitness gains in distinct
environments. 

Materials and methods 

Identification of prokaryotic immune systems 

The species representatives in the Genome Taxonomy
database (SR-GTDB) were used to obtain a broad phylo-
genetic and non-redundant sampling of prokaryotic species
(4906 bacteria and 291 archaea) ( 33 ). Only accessions
described as ‘complete genome’ or ‘chromosome’ ( 33 )
as described by Lan et al . ( 32 ) were used. The ge-
nomic sequences were retrieved as fasta files from ftp://
ftp.ncbi.nlm.nih.gov/ genomes/ (accessed November 2022).
An automated script was used to predict the prokary-
otic immune systems in these genomes ( dx.doi.org/10.6084/
m9.figshare.24632142 and https:// github.com/ LOlijslager/
find _ prokaryotic _ immune _ systems ). In brief, the script pre-
dicts the encoded protein sequences using Prodigal (version
2.6.3 used) ( 34 ). Subsequentially, the script mines the result-
ing proteomes for prokaryotic immune systems using De-
fenseFinder (version 1.0.7; immune system models down-
loaded on June 9 2022) ( 16 ) and PADLOC (version 1.1.0;
PADLOC database 1.4.0) ( 25 ), supported by HMMER ver-
sion 3.3.1 ( 35 ) and MacSyFinder version e2.0rc6 ( 36 ). From
the output, the script compares and combines the identified
immune system families (Cas, RM, DISARM, etc.) by each
of the tools. Because of the uncertain family identification of
PADLOC systems denoted as ‘GAO’ in the PADLOC version
used, these systems were omitted. 
The combined output contains (i) immune systems com- 
prising the same genes, classified identically by both tools; 
(ii) immune systems classified identically by both tools, but 
with one tool identifying more genes than the other; (iii) dif- 
ferent immune systems identified by each tool, with one or 
more genes overlapping; (iv) immune systems comprising the 
same genes, but classified as different immune systems; and 

(v) immune systems uniquely identified by one of the two 

tools. In cases (i) and (v) there is no conflict, while in cases 
(ii), (iii) and (iv) there is a conflict that needs to be resolved 

( Supplementary Figure S1 ). 
In case (ii), the script automatically keeps the system iden- 

tified comprising the highest number of genes. In case (iii), it 
cannot automatically be determined if the (partially) overlap- 
ping systems share genes, are a hybrid system or are a sin- 
gle system to which PADLOC and DefenseFinder attribute 
a different gene set. To reduce redundancy in the identified 

systems, the script keeps one system while the other system 

is disregarded. In case (iv), the script will provide a warning 
for the user to see if the reference file (in which immune sys- 
tem classifications for PADLOC and DefenseFinder are listed) 
might need to be updated. After that, the script keeps one sys- 
tem, while the other system is disregarded. If this conflict (iv) 
occurs within one identification tool (i.e. DefenseFinder an- 
notates the same genes as multiple immune systems), instead 

only the system is kept which is identified by the other tool.
If the other tool did not identify this particular system, the 
system annotation is merged. For this manuscript, in conflict 
case (iii) and (iv), DefenseFinder output was always chosen as 
conflict winner . However , conflict winner can be adjusted in 

the script based on the user needs. 
The script can be used in broad-identification mode or 

in high-confidence mode. In the broad-identification mode,
all immune systems identified are kept, while in the high- 
confidence mode, the program keeps only the systems iden- 
tified and annotated identically by both DefenseFinder and 

PADLOC. In order to obtain a broad identification of as 
many immune systems as possible, the broad-identification 

mode was used for this study. Data output can be found in 

Supplementary data S1 and S2 , and raw data can be found on 

dx.doi.org/ 10.6084/ m9.figshare.24632142 . 
As Defensefinder version 1.0.7 does not search for pAgos,

and PADLOC version 1.1.0 uses non-canonical classification 

of pAgos ( 37 ,38 ), pAgos identified by PADLOC were reclas- 
sified for analysis. To this end, PADLOC pAgo types I, II,
III and solo were reclassified as, respectively, effector-enzyme- 
associated long pAgos, short pAgos, PIWI-RE systems and 

stand-alone long pAgos. 
Metagenomes ( Supplementary data S3 ) used for metage- 

nomics analyses were downloaded from ftp://ftp.ncbi.nlm. 
nih.gov/ genomes/ genbank/ metagenomes/ or from specific 
metagenomic databases ( 39–41 ) as DNA fasta files (accessed 

May 2023). The metagenomic databases were analysed us- 
ing the automated code as described above. Raw data can be 
found in Supplementary data S4 . 

