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Abstract Metabolic models can provide a mechanistic

framework to analyze information-rich omics data sets, and

are increasingly being used to investigate metabolic alter-

nations in human diseases. An expression of the altered

metabolic pathway utilization is the selection of metabo-

lites consumed and released by cells. However, methods

for the inference of intracellular metabolic states from

extracellular measurements in the context of metabolic

models remain underdeveloped compared to methods for

other omics data. Herein, we describe a workflow for such

an integrative analysis emphasizing on extracellular met-

abolomics data. We demonstrate, using the lymphoblastic

leukemia cell lines Molt-4 and CCRF-CEM, how our

methods can reveal differences in cell metabolism. Our

models explain metabolite uptake and secretion by pre-

dicting a more glycolytic phenotype for the CCRF-CEM

model and a more oxidative phenotype for the Molt-4

model, which was supported by our experimental data.

Gene expression analysis revealed altered expression of

gene products at key regulatory steps in those central

metabolic pathways, and literature query emphasized the

role of these genes in cancer metabolism. Moreover,

in silico gene knock-outs identified unique control points

for each cell line model, e.g., phosphoglycerate dehydro-

genase for the Molt-4 model. Thus, our workflow is well-

suited to the characterization of cellular metabolic traits

based on extracellular metabolomic data, and it allows the

integration of multiple omics data sets into a cohesive

picture based on a defined model context.

Keywords Constraint-based modeling � Metabolomics �
Multi-omics � Metabolic network � Transcriptomics

1 Introduction

Modern high-throughput techniques have increased the

pace of biological data generation. Also referred to as the

‘‘omics avalanche’’, this wealth of data provides great

opportunities for metabolic discovery. Omics data sets

contain a snapshot of almost the entire repertoire of

mRNA, protein, or metabolites at a given time point or

under a particular set of experimental conditions. Because

of the high complexity of the data sets, computational

modeling is essential for their integrative analysis. Cur-

rently, such data analysis is a bottleneck in the research

process and methods are needed to facilitate the use of

these data sets, e.g., through meta-analysis of data available

in public databases [e.g., the human protein atlas (Uhlen

et al. 2010) or the gene expression omnibus (Barrett et al.
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2011)], and to increase the accessibility of valuable infor-

mation for the biomedical research community.

Constraint-based modeling and analysis (COBRA) is a

computational approach that has been successfully used to

investigate and engineer microbial metabolism through the

prediction of steady-states (Durot et al. 2009). The basis of

COBRA is network reconstruction: networks are assembled

in a bottom-up fashion based on genomic data and extensive

organism-specific information from the literature. Metabolic

reconstructions capture information on the known bio-

chemical transformations taking place in a target organism to

generate a biochemical, genetic and genomic knowledge

base (Reed et al. 2006). Once assembled, a metabolic

reconstruction can be converted into a mathematical model

(Thiele and Palsson 2010), and model properties can be

interrogated using a great variety of methods (Schellenber-

ger et al. 2011). The ability of COBRA models to represent

genotype–phenotype and environment–phenotype relation-

ships arises through the imposition of constraints, which

limit the system to a subset of possible network states (Lewis

et al. 2012). Currently, COBRA models exist for more than

100 organisms, including humans (Duarte et al. 2007; Thiele

et al. 2013).

Since the first human metabolic reconstruction was

described [Recon 1 (Duarte et al. 2007)], biomedical appli-

cations of COBRA have increased (Bordbar and Palsson

2012). One way to contextualize networks is to define their

system boundaries according to the metabolic states of the

system, e.g., disease or dietary regimes. The consequences of

the applied constraints can then be assessed for the entire

network (Sahoo and Thiele 2013). Additionally, omics data

sets have frequently been used to generate cell-type or con-

dition-specific metabolic models. Models exist for specific

cell types, such as enterocytes (Sahoo and Thiele 2013),

macrophages (Bordbar et al. 2010), and adipocytes (Mar-

dinoglu et al. 2013), and even multi-cell assemblies that

represent the interactions of brain cells (Lewis et al. 2010).

All of these cell type specific models, except the enterocyte

reconstruction were generated based on omics data sets.

Cell-type-specific models have been used to study diverse

human disease conditions. For example, an adipocyte model

was generated using transcriptomic, proteomic, and meta-

bolomics data. This model was subsequently used to inves-

tigate metabolic alternations in adipocytes that would allow

for the stratification of obese patients (Mardinoglu et al.

2013). One highly active field within the biomedical appli-

cations of COBRA is cancer metabolism (Jerby and Ruppin,

2012). Omics-driven large-scale models have been used to

predict drug targets (Folger et al. 2011; Jerby et al. 2012). A

cancer model was generated using multiple gene expression

data sets and subsequently used to predict synthetic lethal

gene pairs as potential drug targets selective for the cancer

model, but non-toxic to the global model (Recon 1), a

consequence of the reduced redundancy in the cancer spe-

cific model (Folger et al. 2011). In a follow up study, lethal

synergy between FH and enzymes of the heme metabolic

pathway were experimentally validated and resolved the

mechanism by which FH deficient cells, e.g., in renal-cell

cancer cells survive a non-functional TCA cycle (Frezza

et al. 2011).

Contextualized models, which contain only the subset of

reactions active in a particular tissue (or cell-) type, can be

generated in different ways (Becker and Palsson, 2008; Jerby

et al. 2010). However, the existing algorithms mainly con-

sider gene expression and proteomic data to define the reac-

tion sets that comprise the contextualized metabolic models.

These subset of reactions are usually defined based on the

expression or absence of expression of the genes or proteins

(present and absent calls), or inferred from expression values

or differential gene expression. Comprehensive reviews of

the methods are available (Blazier and Papin, 2012; Hyduke

et al. 2013). Only the compilation of a large set of omics data

sets can result in a tissue (or cell-type) specific metabolic

model, whereas the representation of one particular experi-

mental condition is achieved through the integration of omics

data set generated from one experiment only (condition-

specific cell line model). Recently, metabolomic data sets

have become more comprehensive and using these data sets

allow direct determination of the metabolic network com-

ponents (the metabolites). Additionally, metabolomics has

proven to be stable, relatively inexpensive, and highly

reproducible (Antonucci et al. 2012). These factors make

metabolomic data sets particularly valuable for interrogation

of metabolic phenotypes. Thus, the integration of these data

sets is now an active field of research (Li et al. 2013; Mo et al.

2009; Paglia et al. 2012b; Schmidt et al. 2013). Generally,

metabolomic data can be incorporated into metabolic net-

works as qualitative, quantitative, and thermodynamic con-

straints (Fleming et al. 2009; Mo et al. 2009). Mo et al. used

metabolites detected in the spent medium of yeast cells to

determine intracellular flux states through a sampling ana-

lysis (Mo et al. 2009), which allowed unbiased interrogation

of the possible network states (Schellenberger and Palsson

2009) and prediction of internal pathway use. Such analyses

have also been used to reveal the effects of enzymopathies on

red blood cells (Price et al. 2004), to study effects of diet on

diabetes (Thiele et al. 2005) and to define macrophage met-

abolic states (Bordbar et al. 2010). This type of analysis is

available as a function in the COBRA toolbox (Schellen-

berger et al. 2011).

