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ABSTRACT

Protein classification by machine learning algorithms
is nowwidely used in structural and functional annota-
tion of proteins. The Protein Classification Benchmark
collection (http://hydra.icgeb.trieste.it/benchmark) was
created in order to provide standard datasets on
which the performance of machine learning methods
can be compared. It is primarily meant for method
developers and users interested in comparing meth-
ods under standardized conditions. The collection
contains datasets of sequences and structures, and
each set is subdivided into positive/negative, training/
test sets in several ways. There is a total of 6405
classification tasks, 3297 on protein sequences, 3095
on protein structures and 10 on protein coding regions
in DNA. Typical tasks include the classification of
structural domains in the SCOP and CATH databases
based on their sequences or structures, as well as
various functional and taxonomic classification prob-
lems. In the case of hierarchical classification sche-
mes, the classification tasks can be defined at various
levels of the hierarchy (such as classes, folds, super-
families, etc.). For each dataset there are distance
matrices available that contain all vs. all comparison
of the data, based on various sequence or structure
comparison methods, as well as a set of classifica-
tion performance measures computed with various
classifier algorithms.

INTRODUCTION

Classification of proteins is a fundamental technique in
computational genomics which is carried out, to a large

extent, by automated machine learning methods (1). Applica-
tion of machine learning techniques to proteins is a delicate
task since the known protein groups—such as those of
domain-types and protein families—are highly variable in
most of their characteristics (e.g. average sequence length,
number of known members, within-group similarity, etc.).
A further problem is the complexity of the calculations,
since a system capable of testing and comparing machine
learning algorithms should include (i) datasets and classifica-
tion tasks; (ii) sequence/structure comparison methods;
(iii) classification algorithms; and (iv) a validation protocol.

Even though the application of machine learning algo-
rithms to protein classification is a frequent topic in the litera-
ture, it is often quite difficult to compare the performance of a
new classification method with the figures published on other
methods. In our opinion this is mainly because (i) the
published results are often based on different and sometimes
by then obsolete databases and program versions, (ii) the
fine-tuning of the program parameters is sometimes not
described in sufficient detail and finally, (iii) the classification
performance is characterized by various, often ad hoc chosen
performance measures and validation protocols.

In order to get a reliable estimate of the performance, an
algorithm needs to be tested on not only one, but many
protein groups selected from a well-curated database. For
instance, an algorithm may be efficient in classifying protein
superfamilies into families, but less efficient in classifying
folds into superfamilies. In other words, one can choose to
conduct a test at different levels of a classification hierarchy,
and within each of these levels one can define many different
classification tasks. The choice of the test/train groups is also
critical. It is well known that once a group of proteins has
been identified, it is relatively easy to recognize new
members of the group. On the other hand, each new genome
may contain new subtypes of the already known groups (say
new families within a known superfamily), which are often
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not recognized by the classification algorithms trained on
the old examples. In other words, it is important to know
how a given algorithm generalizes to novel subtypes. This
ability can be estimated by a method that we term ‘knowl-
edge based cross-validation’ by which we determine how
the a priori known subtypes (e.g. protein families within a
superfamily) can be recognized, based on other known
subtypes (2–4).

In view of the above difficulties and the number of new
genomes sequenced, it is critically important to define bench-
mark datasets for assessing the accuracy of classification
algorithms. The goal of the Protein Classification Benchmark
collection is to provide a standardized set of protein data and
procedures that makes it easier to compare new methods with
the established ones. The collection is based on two general
ideas: (i) since protein groups are highly variable, the perfor-
mance of an algorithm has to be tested on a wide range of
classification tasks, such as the recognition of all the protein
families in a given database; (ii) the utility of a classifier is
determined by its ability to recognize novel subtypes of the
existing proteins. The collection is primarily meant for
those interested in developing sequence or structure compari-
son algorithms and/or machine learning methods for protein
classification.