Determination of host phyla and T opt 

For the SR-GTDB genomes, phyla were determined using the 
NCBI Taxonomy Database ( 42 ). Genome sizes were obtained 

by counting the number of nucleotides in the fasta file us- 
ing SeqIO in Biopython v1.8 ( 43 ), including plasmids and 

additional chromosomes when these were present. For each 
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enome, the associated host T opt was obtained from ( 32 ) for
he SR-GTDB. Genome accessions in this database contain up
o three listed T opt values: (i) strain-specific T opt values from
he literature; (ii) T opt values of related strains from the litera-
ure; and (iii) T opt values predicted using the machine-learning
ethod Tome v. 1.0.0 ( 44 ). We used the highest confidence
 opt available (i > ii > iii) for each genomic accession. 

uantification and statistical analysis 

ll statistical analyses were performed in Excel. Categorical
omparisons were done using a χ 2 test of independence and
erified using the Bonferroni test with an α = 0.05 / number
f comparisons. Population-level distributions were compared
sing a two-tailed t -test assuming unequal variance. Corre-
ations were determined with a Pearson correlation analy-
is. Bar graphs, scatter plots, pie charts and heat maps were
ade using Microsoft Excel and Adobe Illustrator, with the

xception of the Sankey diagram [made using SankeyMATIC
 https:// sankeymatic.com/ )], raincloud and bee-swarm plots
made using python package Plotly version 5.14.0) and the
enn diagram (made using the function venn2 of the python
ackage matplotlib-venn version 0.11.7). 

esults 

ombining PADLOC and DefenseFinder increases 

mmune system discovery rate 

o investigate factors that influence the distribution of im-
une system families, we created an automated script ( https:

/ github.com/ LOlijslager/ find _ prokaryotic _ immune _ systems 
nd dx.doi.org / 10.6084 / m9.figshare.24632142) that iden-
ifies prokaryotic immune systems from (meta)genomic
equences by combining PADLOC ( 25 ) and DefenseFinder
 16 ) output and generating a unified database. To obtain a
road phylogenetic and non-redundant genome dataset, we
sed the genomes of species representatives in the Genome
axonomy Database (SR-GTDB) ( 33 ). While DefenseFinder
nd PADLOC identified a similar number of immune sys-
ems in total (DefenseFinder: 32 381; PADLOC: 29 405),
nly 36% (16 279 out of 45 507) of the immune systems

dentified in total were identified by both tools (Figure 1 A;
upplementary Figure S1 ). 

The limited overlap between PADLOC and DefenseFinder
s partially explained by the fact that certain immune sys-
em families are only being searched for by one of the tools
4 823 of the total; e.g. DefenseFinder v1.0.7 does not search
or pAgo systems, and PADLOC v1.1.0 does not search for

okosh). Furthermore, conflicts in identification exist due
o various reasons, for example when immune systems com-
rised of the same genes are identified by both tools, but
re classified as distinct immune system families, or when
mmune systems (partially) overlap with genes of other im-
une systems identified by the other tool. By using infor-
ation from both tools (see the Materials and methods and

upplementary Figure S1 ) redundancy between systems dif-
erentially identified and / or classified by PADLOC and De-
enseFinder was removed. Combined, our search strategy re-
ulted in the identification of 40 598 immune systems, sig-
ificantly more than identified by DefenseFinder (32 381) or
ADLOC (29 405) alone. In the remaining database, only
66 systems with partial overlap remain. While manual cu-
ation might further reduce redundancy, as these 466 systems
only comprise a small fraction of the immune system database
(1.15%) and might represent hybrid immune systems, we
have chosen to include them in our final immune system
database. 

Both DefenseFinder (12 166) and PADLOC (8 244)
uniquely identify immune systems not identified by the other
tool (in total 20 410 of 40 598). Further investigation
of these uniquely identified systems reveals that these con-
sist of nearly every immune system family for both tools
( Supplementary Figure S2 ). In addition, DefenseFinder iden-
tified substantially more AbiH, DISARM, Lamassu, Nhi and
P ARIS systems than P ADLOC, while P ADLOC identified
more AbiE, DRT , dXTPases, Iet, PT , Vipirin and Zorya sys-
tems than DefenseFinder (Figure 1 B; Supplementary Figure 
S2 ). The tools did not show substantial differences in the iden-
tification of immune systems in specific phyla ( Supplementary 
Figure S3 ). In conclusion, combining PADLOC and De-
fenseFinder significantly increases the discovery rate of puta-
tive immune systems in (meta)genomic datasets and thereby
provides an expanded view of the immune system arsenal of
prokaryotes. 

Distribution of immune systems in different phyla 

To further investigate the distribution of prokaryotic immune
systems, we used the database of non-redundant immune sys-
tems identified in the SR-GTDB. First, we investigated the dis-
tribution of immune systems over the distinct bacterial and ar-
chaeal phyla (Figure 2 A). While immune systems are regularly
horizontally transferred within and between bacterial and ar-
chaeal phyla ( 28–31 ), their distribution over these domains
of life is unequal (Figure 2 A; Supplementary Figure S4 ). Also
within each of the domains, certain systems show a patchy
distribution over the different phyla (Figure 2 A). Examples of
the latter include Wadjet systems, which are mainly found in
Actinobacteria, and RM systems, which are less abundant in
Crenarchaeota (Figure 2 A; Supplementary Figure S4 ). 