In this study, we established a workflow for the gener-

ation and analysis of condition-specific metabolic cell line

models that can facilitate the interpretation of metabolomic

data. Our modeling yields meaningful predictions regard-

ing metabolic differences between two lymphoblastic leu-

kemia cell lines (Fig. 1A).
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2 Results

We set up a pipeline that could be used to infer intracellular

metabolic states from semi-quantitative data regarding

metabolites exchanged between cells and their environ-

ment. Our pipeline combined the following four steps: data

acquisition, data analysis, metabolic modeling and exper-

imental validation of the model predictions (Fig. 1A). We

demonstrated the pipeline and the predictive potential to

predict metabolic alternations in diseases such as cancer

based on two lymphoblastic leukemia cell lines. The

resulting Molt-4 and CCRF-CEM condition-specific cell

Fig. 1 A Combined experimental and computational pipeline to

study human metabolism. Experimental work and omics data analysis

steps precede computational modeling. Model predictions are

validated based on targeted experimental data. Metabolomic and

transcriptomic data are used for model refinement and submodel

extraction. Functional analysis methods are used to characterize the

metabolism of the cell-line models and compare it to additional

experimental data. The validated models are subsequently used for the

prediction of drug targets. B Uptake and secretion pattern of model

metabolites. All metabolite uptakes and secretions that were mapped

during model generation are shown. Metabolite uptakes are depicted

on the left, and secreted metabolites are shown on the right. A number

of metabolite exchanges mapped to the model were unique to one cell

line. Differences between cell lines were used to set quantitative

constraints for the sampling analysis. C Statistics about the cell line-

specific network generation. D Quantitative constraints. For the

sampling analysis, an additional set of constraints was imposed on the

cell line specific models, emphasizing the differences in metabolite

uptake and secretion between cell lines. Higher uptake of a metabolite

was allowed in the model of the cell line that consumed more of the

metabolite in vitro, whereas the supply was restricted for the model

with lower in vitro uptake. This was done by establishing the same

ratio between the models bounds as detected in vitro. X denotes the

factor (slope ratio) that distinguishes the bounds, and which was

individual for each metabolite. (a) The uptake of a metabolite could

be x times higher in CCRF-CEM cells, (b) the metabolite uptake

could be x times higher in Molt-4, (c) metabolite secretion could be x

times higher in CCRF-CEM, or (d) metabolite secretion could be x

times higher in Molt-4 cells. LOD limit of detection. The consequence

of the adjustment was, in case of uptake, that one model was

constrained to a lower metabolite uptake (A, B), and the difference

depended on the ratio detected in vitro. In case of secretion, one

model had to secrete more of the metabolite, and again the difference

depended on the experimental difference detected between the cell

lines
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line models were able to explain metabolite uptake and

secretion by predicting the distinct utilization of central

metabolic pathways by the two cell lines. Whereas the

CCRF-CEM model resembled more a glycolytic, com-

monly referred to as ‘Warburg’ phenotype, suggested our

predictions a more respiratory phenotype for the Molt-4

model. We found these predictions to be in agreement with

measured gene expression differences at key regulatory

steps in the central metabolic pathways, and they were also

consistent with additional experimental data regarding the

energy and redox states of the cells. After a brief discussion

of the data generation and analysis steps, the results

derived from model generation and analysis will be

described in detail.

2.1 Pipeline for generation of condition-specific

metabolic cell line models

2.1.1 Generation of experimental data

We monitored the growth and viability of lymphoblastic

leukemia cell lines in serum-free medium (File S2,

Fig. S1). Multiple omics data sets were derived from these

cells. Extracellular metabolomics (exo-metabolomic) data,

comprising measurements of the metabolites in the spent

medium of the cell cultures (Paglia et al. 2012a), were

collected along with transcriptomic data, and these data

sets were used to construct the models.

2.1.2 Analysis of experimental data

Data analysis included defining the sets of metabolites that

were taken up or secreted (qualitatively for the generation

of the models), and it included determining the quantitative

differences in uptake and secretion between cell lines

(Fig. 1B). These differences were later subjected to model

constraints. The final sets of metabolite exchanges that

were used for model generation comprised the uptake and

secretion of 14 and 10 metabolites by both models, unique

secretion of 7 and unique uptake of 4 metabolites by the

CCRF-CEM model, and secretion of 1 and uptake of 1

unique metabolite in Molt-4 cells (Fig. 1B). Additionally,

sets of genes treated as expressed and unexpressed (absent

and present calls), and groups of differentially expressed

genes (DEGs) and alternatively spliced genes (AS) were

predicted by comparing expression in CCRF-CEM and

Molt-4 cells (see ‘‘Materials and methods’’ section and File

S2 in supplementary information for more detail).

2.1.3 Generation of condition-specific cell line models

Model generation involves three steps: refinement of the

global model, data mapping and submodel extraction. We

added transport and exchange reactions for metabolites that

could not be transported between the extracellular space

and the cytosol (see ‘‘Materials and methods’’ section).

Nutrient supply (for metabolite uptake) was restricted to

the RPMI medium composition (File S1, Table S1).

First, the detected metabolite uptakes and secretions for

each cell line were mapped separately to the model. The

model was thereby constrained to represent a minimal set

of metabolite exchange reactions required to support all of

the observed metabolite uptakes and secretions and to

explain the experimentally observed growth rates of the

cells (Fig. 1B, File S1, Tables S2–S3). The result was a

vast reduction of the number of possible metabolite uptakes

and secretions in the two preliminary models (Fig. 1C),

which placed major emphasis on the experimentally

observed metabolite uptake and secretion profiles.

In addition to the (qualitative) exo-metabolomic con-

straints, genomic data were mapped to the preliminary

models (File S1, Table S4). In general, the mapping of

transcriptomic data, which meant the deletion of all reac-

tions associated with the set of absent genes, and which

was performed after the integration of the exo-metabolo-

mic data, did not prevent that either model could represent

the detected metabolite uptake, metabolite secretion, or

biomass production. Curation beyond the initial definition

of the minimal sets of mandatory exchanges was therefore

not necessary.

Subsequently, the condition-specific CCRF-CEM and

Molt-4 models were extracted through network pruning.

Model reactions unable to support flux were identified

through flux variability analysis (FVA) and removed,

leaving the functional reaction sets to compose the final

Molt-4 and CCRF-CEM models.