CLASSIFICATION TASKS AND BENCHMARK
TESTS

A classification task is the subdivision of a dataset into +train,
+test, �train and �test groups. Given such a subdivision,
one can train a classifier and evaluate its performance.
A benchmark test is a collection of several classification
tasks defined on a given database. At present the collection
contains 34 benchmark tests consisting of 10–490 classifica-
tion tasks. There is a total of 6405 classification tasks, 3297
on protein sequences, 3095 on protein structures and 10 on
protein coding regions in DNA. A typical test refers to the
prediction of novel subtypes within protein superfamilies,
folds or taxonomic groups, etc. As a comparison we have
included benchmark tests that are based on random subdivi-
sion of the datasets according to a 5-fold cross-validation
scheme. The benchmark tests were selected so as to represent
various degrees of difficulty. For instance, the sequences in
orthologous groups of the COG database (5) are closely
related to each other within the group, while there are rela-
tively weak similarities between the groups. On the other
hand, protein families of SCOP (6) or homology groups of
CATH (7) are less closely related to each other in terms of
sequence similarity and the similarities between groups are
also weak. Finally, sequences of the same protein in different
organisms that can be divided into taxonomic groups repre-
sent a case where both the within-group and between-group
similarities are high.

From the computational point of view, a classification task
is described as a ‘cast-vector’ that assigns a membership code
(+test, +train, �test, �train) to each entry in a given database.
A benchmark test is an ensemble of such cast-vectors which
is represented in the form of a ‘cast-matrix’ or membership
table. In a cast-matrix each column vector represents a
classification task. For each benchmark test a cast-matrix is

deposited as a tab-delimited ASCII file, using a format
described by Liao and Noble (2).

PROTEIN DATA

The collection contains datasets of protein sequences, 3D
structures and in a few cases, reading frame DNA sequences
of the same molecules. The sequences are deposited in con-
catenated FASTA format (http://www.ncbi.nlm.nih.gov/
blast/fasta.s html), the structures are in PDB format (http://
www.rcsb.org/static.do?p¼file_formats/pdb/index.html or
http://www.pdb.org/).

PROTEIN COMPARISON DATA

Dataset versus dataset comparison data are deposited in the
form of symmetrical distance matrices stored in the form of
tab-delimited ASCII files. The methods include sequence
comparisons such as BLAST (8), Smith–Waterman (9),
Needleman–Wunsch (10), compression-based distances (11)
and the local alignment kernel (12). The structure comparison
algorithm included is PRIDE2 (13). These data can then be
used directly in nearest neighbor classification schemes as
well as for the training of kernel methods.

MACHINE LEARNING ALGORITHMS

Results are deposited for nearest neighbor (1NN), support
vector machines (SVM) (14), artificial neural networks
(ANN) (15), random forest (RF) (16) and logistic regression
(LogReg) (17) learning algorithms. In general, the input of
these algorithms is a feature vector whose parameters are
comparison scores calculated between a protein of interest
and the members of the training set.

PERFORMANCE MEASURES AND VALIDATION
PROTOCOL

The primary evaluation protocol used in this database is
standard receiver operator characteristic (ROC) analysis
(18). This method is especially useful for protein classifica-
tion as it includes both sensitivity and specificity, and it is
based on a ranking of the objects to be classified (19). The
ranking variable is a number, such as a BLAST score, or
an output variable produced by a machine learning algorithm.
For nearest neighbor classification, the ranking variable is the
similarity/distance between a test example and the nearest
member of the positive training set, which corresponds to
one-class classification with outlier detection. For SVM, the
distance from the separating hyperplane can be used as a
ranking variable. The analysis is then carried out by plotting
sensitivity versus 1�specificity at various threshold levels,
and the resulting curve is integrated to give an ‘area under
curve’ or AUC value. For perfect ranking, AUC ¼ 1.0 and
for random ranking AUC ¼ 0.5 (18).

As a benchmark test contains several ROC experiments,
one can draw a cumulative distribution curve of the AUC
values. The integral of this cumulative curve, divided by
the number of the classification experiments is in [0,1], the
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higher values represent the better classifier performances (2).
Alternatively, the average AUC can be used as summary
characteristics for a database, and this value is given for
each benchmark test within the database.

BENCHMARK RESULTS AND PROGRAMS

Nearest neighbor performance data are deposited for all
benchmark tests and all comparison methods. The program
used for the calculation of the results was written in R (20)
and its code is deposited at the database site. This program
takes a cast-matrix and a distance matrix as the input, and
carries out either 1NN classification. The program is down-
loadable from the site and is written in such a way that it
can easily be modified for testing other classification algo-
rithms. In addition, SVM, ANN, RF and LogReg results are
deposited for a few other datasets. The results were produced
with open source software written in JAVA (21) or in R.

DATABASE STRUCTURE

The database consists of records. Each record contains a
benchmark test, which consists of several (10–490) classifica-
tion tasks defined on a given database. Each record contains
at least one distance matrix (an all versus all comparison
of the dataset) as well as performance measures (typically
ROC analysis results) for all the classification tasks for
at least one classification algorithm. The bibliographic
references and the details of the calculations are included in
Table 1.