Next, we investigated if there are differences in the total
number of immune systems encoded by prokaryotes belong-
ing to each of the phyla. Bacteria from most phyla on aver-
age encode between 7.1 and 8.8 immune systems (Figure 2 B).
However, Cyanobacteria and Tenericutes encode on average
16.8 and 2.9 immune systems, respectively (Figure 2 B). Ar-
chaea generally encode fewer immune systems than bacteria,
on average between 4.2 and 6.8 immune systems (Figure 2 B).
It was previously shown that the total number of immune
systems encoded and genome size are positively correlated
( 16 ). Indeed, Tenericutes and archaea, which encode relatively
few immune systems (2.9 and 5.9, respectively, on average),
also have relatively small genomes (1.3–2.8 Mbp on average),
while Cyanobacteria, which encode a relatively high number
of immune systems (16.8 on average), usually have relatively
large genomes (5 Mbp on average) (Figure 2 B, C). Corrobo-
rating that the number of immune systems and genome size
are positively correlated, a highly significant positive linear
correlation between genome size and the average number of
immune systems encoded exists in both bacteria and archaea
(Figure 2 D; Pearson correlation bacteria: moderate positive
coefficient 0.43, P < 10 

−99 ; archaea: weak positive coefficient
0.38, P < 10 

−10 ). This indicates that while there is a corre-
lation between genome size and average number of immune
systems encoded, other factors also affect how many immune
systems are encoded. 

https://sankeymatic.com/
https://github.com/LOlijslager/find_prokaryotic_immune_systems
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
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Figure 1. ( A ) Sank e y diagram visualizing DefenseFinder and PADLOC prokaryotic immune system hits in the species representatives of the Genome 
Tax onom y Database (SR-GTDB). The diagram visualizes how all identified systems were combined into a single database (further details about how 

redundancy was removed can be found in Supplementary Figure S1 and the Materials and methods). *Prokaryotic immune systems identified by 
DefenseFinder or PADLOC that o v erlap completely with another system identified by the same tool. **Prokaryotic immune systems identified by 
PADLOC or DefenseFinder that share (partial or complete) o v erlap with a system identified by the other tool. In the combined database, 466 immune 
systems with partial overlap (possibly representing hybrid systems) remain. ( B ) Pie chart visualizing prokaryotic immune systems uniquely identified by 
PADLOC (left) or DefenseFinder (right). P rokary otic immune systems uniquely identified < 200 times were grouped under ‘Other’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To investigate if there is a correlation between abundance
and genome size for individual immune system families, we
analysed this for each immune system family which was iden-
tified in > 150 genomes in our dataset. The positive corre-
lation between abundance and genome size appears to exist
for most immune system families (Figure 2 E; Supplementary 
Figure S5 A). However, certain immune system families show
a stronger increase in abundance with increasing genome size
than others (e.g. dXTPases; Figure 2 E). In contrast, for other
immune system families, the increase in abundance with in-
creasing genomes is marginal (e.g. AVAST, CRISPR-Cas and
RM) or even appears to decrease (e.g. Abi2, AbiH and Nhi).
Combined, this shows that genome size is an important deter-
minant for the total number of immune systems encoded, but
not for each immune system family individually. 

Distribution of immune systems in different T opt 

categories 

Based on previous reports that CRISPR-Cas systems are more
abundant in hosts with a higher T opt ( 28–32 ), we investi-
gated if the abundance of immune systems correlates with
host T opt in general. Based on previously determined host
T opt values ( 32 ), all genomes in the SR-GTDB were grouped
in five T opt categories: psychrophiles (4–20 

◦C), psychrotol- 
erants (20–30 

◦C), mesophiles (30–45 

◦C), thermophiles (45–
85 

◦C) and hyperthermophiles (85–110 

◦C) (Figure 3 A, B). Bac- 
terial hyperthermophiles and archaeal psychrophiles were ex- 
cluded from analyses due to their poor representation in the 
SR-GTDB. Given the uneven distribution of specific prokary- 
otic immune systems over bacteria and archaea (Figure 2 A),
and the observation that bacteria and archaea are distributed 

unevenly over distinct T opt classes (Figure 3 A, B), the corre- 
lation between immune system abundance and host T opt was 
analysed independently for bacteria and archaea. 