2.1.4 Condition-specific models for CCRF-CEM and Molt-

4 cells

To determine whether we had obtained two distinct mod-

els, we evaluated the reactions, metabolites, and genes of

the two models. Both the Molt-4 and CCRF-CEM models

contained approximately half of the reactions and metab-

olites present in the global model (Fig. 1C). They were

very similar to each other in terms of their reactions,

metabolites, and genes (File S1, Table S5A–C). The Molt-

4 model contained seven reactions that were not present in

the CCRF-CEM model (Co-A biosynthesis pathway and

exchange reactions). In contrast, the CCRF-CEM contained

31 unique reactions (arginine and proline metabolism,

vitamin B6 metabolism, fatty acid activation, transport, and

exchange reactions). There were 2 and 15 unique metab-

olites in the Molt-4 and CCRF-CEM models, respectively

(File S1, Table S5B). Approximately three quarters of the

global model genes remained in the condition-specific cell
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line models (Fig. 1C). The Molt-4 model contained 15

unique genes, and the CCRF-CEM model had 4 unique

genes (File S1, Table S5C). Both models lacked NADH

dehydrogenase (complex I of the electron transport chain—

ETC), which was determined by the absence of expression

of a mandatory subunit (NDUFB3, Entrez gene ID 4709).

Rather, the ETC was fueled by FADH2 originating from

succinate dehydrogenase and from fatty acid oxidation,

which through flavoprotein electron transfer could con-

tribute to the same ubiquinone pool as complex I and

complex II (succinate dehydrogenase). Despite their dif-

ferent in vitro growth rates (which differed by 11 %, see

File S2, Fig. S1) and differences in exo-metabolomic data

(Fig. 1B) and transcriptomic data, the internal networks

were largely conserved in the two condition-specific cell

line models.

2.1.5 Condition-specific cell line models predict distinct

metabolic strategies

Despite the overall similarity of the metabolic models,

differences in their cellular uptake and secretion patterns

suggested distinct metabolic states in the two cell lines

(Fig. 1B and see ‘‘Materials and methods’’ section for more

detail). To interrogate the metabolic differences, we sam-

pled the solution space of each model using an Artificial

Centering Hit-and-Run (ACHR) sampler (Thiele et al.

2005). For this analysis, additional constraints were

applied, emphasizing the quantitative differences in com-

monly uptaken and secreted metabolites. The maximum

possible uptake and maximum possible secretion flux rates

were reduced according to the measured relative differ-

ences between the cell lines (Fig. 1D, see ‘‘Materials and

methods’’ section).

We plotted the number of sample points containing a

particular flux rate for each reaction. The resulting binned

histograms can be understood as representing the proba-

bility that a particular reaction can have a certain flux

value. A comparison of the sample points obtained for the

Molt-4 and CCRF-CEM models revealed a considerable

shift in the distributions, suggesting a higher utilization of

glycolysis by the CCRF-CEM model (File S2, Fig. S2).

This result was further supported by differences in medians

calculated from sampling points (File S1, Table S6). The

shift persisted throughout all reactions of the pathway and

was induced by the higher glucose uptake (35 %) from the

extracellular medium in CCRF-CEM cells. The sampling

median for glucose uptake was 34 % higher in the CCRF-

CEM model than in Molt-4 model (File S2, Fig. S2).

The usage of the TCA cycle was also distinct in the two

condition-specific cell-line models (Fig. 2). Interestingly,

the models used succinate dehydrogenase differently

(Figs. 2, 3). The Molt-4 model utilized an associated

reaction to generate FADH2, whereas in the CCRF-CEM

model, the histogram was shifted in the opposite direction,

toward the generation of succinate. Additionally, there was

a higher efflux of citrate toward amino acid and lipid

metabolism in the CCRF-CEM model (Fig. 2). There was

higher flux through anaplerotic and cataplerotic reactions

in the CCRF-CEM model than in the Molt-4 model

(Fig. 2); these reactions include the efflux of citrate

through ATP-citrate lyase, uptake of glutamine, generation

of glutamate from glutamine, transamination of pyruvate

and glutamate to alanine and to 2-oxoglutarate, secretion of

nitrogen, and secretion of alanine. The Molt-4 model

showed higher utilization of oxidative phosphorylation

(Fig. 3), again supported by elevated median flux through

ATP synthase (36 %) and other enzymes, which contrib-

uted to higher oxidative metabolism. The sampling analysis

therefore revealed different usage of central metabolic

pathways by the condition-specific models.

2.1.6 Experimental validation of energy and redox status

of CCRF-CEM and Molt-4 cells

Cancer cells have to balance their needs for energy and

biosynthetic precursors, and they have to maintain redox

homeostasis to proliferate (Cairns et al. 2011). We con-

ducted enzymatic assays of cell lysates to measure levels

and/or ratios of ATP, NADPH ? NADP, NADH ? NAD,

and glutathione. These measurements were used to provide

support for the in silico predicted metabolic differences

(Fig. 4). Additionally, an Oxygen Radical Absorbance

Capacity (ORAC) assay was used to evaluate the cellular

antioxidant status (Fig. 4B). Total concentrations of

NADH ? NAD, GSH ? GSSG, NADPH ? NADP and

ATP, were higher in Molt-4 cells (Fig. 4A). The higher

ATP concentration in Molt-4 cells could either result from

high production rates, or intracellular accumulation con-

nected to high or low reactions fluxes (Fig. 4A). Our

simplified view that oxidative Molt-4 produces less ATP

and was contradicted by the higher ATP concentrations

measured (Fig. 4L). Yet we want to emphasize that con-

centrations cannot be compared to flux values, since we are

modeling at steady-state. NADH/NAD? ratios for both

cell lines were shifted toward NADH (Fig. 4D, E), but the

shift toward NADH was more pronounced in CCRF-CEM

(Fig. 4E), which matched our expectation based on the

higher utilization of glycolysis and 2-oxoglutarate dehy-

drogenase in the CCRF-CEM model (Fig. 4L).

The mitochondrial membrane has been suggested to be

the quantitatively most important physiological source of

superoxide in higher organisms (Chance et al. 1979). If the

Molt-4 cells were relying more on mitochondrial respira-

tion, we expected them to counteract the increased oxida-

tive stress by using antioxidant systems such as glutathione
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and NADPH (Fig. 4L). Indeed, Molt-4 cells showed a

higher capacity for reactive oxygen species (ROS) detox-

ification than CCRF-CEM cells (Fig. 4B), which was

supported by the higher utilization of oxidative

phosphorylation and spermidine dismutase by the Molt-4

model (SPODM, median CCRF-CEM = 0.0010 U, and

Molt-4 = 0.0011 U) (Fig. 4L). Reduced glutathione

(GSH) is of major importance for the clearance of ROS

(Droge 2002). GSH/GSSG ratios were shifted toward GSH

in both cell lines (CCRF-CEM = 747:51, Molt-

4 = 1182:56), and the shift was more pronounced in Molt-

4 cells (Fig. 4K).

Both cell lines had low NADPH/NADP? ratios (CCRF-

CEM 4.7:2.8, Molt-4 6:11.5). However, in Molt-4 cells, the

ratio was shifted toward NADP?, whereas CCRF-CEM

cells contained higher amounts of NADPH (Fig. 4G, H).

