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ABSTRACT The draft genome sequences of two Sphingobium strains that are hexa-
chlorocyclohexane (HCH) degraders are presented. The strains were isolated from HCH-
contaminated soil in Kitengela, Kenya. Both genomes possess the lin genes responsible
for HCH degradation and gene clusters for degradation of other xenobiotic compounds.

ioremediation of biodegradable lindane (yhexachlorocyclohexane [HCH]) is a via-

ble detoxification strategy for maintaining environmental health (1, 2). Several
microorganisms can degrade HCH isomers (3, 4). Sphingomonadaceae seem to play a
central role in the complete mineralization of HCH, with the catabolic genes initially
identified in Sphingobium japonicum UT26 (5).

Here, two Sphingobium species (Sphingobium sp. strains S6 and S8) were isolated from
HCH-contaminated soil collected from an obsolete former pesticide store in Kitengela,
Kenya (01.49 S, 37.048 E). For bacterial isolation, we used a minimum salt medium (MSM)
(6) spiked with 100 wg/mL yHCH. Pure colonies were obtained by spreading serial dilu-
tions (1073 to 107°) of the enrichment cultures onto 1:10 diluted Luria-Bertani (LB) agar
plates supplemented with 100 ug/mL y-HCH, followed by incubation at 30°C for 72 h. The
HCH degradation capacity was assessed by dechlorinase assay according to the method of
Phillips et al. (7) and in the liquid medium following Boltner et al. (8).

Genomic DNA was extracted from 48-h LB cultures grown at 30°C using a Wizard
genomic DNA purification kit (Promega, USA). DNA was quantified using a Qubit fluorom-
eter (Thermo Fisher Scientific, USA). According to the manufacturer's instructions, a
NEBNext Ultra Il FS DNA library kit (New England Biolabs, USA) was used to prepare a
paired-end 300-bp library for genome sequencing on an lllumina MiSeq platform. We
used Sickle v1.33 (9) with a Phred quality score of >30 for sequence trimming. De novo
sequence assembly was performed using SPAdes v3.15.2 (10), while CheckM v1.0.18 and
RefineM v0.0.25 (11) were used for quality checking and to provide completeness and con-
tamination information, respectively. The genomes were annotated using PROKKA v1.14.5
(12) and the Rapid Annotation using Subsystems Technology toolkit (RASTtk) v2.0 (13).
Unless otherwise stated, default parameter settings were applied for all software used.

The draft genomes of Sphingobium sp. strains S6 and S8 had 42 and 44 contigs, with
total lengths of 4,173,956 bp and 4,170,555 bp, respectively. Both genomes showed
99.2% completeness and 2.06% contamination. The GC contents of Sphingobium sp.
strains S6 and S8 were 62.4% and 62.53%, respectively. The annotations are summarized
in Table 1. Previous reports show that HCH-degrading sphingomonads share the same
degradation pathway that requires genes linA through linF (3, 8). Analysis of the draft
genomes of the Sphingobium species described in this study revealed the presence of
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one copy each of linA, linB, linC, linD, linE, and linF, and two copies each of linG, linH, linJ,
and linX per genome. Annotation using RASTtk showed gene clusters for the potential
degradation of xenobiotic compounds such as 1,1,1-trichloro-2,2-bis(4-chlorophenyl)
ethane (DDT); 1,4-dichlorobenzene; tetrachloroethene; 2,4-dichlorobenzoate; fluoroben-
zoate; benzoate; toluene; and xylene. In addition, the genetic potential for the produc-
tion of carotenoids was predicted using antiSMASH v6.0.0 (14) in both strains.

The availability of the genome sequences of the two Sphingobium species may be
instrumental in promoting HCH degradation by mixed (multidomain) microbial com-
munities such as fungal bacterial associations (15).
Data availability. These whole-genome shotgun projects have been deposited at ENA/
DDBJ/GenBank under accession numbers CAJHOG000000000 and CAJHOH000000000 for
Sphingobium sp. strains S6 and S8, respectively. The versions described in this paper are
CAJHOG000000000.1 and CAJHOH000000000.1 for Sphingobium sp. strains S6 and S8, respec-
tively. The raw data are available at ENA under SRA accession numbers ERR4392070 and
ERR4392071. All project data are available under BioProject accession number PRJEB39494.
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