AVAILABILITY

The database and a collection of documents and help files can
be accessed at http://hydra.icgeb.trieste.it/benchmark/.

The records can be accessed directly from the homepage
(Figure 1). Each record contains statistical data and a detailed
description of the methodology used to produce the data and
the analysis results. The results are shown as tables of AUC
values obtained by ROC analysis (Figure 2) and several detai-
led table-views can be generated on-line in various formats.

SUGGESTIONS FOR USE

The purpose of this collection is to provide benchmark data-
sets for the development of new protein classification algo-
rithms. In order to benchmark a new comparison algorithm
for sequences or structures, the user can download a dataset
and calculate a distance matrix. This matrix can then be
used by the R programs deposited with the collection, to cal-
culate a performance measure based on one of the available
benchmark tests (defined by one of a cast-matrices deposited
for the chosen dataset) and the result will be directly compa-
rable with those deposited in the collection.

If the goal is the benchmarking of a new machine learning
method, the tests can be performed on an existing distance
matrix and a cast-matrix. For example, the new method to
be tested can be included as a procedure called by the R
scripts downloadable from the site. As the calculations are
repeated many times during program development, we have
included two mini-datasets (PCB0033, PCB0034), designed
for the use of program developers.

Table 1. Examples of records (benchmark tests) included in the collection

Benchmark testsa Data Classification tasks Comparison methodsb

Classification of protein
domains in SCOP
[PCB0001, PCB00003,
PDB0005]

11 944 Protein sequences/or
protein structures from
SCOP95 (6)

Superfamilies subdivided
into families. . .. . .. . .246

BLAST, Smith–Waterman,
Needleman–Wunsch,
LA–kernel,
PRIDE2

Folds subdivided into
superfamilies. . .. . .. . .191

Classes subdivided
into folds. . .. . .. . .377

Classification of protein
domains in CATH [PCB00007,
PCB00009, PCB00011,
PCB00013]

11 373 Protein sequences/or
protein structures from
CATH (7)

(H) groups subdivided
into S groups. . .. . .. . .165

BLAST, Smith–Waterman,
Needleman–Wunsch,
LA–kernel, PRIDE2

T groups subdivided
into H groups. . .. . .. . .199

A groups subdivided
into T groups. . .. . .. . .297

Classes subdivided
into A groups. . .. . .. . .33

CLassification of phyla
based on 3 phospho-glycerate
kinase (3PGK) sequences.
[PCB00031, PCB00032]

131 3PGK Protein and
DNA sequences (11,29)

Groups of kingdoms (Archaea,
Bacteria, Eucarya)
subdivided into phyla. . .. . .10

BLAST, Smith–Waterman,
Needleman–Wunsch,
LA–kernel, LZW, PPMZ

Functional annotation of
unicellular eukaryotic sequences
based on prokaryotic orthologs.
[PCB00031]

17 973 Sequences of prokaryotes
and unicellular eukaryotes
from the COG databases (5)

Orthologous groups subdivided
into prokaryotes and
eukaryotes. . .. . .. . .119

BLAST, Smith–Waterman,
Needleman–Wunsch,
LA–kernel, LZW, PPMZ

aThe collection contains a total of 6405 benchmark tests including a total of 3297 protein sequence classification tests, 3095 3D classification tests and 10 DNA
(coding region) classification tests. The accession numbers of the records are given in square brackets.
bSee text for the references.
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SUBMISSION OF NEW DATA

It is our intention to include new data found in the literature and
submitted by authors. The new data can include sequence/
structure collections subdivided into +train, +test, �train and
�test sets, distance matrices and new evaluation results. In
order to complywith thedata formats, authors intending to submit
new data are encouraged to contact the development team at
benchmark@icgeb.org.

CONCLUSIONS AND FUTURE DEVELOPMENTS

The bioinformatics literature contains relatively few benchmark
datasets (22–28). The distinctive feature of the current collection
is the explicit subdivision of the data into +test, +train, �test
and�train sets in order to facilitate the comparison of machine
learning algorithms. Another important characteristic of the
collection is the availability of evaluation results and the
detailed documentation of the methodologies. At present,
evaluation results are depositedmainly for the smaller datasets.
We plan to continuously add evaluation results for the larger

datasets and include additional methodologies including Hid-
den Markov models. At the same time we will augment and
improve the tools and interfaces.
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