This matched our expectation that the glycolytic CCRF-

CEM model would produce more NADPH (Fig. 4L) and

that it would exhibit higher flux through the oxidative

phase of the pentose phosphate pathway (PPP). Taken

bFig. 2 Differences in the use of the TCA cycle by the CCRF-CEM

model (red) and the Molt-4 model (blue). The table provides the

median values of the sampling results. Negative values in histograms

and in the table describe reversible reactions with flux in the reverse

direction. There are multiple reversible reactions for the transforma-

tion of isocitrate and a-ketoglutarate, malate and fumarate, and

succinyl-CoA and succinate. These reactions are unbounded, and

therefore histograms are not shown. The details of participating

cofactors have been removed. Atp ATP, cit citrate, adp ADP, pi

phosphate, oaa oxaloacetate, accoa acetyl-CoA, coa coenzyme-A, icit

isocitrate, akg a-ketoglutarate, succ-coa succinyl-CoA, succ succi-

nate, fum fumarate, mal malate, oxa oxaloacetate, pyr pyruvate, lac

lactate, ala alanine, gln glutamine, ETC electron transport chain

Fig. 3 Sampling reveals different utilization of oxidative phosphory-

lation by the generated models. Different distributions are observed for

the CCRF-CEM model (red) and the Molt-4 model (blue). Molt-4 has

higher median flux through ETC reactions II–IV. The table provides the

median values of the sampling results. Negative values in the

histograms and in the table describe reversible reactions with flux in

the reverse direction. Both models lack Complex I of the ETC because

of constraints arising from the mapping of transcriptomic data. Electron

transfer flavoprotein and electron transfer flavoprotein–ubiquinone

oxidoreductase both also carry higher flux in the Molt-4 model
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together, the experimental data agreed well with our

expectations based on the predicted phenotypes. We sought

additional support for the predicted metabolic differences

in the transcriptomic data.

2.1.7 Comparison of network utilization and alteration

in gene expression

With the assumption that differential expression of partic-

ular genes would cause reaction flux changes, we deter-

mined how the differences in gene expression (between

CCRF-CEM and Molt-4) compared to the flux differences

observed in the models. Specifically, we checked whether

the reactions associated with genes upregulated (signifi-

cantly more expressed in CCRF-CEM cells compared to

Molt-4 cells) were indeed more utilized by the CCRF-CEM

model, and we checked whether downregulated genes were

associated with reactions more utilized by the Molt-4

model.

The set of downregulated genes was associated with 15

reactions, and the set of 49 upregulated genes was associ-

ated with 113 reactions in the models. Reactions were

Fig. 4 A–K Experimentally

determined ATP, NADH ? NAD,

NADPH ? NADP, and

GSH ? GSSG concentrations, and

ROS detoxification in the CCRF-

CEM and Molt-4 cells.

L Expectations for cellular energy

and redox states. Expectations are

based on predicted metabolic

differences of the Molt-4 and

CCRF-CEM models
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defined as differently utilized if the difference in flux

exceeded 10 % (considering only non-loop reactions). Of

the reactions associated with upregulated genes, 72.57 %

were more utilized by the CCRF-CEM model, and 2.65 %

were more utilized by the Molt-4 model (File S1,

Table S7). In contrast, all 15 reactions associated with the

12 downregulated genes were more utilized in the CCRF-

CEM model (File S1, Table S8). After this initial analysis,

we approached the question from a different angle, asking

whether the majority of the reactions associated with each

individual gene upregulated in CCRF-CEM were more

utilized by the CCRF-CEM model. We found that this was

the case for 77.55 % of the upregulated genes. The

majority of reactions associated with two (16.67 %)

downregulated genes were more utilized by the Molt-4

model. Taken together, our comparisons of the direction of

gene expression with the fluxes of the two cancer cell-line

models confirmed that reactions associated with upregu-

lated genes in the CCRF-CEM cells were generally more

utilized by the CCRF-CEM model.

2.1.8 Accumulation of DEGs and AS genes at key

metabolic steps

After we confirmed that most reactions associated with

upregulated genes were more utilized by the CCRF-CEM

model, we checked the locations of DEGs within the net-

work. In this analysis, we paid special attention to the

central metabolic pathways that we had found to be dis-

tinctively utilized by the two models. Several DEGs and

AS events were associated with glycolysis, the ETC,

pyruvate metabolism, and the PPP (Table 1).

Moreover, in glycolysis, the DEGs and/or AS genes

were associated with all three rate-limiting steps, i.e., the

steps mediated by hexokinase, pyruvate kinase, and phos-

phofructokinase. Of these key enzymes, hexokinase 1

(Entrez Gene ID: 3098) was alternatively spliced, and

pyruvate kinase (PKM, Entrez gene ID: 5315) was signif-

icantly more expressed in the CCRF-CEM cells (Table 1),

in agreement with the higher in silico predicted flux.

However, in contrast to the observed higher utilization of

glycolysis in the CCRF-CEM model, we found that the

gene associated with the rate-limiting glycolysis step,

phosphofructokinase (Entrez Gene ID: 5213), was signifi-

cantly upregulated in Molt-4 cells relative to CCRF-CEM

cells. This higher expression was detected for only a single

isozyme, however. Two of the three genes associated with

phosphofructokinase were also subject to alternative

splicing (Table 1). In addition to the key enzymes, fructose

bisphosphate aldolase (Entrez Gene ID: 230) was also

significantly upregulated in Molt-4 cells relative to CCRF-

CEM cells, which was in contrast to the predicted higher

utilization of glycolysis in the CCRF-CEM model.

Additionally, glucose-6P-dehydrogenase (G6PD), which

catalyzes the first reaction and commitment step of the

PPP, was an AS gene (Table 1). A second AS gene asso-

ciated with the PPP reaction of the deoxyribokinase was

RBKS (Entrez Gene ID: 64080). This gene is also associ-

ated with ribokinase, but ribokinase was removed during

model construction because of the lack of ribose uptake or

secretion. Single AS genes were associated with different

complexes of the ETC (Table 1). Literature query revealed

that at least 13 genes associated with alternative splicing

events were mentioned previously in connection with both

alternative splicing and cancer (File S1, Table S14), and 37

genes were associated with cancer, e.g., upregulated,

downregulated at the level of mRNA or protein, or other-

wise connected to cancer metabolism and signaling. One

general observation was that there was a surprising accu-

mulation of metabolite transporters among the AS.

Overall, the high incidence of differential gene expres-

sion events at metabolic control points increases the plau-

sibility of the in silico predictions.

2.1.9 Single gene deletion

Analyses of essential genes in metabolic models have been

used to predict candidate drug targets for cancer cells

(Folger et al. 2011). Here, we conducted an in silico gene

deletion study for all model genes to identify a unique set

of knock-out (KO) genes for each condition-specific cell

line model. The analysis yielded 63 shared lethal KO genes

and distinct sets of KO genes for the CCRF-CEM model

(11 genes) and the Molt-4 model (3 genes). For three of the

unique CCRF-CEM KO genes, the genes were only present

in the CCRF-CEM model (File S1, Table S9).