It has previously been determined that CRISPR-Cas system 

abundance has a strong positive correlation with T opt ( 28–32 ).
To determine if this is the same for other prokaryotic immune 
systems, we determined the total number of immune systems 
encoded in bacterial genomes for each of the different T opt cat- 
egories. However, only relatively small differences between the 
average number of immune systems were observed for differ- 
ent T opt categories in bacteria (Figure 3 C; Pearson correlation 

coefficient: –0.11, P < 10 

−14 ). As bacteria with a higher T opt 

generally have smaller genomes (Figure 3 D; Pearson correla- 
tion coefficient: –0.31, P < 10 

−99 ), we corrected for genome 
size. Although a positive correlation between T opt and the 
total number of immune systems encoded could be observed,

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data


NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 3 5 

Figure 2. Distribution of immune systems in different phyla and in correlation to genome size. ( A ) Percentage of SR-GTDB genomes that encodes a 
specific immune system family, subdivided for the prokaryotic phyla. Only immune system families identified in ≥ 150 genomes are shown; genomes 
from phyla with < 30 accessions in the SR-GTDB are grouped as ‘other bacteria’ or ‘other archaea’. ( B ) Distribution of the total number of immune 
systems encoded in prokaryotes in the SR-GTDB for different phyla, represented by raincloud plots (visualizing individual data points as well as the 
probabilit y densit y of the dat a) and a bo xplot. T he median is indicated in the bo xplot, while the a v erage (Av) is sho wn on the right. ( C ) Distribution of 
genome sizes for prokaryotes in the SR-GTDB for different phyla, represented by a raincloud plot and a boxplot, with averages indicated. ( D ) Correlation 
between (i) number of immune systems encoded and (ii) genome size for both bacteria (blue) and archaea (orange) represented in the SR-GTDB. 
Pearson correlation coefficients ( r ) and P -values are indicated. ( E ) Percentage of genomes encoding specific immune system families for different 
genome size categories. Only immune system families identified in ≥ 150 genomes are shown. 
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Figure 3. Distribution of immune systems in different T opt categories. ( A ) Definition of T opt categories and their bacterial and archaeal co v erage in the 
SR-GTDB. ( B ) Distribution of genomes in the SR-GTDB for different T opt categories and phyla, with averages indicated. Genomes from phyla with < 30 
accessions are grouped as ‘other bacteria’ and ‘other archaea’. ( C ) Distribution of the total number of immune systems in bacteria in the SR-GTDB per 
T opt category, represented by a raincloud plot (visualizing both individual data points and the probability density of the data) and a boxplot. The median is 
indicated in the boxplot, while the average (Av) is shown on the right. ( D ) Distribution of bacterial genome sizes for different T opt categories, represented 
by raincloud plots (visualizing both individual data points and the probability density of the data) and a boxplot. The median is indicated in the boxplot, 
while the a v erage (Av) is shown on the right. ( E ) Percentage of bacterial genomes encoding specific immune system families (when found in ≥ 150 
genomes) for different T opt categories. *, ** and *** indicate P -values < 1.43 × 10 −3 , 1.43 × 10 −4 and 1.43 × 10 −5 . P -values are determined by a χ2 test 
of independence; cut-off values are determined by a Bonferroni test of α= 0.05 / number of comparisons. ( F ) Proportional distribution of different 
immune system categories for different T opt categories in bacteria. ( G ) Percentage of bacterial genomes with specific RM, CRISPR-Cas and pAgo 
subtypes identified (when found in ≥ 150 genomes) for different T opt categories. For RM, *, ** and *** indicate P -values 1.43 × 10 −3 , 1.43 × 10 −4 and 
1.43 × 10 −5 . For CRISPR-Cas, *, ** and *** indicate P -values < 3.85 × 10 −3 , 3.85 × 10 −4 and 3.85 ×10 −5 . For pAgos, *, ** and *** indicate 
P -values < 1 × 10 −2 , 1 × 10 −3 and 1 × 10 −4 . P -values are determined by a χ2 test of independence; cut-off values are determined by a Bonferroni test of 
α= 0.05 / number of comparisons. 
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he strength of this correlation is weak (Pearson correlation
oefficient: 0.17, P < 10 

−31 ), unlike what has been reported
or CRISPR-Cas systems individually. 