The essential genes for both models were then related to

the cell-line-specific differences in metabolite uptake and

secretion (Fig. 1B). The CCRF-CEM model needed to

generate putrescine from ornithine (ORNDC, Entrez Gene

ID: 4953) to subsequently produce 5-methylthioadenosine

for secretion (Fig. 1B). S-adenosylmethioninamine pro-

duced by adenosylmethionine decarboxylase (arginine and

proline metabolism, associated with Entrez Gene ID: 262)

is a substrate required for generation of 5-methylthioa-

denosine. Another example of a KO gene connected to an

enforced exchange reaction was glutamic-oxaloacetic

transaminase 1 (GOT1, Entrez Gene ID: 2805). Without

GOT1, the CCRF-CEM model was forced to secrete

4-hydroxyphenylpyruvate (Fig. 1B), the second product of

tyrosine transaminase, which is produced only by that

enzyme.

One KO gene in the Molt-4 model (Entrez Gene ID:

26227) was associated with phosphoglycerate dehydroge-

nase (PGDH), which catalyzes the conversion of 3-phos-

pho-D-glycerate to 3-phosphohydroxypyruvate while
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generating NADH from NAD?. This KO gene is particu-

larly interesting, given the involvement of this reaction in a

novel pathway for ATP generation in rapidly proliferating

cells (Locasale et al. 2011; Vander Heiden 2011; Vazquez

et al. 2011). Reactions associated with unique KO genes

were in many cases utilized more by the model, in which

the gene KO was lethal, underlining the potential impor-

tance of these reactions for the models. Thus, single gene

deletion provided unique sets of lethal genes that could be

specifically targeted to kill these cells.

3 Discussion

In the current study, we explored the possibility of semi-

quantitatively integrating metabolomic data with the

human genome-scale reconstruction to facilitate analysis.

By constructing condition-specific cell line models to

provide a structured framework, we derived insights that

could not have been obtained from data analysis alone.

We derived condition-specific cell line models for

CCRF-CEM and Molt-4 cells that were able to explain the

observed exo-metabolomic differences (Fig. 1B). Despite

the overall similarities between the models, the analysis

revealed distinct usage of central metabolic pathways

(Figs. 2, 3, 4), which we validated based on experimental

data and differential gene expression. The additional data

sufficiently supported metabolic differences in these cell

lines, providing confidence in the generated models and the

model-based predictions. We used the validated models to

predict unique sets of lethal genes to identify weak links in

each model. These weak links may represent potential drug

targets.

Integrating omics data with the human genome-scale

reconstruction provides a structured framework (i.e.,

pathways) that is based on careful consideration of the

Table 1 DEGs and AS events of central metabolic and cancer-related pathways

DEG associated

reactions

Median Molt-4

(mmol/gdw/h)

Median CCRF-CEM

(mmol/gdw/h)

Entrez

Gene ID

Direction

change

Subsystem AS Entrez

Gene ID

ALDD2xm 0.040 0.051 219 Upregulated Glycolysis/glucon.

FBA 12.898 18.800 230 Downregulated Glycolysis/glucon.

G3PD2 m 0.068 0.191 2820 Upregulated Glycolysis/glucon.

PYK 36.115 54.746 5315 Upregulated Glycolysis/glucon.

ALDD2x 0.035 0.050 223 Upregulated Glycolysis/glucon. 8854

ALDD2y 0.039 0.052 223 Upregulated Glycolysis/glucon. 8854

G6PPer 0.099 0.138 92579 Upregulated Glycolysis/glucon. 92579

PDHm 0.351 0.162 1737 Upregulated Glycolysis/glucon. 1737

PFK 13.041 18.995 5213 Downregulated Glycolysis/glucon. 5211 5213

HEX1 6.217 9.835 Glycolysis/glucon. 3098

PGK -36.230 -54.935 Glycolysis/glucon. 5230

ALCD21_D 326.100 327.300 284273 Upregulated Pyruvate met. 284273

ALCD21_L 129.365 128.372 284273 Upregulated Pyruvate met. 284273

ALCD22_D 291.679 289.357 284273 Upregulated Pyruvate met. 284273

ALCD22_L 129.260 128.219 284273 Upregulated Pyruvate met. 284273

LCADi 0.073 0.100 223 Upregulated Pyruvate met. 8854

LCADi_D 0.072 0.100 223 Upregulated Pyruvate met. 8854

PCm 0.241 1.300 5091 Downregulated Pyruvate met. 5091

LALDD 338.276 345.473 Pyruvate met. 9380

ME2 m 0.221 0.178 Pyruvate met. 10873

NADH2_u10 m Upregulated OxPhos

ATPS4 m 3.825 2.455 OxPhos 4905

CYOR_u10 m 2.506 1.563 OxPhos 1537

DRBK 0.146 0.196 PPP 64080

G6PDH2r 0.125 0.109 PPP 2539

Full lists of DEGs and AS are provided in the supplementary material. Upregulated significantly more expressed in CCRF-CEM compared to

Molt-4 cells

PPP pentose phosphate pathway, OxPhos oxidative phosphorylation, Glycolysis/glucon glycolysis/gluconeogenesis, Pyruvate met. pyruvate

metabolism
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available biochemical literature (Thiele and Palsson 2010).

This network context can simplify omics data analysis, and

it allows even non-biochemical experts to gain fast and

comprehensive insights into the metabolic aspects of omics

data sets. Compared to transcriptomic data, methods for the

integration and analysis of metabolomic data in the context

of metabolic models are less well established, although it is

an active field of research (Li et al. 2013; Paglia et al.

2012b). In contrast to other studies, our approach empha-

sizes the representation of experimental conditions rather

than the reconstruction of a generic, cell-line-specific net-

work, which would require the combination of data sets

from many experimental conditions and extensive manual

curation. Rather, our way of model construction allowed us

to efficiently assess the metabolic characteristics of cells.

Despite the fact, that only a limited number of exchanged

metabolites can be measured by available metabolomics

platforms and at reasonable time-scale, and that pathways

of measured metabolites might still be unknown to date

(File S1, Tables S2–S3), our methods have the potential to

reveal metabolic characteristics of cells which could be

useful for biomedicine and personalized health. The rea-

sons why some cancers respond to certain treatments and

not others remain unclear, and choosing a treatment for a

specific patient is often difficult (Vander Heiden 2011).

One potential application of our approach could be the

characterization of cancer phenotypes to explore how

cancer cells or other cell types with particular metabolic

characteristics respond to drugs.

The generation of our condition-specific cell line models

involved only limited manual curation, making this

approach a fast way to place metabolomic data into a

network context. Model building mainly involves the rigid

reduction of metabolite exchanges to match the observed

metabolite exchange pattern with as few additional

metabolite exchanges as possible. It should be noted that

this reduction determines, which pathways can be utilized

by the model. Our approach mostly conserved the internal

network redundancy. However, a more significant reduc-

tion may be achieved using different data. Generally, a

trade-off exists between the reduction of the internal net-

work and the increasing number of network gaps that need

to be curated by using additional omics data, such as

transcriptomics and proteomics. One way to prevent the

emergence of network gaps would be to use mapping

algorithms that conserve network functionality, such as

GIMME (Becker and Palsson 2008). However, several

additional methods exist for the integration of transcrip-

tomic data (Blazier and Papin 2012), and which model-

building method is best depends on the available data.

Interestingly, the lack of a significant contribution of our

gene expression data to the reduction of network size

suggests that the use of transcriptomic data is not necessary

to identify distinct metabolic strategies; rather, the inte-

gration of exo-metabolomic data alone may provide suffi-

cient insight. However, sampling of the cell line models

constrained according to the exo-metabolomic profiles

only, or increasing the cutoff for the generation of absent

and present calls (p\ 0.01), did not yield the same insights

as presented herein (File S1, Table S18). Only recently

Gene Inactivation Moderated by Metabolism, Metabolo-

mics and Expression (GIM(3)E) became available, which

enforces minimum turnover of detected metabolites based

on intracellular metabolomics data as well as gene

expression microarray data (Schmidt et al. 2013). In con-

trast to this approach, we emphasized our analysis on the

relative differences in the exo-metabolomic data of two cell

lines. GIM(3)E constitutes another integration method

when the analysis should be emphasized on intracellular

metabolomics data (Schmidt et al. 2013).

The metabolic differences predicted by the models are

generally plausible. Cancers are known to be heterogeneous

(Cairns et al. 2011), and the contribution of oxidative

phosphorylation to cellular ATP production may vary (Zu

and Guppy 2004). Moreover, leukemia cell lines have been

shown to depend on glucose, glutamine, and fatty acids to

varying extents to support proliferation. Such dependence

may cause the cells to adapt their metabolism to the envi-

ronmental conditions (Suganuma et al. 2010). In addition to

identifying supporting data in the literature, we performed

several analyses to validate the models and model predic-

tions. Our expectations regarding the levels and ratios of

metabolites relevant to energy and redox state were largely

met (Fig. 4L). The more pronounced shift of the NADH/

NAD? ratio toward NADH in the CCRF-CEM cells was in

agreement with the predicted Warburg phenotype (Fig. 4),

and the higher lactate secretion in the CCRF-CEM cells

(File S2, Fig. S2) implies an increase in NADH relative to

NAD? (Chiarugi et al. 2012; Nikiforov et al. 2011), again

matching the known Warburg phenotype.

ROS production is enhanced in certain types of cancer

(Droge 2002; Ha et al. 2000), and the generation of ROS is

thought to contribute to mutagenesis, tumor promotion, and

tumor progression (Dreher and Junod 1996; Ha et al.

2000). However, decreased mitochondrial glucose oxida-

tion and a transition to aerobic glycolysis protect cells

against ROS damage during biosynthesis and cell division

(Brand and Hermfisse 1997). The higher ROS detoxifica-

tion capability in Molt-4 cells, in combination with higher

spermidine dismutase utilization by the Molt-4 model

(Fig. 4), provided a consistent picture of the predicted

respiratory phenotype (Fig. 4L).

Control of NADPH maintains the redox potential

through GSH and protects against oxidative stress, yet

changes in the NADPH ratio in response to oxidative

damage are not well understood (Ogasawara et al. 2009).
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Under stress conditions, as assumed for Molt-4 cells, the

NADPH/NADP? ratio is expected to decrease because of

the continuous reduction of GSSG (Fig. 4L), and this was

confirmed in the Molt-4 cells (Fig. 4). The higher amounts

of GSH found in Molt-4 cells in vitro may demonstrate an

additional need for ROS scavengers because of a greater

reliance on oxidative metabolism.

Cancer is related to metabolic reprogramming, which

results from alterations of gene expression and the

expression of specific isoforms or splice forms to support

proliferation (Cortes-Cros et al. 2013; Marin-Hernandez

et al. 2009). The gene expression differences detected

between the two cell lines in the present study supported

the existence of metabolic differences in these cell lines,

particularly because key steps of the metabolic pathways

central to cancer metabolism seemed to be differentially

regulated (Table 1). The detailed analysis of the respective

differences on the pathway fluxes exceeds the scope of this

study, which was to demonstrate the potential of the inte-

gration of exo-metabolomic data into the network context.

We found discrepancies between differential gene reg-

ulation and the flux differences between the two models as

well as the utilization AS gene-associated reaction. This is

not surprising, since analysis of the detailed system is

required to make any further assumptions on the impact

that the differential regulation or splicing might have on

the reaction flux, given that for many of the concerned

enzymes isozymes exist, or only one of multiple subunits

of a protein complex was concerned. Additionally, reaction

fluxes are regulated by numerous post-translational factors,

e.g., protein modification, inhibition through proteins or

metabolites, alter reaction fluxes (Lenzen 2014), which are

out of the scope of constraint-based steady-state modeling.

Rather, the results of the presented approach demonstrate

how the models can be used to generate informed

hypothesis that can guide experimental work.

The combination of our tailored metabolic models and

differential gene expression analysis seems well-suited to

determine the potential drivers involved in metabolic dif-

ferences between cells. Such information could be valuable

for drug discovery, especially when more peripheral met-

abolic pathways are considered. Additionally, statistical

comparisons of gene expression data with sampling-

derived flux data could be useful in future studies (Mar-

dinoglu et al. 2013).

A single-gene-deletion analysis revealed that PGDH was

a lethal KO gene for the Molt-4 model only. Differences in

PGDH protein levels correspond to the amount of glycolytic

carbon diverted into glycine biosynthesis. Rapidly prolif-

erating cells may use an alternative glycolytic pathway for

ATP generation, which may provide an advantage in the

case of extensive oxidative phosphorylation and prolifera-

tion (Locasale et al. 2011; Vander Heiden 2011; Vazquez

et al. 2011). For breast cancer cell lines, variable depen-

dency on the expression of PGDH has already been dem-

onstrated (Locasale et al. 2011). This example of a unique

KO gene demonstrates how in silico gene deletion in met-

abolomics-driven models can identify the metabolic path-

ways used by cancer cells. This approach can provide

valuable information for drug discovery.

In conclusion, our contextualization method produced

metabolic models that agreed in many ways with the vali-

dation data sets. The analyses described in this study have

great potential to reveal the mechanisms of metabolic

reprogramming, not only in cancer cells but also in other

cells affected by diseases, and for drug discovery in general.

4 Materials and methods

4.1 Global model

The model we used (global model) was a subset of Recon 2

(Thiele et al. 2013), which is freely available (http://

humanmetabolism.org/). Transport and exchange reactions

for metabolites identified according to metabolite uptakes

and secretions detected herein were already considered in

the construction of Recon 2. The model captured 19

additional reactions (File S1, Table S10).

4.2 Cell culture

MOLT-4 and CCRF-CEM cells were obtained from ATCC

(CRL-1582 and CCL-119) and grown by standard methods

in RPMI 1640, with 2 mM GlutaMax and 10 % FBS

(Invitrogen; 61870-010, 10108-57), in a humidified incu-

bator at 37 �C under 5 % CO2. At least 3 days before

experiments were conducted, cells were introduced to

serum-free medium (Advanced RPMI 1640, containing

2 mM GlutaMax; Invitrogen; 12633-012, 35050-038). The

medium was refreshed the day before starting the experi-

ment. For experiments, cells were centrifuged at 2019g for

5 min and resuspended in serum-free medium containing

DMSO (0.67 %) at a cell concentration of 5 9 105 cells/

mL. The cell suspension was seeded in triplicate, with 1 or

2 mL applied to a 24-well or 12-well plate, respectively. At

the indicated times, the cells were removed by centrifuga-

tion, and the spent medium was frozen at -80 �C. Cell

number, size, and viability (Trypan blue exclusion) were

determined by counting cells on a Countess automatic cell

counter (Invitrogen).