We hypothesized that abundance / T opt correlations vary for
istinct prokaryotic immune systems, and therefore investi-
ated this correlation for all immune systems individually
Figure 3 E; Supplementary Figure S6 A). Corroborating earlier
tudies ( 28–32 ), CRISPR-Cas systems are more abundant in
acterial hosts with a T opt ≥ 45 

◦C. Akin to CRISPR-Cas sys-
ems, pAgos systems are also more abundant in bacterial hosts
ith a T opt ≥ 45 

◦C. Both CRISPR-Cas and pAgo immune sys-
em families are highly diverse and can rely on Abi and / or
nvi as the functional mechanism ( 45–51 ). Remarkably, for
he Abi systems Abi2, AbiE, CBASS, DRT, dXTPases, Gabija,
amassu, Retron, Septu and Zorya, a negative correlation be-

ween T opt and abundance is observed, and a similar trend
n abundance is observed for AbiH, AbiL, AbiU, Hachiman,
et, Mokosh and PARIS, although this trend is non-significant
 8–13 , 20 , 52–63 ) (Figure 3 E). PsyrTA and DarTG ( 57 ,64 ) are
he only Abi systems for which the trend is not observed. In
ontrast, for the Invi system BREX ( 65 ), a positive correla-
ion between T opt and abundance is observed, while for the
nvi system Shedu ( 66 ,67 ) a negative correlation is observed.
one of the other Invi systems shows a statistically significant

orrelation between T opt and abundance. 
As most prokaryotes generally encode multiple immune

ystems (Figure 2 B), we investigated the composition of the
mmune system arsenal for the different T opt classes (Fig-
re 3 F; Supplementary Figure S7 A). To this end, the iden-
ified immune systems were classified as (i) Abi system, (ii)
M systems, (iii) CRISPR-Cas systems, (iv) other Invi systems
r (v) pAgo / Unknown / Uncommon systems. While no gen-
ral trends are observed for Invi systems, RM systems and
Ago / Unknown / Uncommon systems, the fraction and total
umber of CRISPR-Cas systems are higher in bacteria that
elong to higher T opt classes, while the fraction and total
umber of Abi systems are lower (Figure 3 F; Supplementary 
igure S7 A). 
In general, most trends observed in bacteria can also be ob-

erved in archaea ( Supplementary Figure S5 ). However, due
o the generally lower number of genomes and consequen-
ially lower number of immune systems identified, not all
orrelations observed in bacteria are statistically significant
n archaea. Of note, the T opt class of psychrophiles is ex-
luded for archaea (due to poor representation in the SR-
TDB) but, in contrast to the analyses performed for bac-

eria, the T opt class of hyperthermophiles is included. Just
ike in bacteria, in archaea host T opt and CRISPR-Cas abun-
ance are positively correlated ( Supplementary Figure S5 D).
n contrast to observations made for bacteria, a negative cor-
elation is observed for SoFIC and for BREX in archaea
 Supplementary Figure S5 D). Investigation of the general com-
osition of the immune system arsenal for the different T opt

lasses in archaea corroborates observations made in bac-
eria: CRISPR-Cas systems are more abundant in high T opt 

osts, while Abi systems are more abundant in low T opt hosts
 Supplementary Figures S5 E and S7 B). In conclusion, while
RISPR-Cas system abundance is positively correlated with
ost T opt , the abundance of almost all Abi systems is nega-
ively correlated with host T opt . This suggests that CRISPR-
as systems provide a stronger selective advantage in organ-

sms that thrive at relatively high temperatures, while Abi sys-
ems provide a stronger selective advantage in organisms that
hrive at relatively low temperatures. 
Distribution of RM, CRISPR-Cas and pAgo system 

(sub)types 

RM, CRISPR-Cas and pAgo systems are highly diversified
immune system families for which many different (sub)types
exist ( 38 , 68 , 69 ). Depending on the (sub)type, these systems
can mediate Abi, Invi or rely on mixed Abi / Invi strate-
gies. RM systems are subdivided in four types (Figure 3 G;
Supplementary Figure S5 F), all of which mediate Invi ( 68 ).
CRISPR-Cas systems are classified in six types and > 40 sub-
types ( 69 ). While most CRISPR-Cas systems mediate Invi by
targeting and degrading invader nucleic acids, Type VI ( 45 ),
subtype V-A2 ( 46 ) and potentially subtype V-G CRISPR-Cas
systems ( 47 ,48 ) mediate Abi. Furthermore, subtype I-F and
type III systems mediate both Invi and Abi ( 49–51 ). Based on
phylogeny, pAgo systems are classified as long-A pAgo, long-B
pAgo, short pAgo, SiAgo-like and PIWI-RE systems ( 37 ,38 ).
While long-A pAgos generally act as Invi systems ( 38 ,70–72 ),
characterized long-B pAgo, short pAgo and siAgo-like systems
act as Abi systems ( 14 , 15 , 73 ). 

As the distribution of various immune systems appears
to be influenced by their immune system strategy, and be-
cause distinct immune system (sub)types mediate different
immune strategies, we investigated the distribution of RM,
CRISPR-Cas and pAgo (sub)types both in bacteria and in ar-
chaea (Figure 3 F; Supplementary Figures S5 F and S6 B). In
bacteria, the abundance of type III RM systems is positively
correlated with host T opt (Figure 3 F), while in archaea the
abundance of type I systems negatively correlates with host
T opt ( Supplementary Figure S5 F). CRISPR-Cas subtypes I-A
(in archaea only), I-B (in bacteria only), III-A, III-B and III-
D (in bacteria only), and unclassified CRISPR-Cas systems,
show a > 5-fold increased abundance in prokaryotic hosts
with a T opt ≥ 45 

◦C compared with prokaryotic hosts with a
T opt < 45 

◦C (Figure 3 F; Supplementary Figures S5 F and S6 B).
Furthermore, the abundances of CRISPR-Cas subtypes I-E
and I-G are also positively correlated with the host T opt in bac-
teria. In contrast, the abundance of mixed-strategy subtype I-F
systems is negatively correlated with T opt in bacteria. Stand-
alone long pAgos, which generally act as Invi systems ( 38 ,70–
72 ), are more abundant in bacteria with a high T opt (Figure
3 G). In contrast, Abi-conferring short pAgo systems and long
pAgos that associate with effector enzymes appear more abun-
dant in prokaryotes with a low T opt , although this correla-
tion is significant only for short pAgos in archaea (Figure 3 G;
Supplementary Figure S5 F). Combined, this shows that certain
Abi-conferring subtypes of CRISPR-Cas and pAgo systems are
less abundant in hosts with a high T opt , while Invi-conferring
subtypes of CRISPR-Cas and pAgo systems are more abun-
dant in hosts with a high T opt . 

Distribution of prokaryotic immune systems in 

distinct environments 

While the SR-GTDB provides a broad taxonomic sampling
of prokaryotes, the sampling might be skewed towards culti-
vatable microbes. In addition, T opt does not necessarily cor-
relate directly with environmental temperature, and other en-
vironmental parameters could also influence the distribution
of immune systems. To investigate if environmental tempera-
ture and / or other environmental parameters affect prokary-
otic immune system distribution, our custom script that com-
bines the output of PADLOC and DefenseFinder was used
to identify prokaryotic immune systems in metagenomes iso-
lated from various environments (Figure 4 ). It should be noted

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
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Figure 4. Distribution of prokaryotic immune systems in metagenomes isolated from different environments. ( A ) Number of immune systems identified 
per gigabase pair (Gbp) of each metagenomic dataset. ( B ) Proportional distribution of different immune system categories for different metagenomic 
datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that, in contrast to analyses on SR-GTDB genomes (Figures 1 –
3 ), no phylogenetic curation was performed on these metage-
nomic datasets. 

First, we investigated the general abundance of immune sys-
tems in distinct environments (Figure 4 A). We observe consid-
erable differences in the number of immune systems encoded
per Gbp of metagenomics data, ranging from 461 systems per
Gbp in permafrost metagenomes to 2 337 per Gbp in hu-
man gut metagenomes. Further investigation of the abundance
of specific immune systems reveals large differences in abun-
dance for certain immune systems in specific environments
(Figure 4 A). For example, in human gut metagenomes, Abi2 is
far more abundant than in other environments and, in hyper-
saline lake metagenomes, most Abi systems are absent, despite
these metagenomes encoding a generally high number of im-
mune systems (1 791 systems per Gbp). 

Next, we analysed the proportional distribution of (i) Abi,
(ii) RM, (iii) CRISPR-Cas, (iv) other Invi systems and (v)
pAgo / Uncommon / Unknown systems in these metagenomes.
As observed for the different T opt classes (Figure 3 ), the pro-
portional distribution of Abi systems and CRISPR-Cas sys-
tems differs considerably in metagenomes from distinct en-
vironments, while differences in the proportional abundance
of RM and other Invi systems are smaller (Figure 4 B). Cor-
roborating the results for host T opt / abundance correlations
described above, the metagenomes from a cold environment
(polar sea water) have a relative high proportional abundance 
of Abi systems, while the metagenomes from a hot environ- 
ments (hot spring) have a high abundance of CRISPR-Cas sys- 
tems (Figure 4 B). A more even distribution of CRISPR-Cas 
and Abi systems is observed in metagenomes isolated from 

hydrothermal vents (where temperatures can range from 4 

◦C 

to > 100 

◦C), fresh water, permafrost and Antarctic hyper- 
saline lakes. In a high salt environment (hypersaline lake),
we observe high CRISPR-Cas and low Abi abundance, sim- 
ilar to the proportional distribution of thermophilic organ- 
isms (Figure 3 F). In host-associated microbiomes (human gut 
and plant), where there is a strong selection for specific taxa 
( 74 ), we find relatively many Abi systems, and notably vary- 
ing amounts of CRISPR-Cas systems. These results corrobo- 
rate the correlation between temperature and abundance of 
specific immune systems, and make it evident that additional 
environmental parameters play a role in the distribution of 
prokaryotic immune systems. 