4.3 Analysis of the extracellular metabolome

Mass spectrometry analysis of the exo-metabolome was

performed by Metabolon�, Inc. (Durham, NC, USA) using
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a standardized analytical platform. In total, 75 extracellular

metabolites were detected in the initial data set for at least

1 of the 2 cell lines (Paglia et al. 2012a). Of these

metabolites, 15 were not part of our global model and were

discarded. Apart from being absent in our global model, an

independent search in HMDB (Wishart et al. 2013)

revealed no pathway information was available for most of

these metabolites (File S1, Tables S2–S3). It should be

noted that metabolites e.g., N-acetylisoleucine, N-acetyl-

methionine or pseudouridine, constitute protein and RNA

degradation products, which were out of the scope of the

metabolic network.

Thiamin (Vitamin B1) was part of the minimal medium

of essential compounds supplied to both models. Ribofla-

vin (Vitamin B2) and Trehalose were excluded since these

compounds cannot be produced by human cells. Erythrose

and fructose were also excluded. In contrast 46 metabolites

that were part of the global model. The data set included

two different time points, which allowed us to treat the

increase/decrease of a metabolite signal between time

points as evidence for uptake or secretion when the change

was greater than 5 % from what was observed in the

control (File S1, Tables S2–S3). We found 12 metabolites

that were taken up by both cell lines and 10 metabolites

that were commonly secreted by both cell lines over the

course of the experiment. Additionally, Molt-4 cells took

up three metabolites not taken up by CCRF-CEM cells, and

secreted one metabolite not secreted by CCRF-CEM cells.

Two of the three uniquely uptaken metabolites were

essential amino acids: valine and methionine. However, it

is unlikely that these metabolites were not taken up by the

CCRF-CEM cells, and the CCRF-CEM model was allowed

to take up this metabolite. Because of this adjustment, no

quantitative constraints were applied for the sampling

analysis either. CCRF-CEM cells had four unique uptaken

and seven unique secreted metabolites (exchange not

detected in Molt-4 cells).

4.4 Network refinement based on exo-metabolic data

Despite its comprehensiveness, the human metabolic

reconstruction is not complete with respect to extracellular

metabolite transporters (Sahoo et al. 2014; Thiele et al.

2013). Accordingly, we identified metabolite transport

systems from the literature for metabolites that were

already part of the global model, but whose extracellular

transport was not yet accounted for. Diffusion reactions

were included whenever a respective transporter could not

be identified. In total, 34 reactions [11 exchange reactions,

16 transport reactions and 7 demand reactions (File S1,

Table S11)] were added to Recon 2 (Thiele et al. 2013),

and 2 additional reactions were added to the global model

(File S1, Table S10).

4.5 Expression profiling

Molt-4 and CCRF-CEM cells were grown in advanced

RPMI 1640 and 2 mM GlutaMax, and the cells were

resuspended in medium containing DMSO (0.67 %) at a

concentration of 5 9 105 cells/mL. The cell suspension

(2 mL) was seeded in 12-well plates in triplicate. After

48 h of growth, the cells were collected by centrifugation

at 2019g for 5 min. Cell pellets were snap-frozen in liquid

N2 and kept frozen until RNA extraction and analysis by

Aros (Aarhus, Denmark).

4.6 Analysis of transcriptomic data

We used the Affymetrix GeneChip Human Exon 1.0 ST

Array to measure whole genome exon expression. We

generated detection above background (DABG) calls using

ROOT (version 22) and the XPS package for R (version

11.1), with Robust Multi-array Analysis summarization.

Calls for data mapping were assigned based on p\ 0.05 as

the cutoff probability to distinguish presence versus

absence for the 1,278 model genes (File S1, Table S12).

Differential gene expression and alternative splicing

analyses were performed by using AltAnalyse software

(v2.02beta) with default options on the raw data files (CEL

files). The Homo sapiens Ensemble 65 database was used,

probe set filtering was kept as DABG p\ 0.05, and non-

log expression\ 70 was used for constitutive probe sets to

determine gene expression levels. For the comparison,

CCRF-CEM was the experimental group and Molt-4 was

the baseline group. The set of DEGs between cell lines was

identified based on a p\ 0.05 FDR cutoff (File S1,

Table S13A–B). Alternative splicing analysis was per-

formed on core probe sets with a minimum alternative exon

score of 2 and a maximum absolute gene expression

change of 3 because alternative splicing is a less critical

factor among highly DEGs (File S1, Table S14).

Gene expression data, complete lists of DABG p-values,

DEGs and alternative splicing events have been deposited

in the Gene Expression Omnibus (GEO) database

(Accession number: GSE53123).

4.7 Deriving cell-type-specific subnetworks

Transcriptomic data were mapped to the model in a manual

fashion (COBRA function: deleteModelGenes). Specifi-

cally, reactions dependent on gene products that were

called as ‘‘absent’’ were constrained to zero, such that

fluxes through these reactions were disabled. Submodels

were extracted based on the set of reactions carrying flux

(network pruning) by running fastFVA (Gudmundsson and

Thiele 2010) after mapping the metabolomic and
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transcriptomic data using the COBRA toolbox (Schellen-

berger et al. 2011).

4.8 Cell weight

We calculated the cell dry weight based on the relative

volume difference and comparison to human osteosarcoma

(U2OS) cells. The cell dry weight of U2OS cells, *60 pg

(Mir et al. 2011), and cell volume, 4,000 lm3 (Beck et al.

2011), were derived from the literature. The cell volume of

lymphocytes [243 lm3, the average volume of lymphoblasts

from patients with ALL, (Chapman et al. 1981)] was derived

from the literature. Cell dry weight was calculated accord-

ingly: 4,000/243 = 16.46, and 60 pg/16.46 = 3.645 pg

(3.645 9 1e-12 g).

4.9 Definition of maximum uptake rate and minimum

uptake rate

The maximum uptake rate was defined by the RPMI medium

concentrations, and the minimum uptake was defined by

mass spectrometry detection limits. Therefore, both medium

concentration (mM) and detection limit (mM) were con-

verted to flux values (mmol/gDW/h) by using a cell con-

centration of 2.17 9 1e6 (the concentration of viable CCRF-

CEM cells after 48 h), an experimental duration of 48 h, and

the calculated dry weight of 3.645 9 1e-12 g per cell:

Flux = MetConc/(CellConc 9 CellWeight 9 T 9 1,000).

In the case of uptake, they were defined by the RPMI medium

concentration (lower bound, lb) and the detection limit

(upper bound, ub), and in the case of secretion, they were

defined by the detection limit (lb) or left unconstrained (ub).