Discussion 

Prokaryotic immune systems are often subjected to horizontal 
gene transfer ( 28–31 ), resulting in most immune system fami- 
lies being present across bacterial and archaeal phyla and en- 
vironments ( 16 ). Yet, the distribution of prokaryotic immune 
systems in nature is uneven ( 16 ). We hypothesize that under 
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istinct conditions, certain immune systems provide a greater
elective advantage than other systems. Consequentially, this
esults in such immune systems becoming more abundant in
he corresponding environment, causing the uneven distribu-
ion observed. In this study, we provide a systematic analysis
f the abundance of different immune system families thereby
howing that phylogeny, genome size and host T opt , as well
s other environmental parameters, are factors that correlate
ith the abundance of specific prokaryotic immune systems. 
The evolutionary arms race between prokaryotes and their

nvaders has resulted in highly diversified immune systems
 3 ), making their identification challenging. PADLOC and De-
enseFinder rely on tool-specific HMM profiles, classification
lgorithms and cut-off scores to identify prokaryotic immune
ystems. Consequently, both tools identify immune systems
ith different success rates, and the immune systems identi-
ed by PADLOC and DefenseFinder only partially overlap:
ach tool additionally identifies a significant number of im-
une systems not identified by the other tool (Figure 1 ). When
 user requires a broad identification of putative immune
ystems, the output of DefenseFinder and PADLOC can be
erged, as done in this study. Based on identification by De-

enseFinder alone, it was previously estimated that prokary-
tes encode an average of 5.2 immune systems per genome
 16 ). By combining the output of DefenseFinder and PAD-
OC, we identify an average of 7.9 and 5.9 immune sys-

ems in bacterial and archaeal genomes, respectively. It should
e noted that novel immune systems are regularly identified
nd characterized. This results in various immune systems
ot yet being included in the search strategies of the tools.
s such, it is likely that the used tools, even when combined,
o not provide a complete image of the entire immune sys-
em arsenal encoded in prokaryotic genomes. However, De-
enseFinder and PADLOC are regularly expanded and up-
ated; while this manuscript was in preparation, new immune
ystem databases have already been released. Therefore, fu-
ure versions of the tools are likely to identify a larger frac-
ion of the complete immune system arsenal. Furthermore,
ertain users might require predictions with a low chance of
alse positives. In that case, the user should select only im-
une systems identified by both tools. We have made an au-

omated script that combines DefenseFinder and PADLOC for
he identification of prokaryotic immune systems in either the
road or the selective mode https:// github.com/ LOlijslager/
nd _ prokaryotic _ immune _ systems and dx.doi.org/10.6084/
9.figshare.24632142 . 
Although prokaryotic immune systems are regularly hori-

ontally transferred between bacteria and archaea ( 28–31 ), in
greement with previous studies ( 16 ), our analysis shows that
ertain systems are completely absent in archaea or are en-
oded in specific bacterial phyla only. While we cannot rule
ut that more distant homologous systems exist and are not
dentified by PADLOC or DefenseFinder, we speculate that
his patchy distribution of immune systems might, for exam-
le, be a result of these systems emerging later in evolution,
he reliance on clade-specific accessory proteins or that these
ystems provide a larger selective advantage in specific hosts
or other reasons. Our data corroborate earlier findings that
enome size and the total number of immune systems encoded
re positively correlated ( 16 ). While we additionally observe
ifferences in the total number of immune systems encoded
y prokaryotes from different phyla, this difference is largely
xplained by the prokaryotes from these phyla having differ-
nt genome sizes. This implies that genome size serves as an
important physical limitation for the total number of immune
systems encoded. Yet, it is likely that other factors that con-
tribute to the number of immune systems encoded exist. Of
note, we show that the positive correlation between genome
size and abundance does not hold for all immune system fami-
lies: AVAST and CRISPR-Cas systems do not have a linear cor-
relation between their abundance and genome size, and Abi2
and Nhi systems appear to decrease in abundance in larger
genomes. Possible explanations include (but are not limited to)
that larger genomes are at a higher risk for autoimmunity by
these systems, or that these systems become redundant and / or
interfere with increasing numbers of other systems. 

Corroborating earlier studies ( 28–31 ), we show that
CRISPR-Cas systems are more abundant in hosts with a higher
T opt (Figure 3 ): a 2-fold increase of CRISPR-Cas systems is
observed in the genomes of hosts with a T opt > 45 

◦C. To de-
termine whether this is a general trend for immune systems,
we expanded this analysis to 35 other commonly encoded im-
mune system families. A similar sharp increase in abundance
in the genomes of bacterial hosts with a T opt > 45 

◦C is ob-
served for stand-alone long pAgos (6-fold increase). Long-A
pAgos are programmed with small nucleic acid guides to rec-
ognize and neutralize invaders in a sequence-specific manner
( 38 ,70–72 ) akin to most CRISPR-Cas systems. 