4.10 Setting general and qualitative exo-metabolomic

constraints during model building

Medium concentration to flux calculations were based on

3.645 9 1e-12 g cell weight, an initial cell concentration

of 2.17 9 1e6, T = 48 h, and Flux = MetConc/(Cell-

Conc 9 CellWeight 9 T). We constrained the model by

enforcing minimal flux through exchange reactions for

secreted or uptaken metabolites in the correct directions

(qualitative constraints). In the case of uptake, the upper

bound of the corresponding exchange reaction was set to

the flux equivalent of the minimal detection limit (Paglia

et al. 2012a) using the same equation used for the con-

centrations in the medium. In the case of secretion, the

lower bound of the exchange was set to be the minimum

flux value based on the minimal detection limit (File S1,

Table S15). The biomass reaction was constrained in a

cell-line-specific manner. The experimental growth rate

was 0.035 h-1 for CCRF-CEM and 0.032 h-1 for Molt-4

(File S1, Table S16). Vmax and Vmin were set to allow

20 % deviation from the experimental growth rate in each

direction. Oxygen uptake was constrained to Vmin =

-2.346 mmol/gDW/h (Thiele et al. 2005). All infinite

fluxes were set to the maximum: -500/500 mmol/gDW/h.

Alanine and glutamine are the breakdown products of

GlutaMax in an external reaction. The model did not

account for these reactions. However, the glutamine con-

centration was used to calculate the uptake flux of gluta-

mine, which otherwise was not present in the medium. The

increase of both compounds therefore did not necessarily

reflect actual secretion by the cells, as it may have simply

reflected the breakdown of GlutaMax, although additional

secretion by the cells cannot be excluded. In the case of

glutamine and alanine, the model exchanges remained

unconstrained (qualitative and quantitative constraints)

because the actual cell behavior could not be derived from

the data, as it was overshadowed by accumulation resulting

from the breakdown of GlutaMax (File S1, Tables S2–S3).

Uptake of the conditionally essential amino acid cysteine

(of which adequate amounts may not be produced) was

enabled. Repeated profiling of the two cell lines supported

the uptake of these amino acids (unpublished data). All

other exchange reactions were constrained to zero, except

those for basic ions, basic medium compounds and essen-

tial amino acids.

4.11 Definition of quantitative constraints

The constraints on the exchange reactions defined during

model building were the same in both condition-specific cell

line models (Fig. 1D). For the analysis, we used the relative

quantitative differences of commonly uptaken or secreted

metabolites to further constrain the models (quantitative

constraints). The model of the cell line that secreted more in

the experiment was forced to secrete more by increasing the

lower bound of the respective exchange reaction. The new

lower bound was set to be proportionate to the difference in

metabolite secretion in the experimental data (Fig. 1D, C,

D). Accordingly, we decreased the lower bound of the model

for the cell line that showed less uptake of the influx

metabolites (Fig. 1D, A, B). For a list of the adjusted bounds,

see the supplementary material (File S1, Table S17). To

estimate the ratio for adjustment, we first calculated the fold

change (FC) of each metabolite in the medium and in each

cell line by comparing the zero and 48 h time points. Next,

we compared the FC values to generate a slope

(Slope = FCcelline/FCmedium) for each cell line. In the last

step, we calculated the slope ratios (Slope Ratio = slop-

eCCRF-CEM/slopeMOLT4), which were used for the

adjustments (Fig. 1D, colored x = Slope Ratio). Some

metabolite exchanges were not adjusted, including those of

phosphate and the essential amino acids histidine, L-cysteine,

valine, methionine, alanine, and glutamine. The additional
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quantitative bounds were established to get a closer match to

the phenotypes, so we refrained from adding constraints

based on data, which was inconclusive.

Glutamine and alanine were the breakdown products of

Glutamax, however instead of modeling the breakdown of

Glutamax, we did not constrain the bounds for these

compounds.

The ACHR sampler implemented in the COBRA tool-

box (Schellenberger et al. 2011) was used with 10,000

generated warm-up points, nFiles = 100, pointsPer-

File = 5,000, and stepsPerPoint = 2,500, and the cell-line

models were used as inputs.

4.12 Comparison of network utilization and DEGs/AS

The models shared a set of 1,907 reactions. We defined a

reaction as differently utilized if the median value calcu-

lated from the sampling points differed by more than 10 %.

The shared reaction set was divided into three groups: x

(reactions with median difference[10 % and higher in

CCRF-CEM cells) = 1,381, y (reactions with median dif-

ference[10 % and higher in Molt-4 cells) = 158, and z

(reactions with median difference\10 % and reactions

with opposite directionality in addition to loop reac-

tions) = 368. Loop reactions were defined by FVA with

the criteria minFlux = -500 and maxFlux = 500 (219

reactions in Molt-4, 220 reactions in CCRF-CEM).

4.13 Enzyme assays

Molt-4 and CCRF-CEM cells were grown as described

previously and harvested in the log growth phase. Cell

number, size, and viability (Trypan blue exclusion) were

determined by counting cells on a Countess automatic cell

counter (Invitrogen). Cells were collected by centrifugation

at 2019g for 5 min, washed once with PBS, and pelleted

again by centrifugation. The cells were then resuspended in

extraction buffer (0.1 M Tris, 2.5 mM EDTA, pH 7.75) to

yield 1 9 105 cells/lL. These cells were heated on a heat

block set to 100 �C for 2 min, followed by cooling on ice.

Following centrifugation at 20,0009g, the supernatant

fraction (hereafter called the metabolite extract, ME) was

removed and stored at -80 �C prior to biochemical assays.

ATP content was measured in 1009 diluted ME by using

the CellTiter-Glo kit (Promega) and a Spectramax M3

microplate reader. NAD? and NADH were measured in

59 diluted ME using the Amplite fluorometric NAD/

NADH ratio assay kit (AAT Bioquest) according to the

manufacturer’s instructions. NADP? and NADPH were

similarly measured by using the Amplite fluorometric

NADP?/NADPH ratio assay kit (AAT Bioquest). Oxi-

dized and reduced glutathione was measured similarly in

109 diluted ME by using the Amplite fluorometric GSH/

GSSG ratio assay kit (AAT Bioquest). ROS was evaluated

by using a modified ORAC assay based on a method

described by Ganske and Dell (2006). Briefly, 25 lL of

ME or 25 lL of the standard 6-hydroxy-2,5,7,8-tetra-

methylchroman-2-carboxylic acid (Trolox, Sigma) was

mixed with 150 lL of 10 nM fluorescein (Sigma) and

25 lL of 120 nM [2,20-azobis(2-methylpropionamidine)

dihydrochloride] (Sigma) in a transparent 96-well micro-

plate (Brandt). Following 15 s of mechanical shaking,

fluorescence (ex: 485 nm, em: 580 nm; 515 nm cutoff fil-

ter used for emission to improve signal) was monitored at

1-min intervals for 80 min at 37 �C. ORAC values were

extrapolated from a Trolox standard curve by using Soft-

max Pro software and expressed as lmol of Trolox

equivalent (lmol T.E.)/1 9 106 cells. All biochemical

assay data shown represent triplicate averages, n = 2.

All calculations were performed by using TomLab cplex

linear solver and MATLAB.
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