As many CRISPR-Cas systems that mediate Invi also show
this correlation, it is tempting to speculate that a positive cor-
relation between T opt and abundance can generally be ob-
served for Invi systems. However, while a positive correlation
between host T opt and abundance is also observed for certain
RM system subtypes and BREX, no positive correlation is ob-
served for other Invi systems. Possibly, the immune mechanism
and downstream responses of these immune systems are not
yet fully understood; we speculate that these exceptions might
be explained by the hypothesis that certain Invi systems, espe-
cially RM systems, instigate downstream Abi responses ( 75 ).
Additionally, an Abi response has also been observed for Invi
systems Shedu and Wadjet in specific cases, indicating alterna-
tive responses or downstream responses for these systems too
( 60 ,76 ). For Abi systems, almost without exception, a neg-
ative correlation between T opt and system abundance is ob-
served, and none of the Abi systems investigated has a positive
correlation between T opt and system abundance. Corroborat-
ing these findings, analyses of the proportional distribution
of different immune system strategies per genome and in en-
vironmental samples revealed that CRISPR-Cas systems and
Abi systems increase and decrease, respectively, with increas-
ing T opt . Certain systems for which the underlying immune
mechanism is unknown also show either a positive [e.g. hma
in both bacteria (significant) and archaea (non-significant),
Supplementary Figures S5 D and S6 A] or negative correlation
(Azaca, in bacteria only, Supplementary Figure S6 A) between
abundance and host T opt . While it is tempting to speculate
that these are Invi and Abi systems, respectively, we stress that
host T opt is not the only determinant affecting immune system
distribution. 

These findings at least partially contradict various hypothe-
ses previously put forward to explain the increased abun-
dance of CRISPR-Cas systems in high T opt hosts. For exam-
ple, it has previously been hypothesized that the lack of cell-
grazing predator organisms at temperatures above 45 

◦C al-
lows thermophilic prokaryotes to invest more of their energy
in their immune system arsenal ( 32 ). However, this theory
does not explain why most immune systems have a negative
correlation with host T opt . It has also been hypothesized that

https://github.com/LOlijslager/find_prokaryotic_immune_systems
https://dx.doi.org/10.6084/m9.figshare.24632142
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae105#supplementary-data
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at high temperatures viruses have a lower chance of escap-
ing sequence-specific CRISPR-Cas immunity ( 30 ,77 ): in ther-
mophilic environments, mutations are more frequently detri-
mental, resulting in lower mutation rates and lower MGE di-
versity ( 78 ,79 ). Indeed, an MGE mutation rate below a theo-
retical threshold value is necessary for CRISPR-Cas systems
to mediate a fitness gain ( 30 ). The same hypothesis could
also explain why stand-alone long pAgos, which are also
sequence-specific Invi systems, follow a similar distribution.
However, it does not explain why the abundance of other pro-
grammable sequence-specific immune systems, including short
and effector-associated long pAgo systems, as well as CRISPR-
Cas subtypes I-D, I-F, II-A, II-C and V-K, have no or a negative
correlation with host T opt . 

We propose various hypotheses, none of which is mutually
exclusive, to describe why Abi systems might be more abun-
dant in hosts with a low T opt . We hypothesize that Abi systems
provide the highest fitness gain when viruses are likely to en-
counter kin of the original host. When the chance that this
occurs is lower, for example due to low cell density and / or
low virus stability, sacrificing the host cell is a relatively costly
strategy . Possibly , prokaryotes with T opt < 45 

◦C grow in
clumps or biofilms, or form filaments relatively often, which
makes Abi more beneficial. In addition, the extreme environ-
ments in which thermophiles thrive could reduce the stability
of viruses, which leaves a shorter time window to infect new
hosts. However, thermophiles frequently grow in biofilms ( 80 )
and viruses from thermophilic environments have adapted
to withstand extreme conditions ( 81 ). Another explanation
could be that because thermophilic hosts live in extreme en-
vironments and therefore close to what is physically still fea-
sible, the fitness cost of Abi might be too high. Finally, we
speculate that invader replication and spread occur faster at
higher temperatures. Rapid virus propagation might make it
difficult for Abi systems to shut down the host cell before lytic
viruses can escape. Future experimental studies are required to
establish if any of these hypotheses are valid. 

Compared with eukaryotes, prokaryotes live in a much
wider range of environments, and have highly diversified cel-
lular mechanisms. Many of the factors that influence the
complex ecology of prokaryotes and their invaders are un-
known. Here we reveal that the abundance of specific Invi
systems is positively correlated with host T opt , while the abun-
dance of Abi systems is negatively correlated with host T opt .
This suggests that the general strategy of prokaryotic immune
systems (Invi or Abi) provides distinct fitness gains in dif-
ferent environments. Further studies are required to expand
our understanding of what other environmental and / or addi-
tional factors affect the distribution of prokaryotic immune
systems. 
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