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XLF and H2AX function in series to promote
replication fork stability

Bo-Ruei Chen*®, Annabel Quinet>*®, Andrea K. Byrum*®, Jessica Jackson?, Matteo Berti?, Saravanabhavan Thangavel?®, Andrea L. Bredemeyer?,
Issa Hindi%, Nima Mosammaparast?, Jessica K. Tyler!, Alessandro Vindigni?, and Barry P. Sleckman'®

XRCC4-like factor (XLF) is a non-homologous end joining (NHEJ) DNA double strand break repair protein. However, XLF
deficiency leads to phenotypes in mice and humans that are not necessarily consistent with an isolated defect in NHE). Here we
show that XLF functions during DNA replication. XLF undergoes cell division cycle 7-dependent phosphorylation; associates
with the replication factor C complex, a critical component of the replisome; and is found at replication forks. XLF deficiency
leads to defects in replication fork progression and an increase in fork reversal. The additional loss of H2AX, which protects
DNA ends from resection, leads to a requirement for ATR to prevent an MRE11-dependent loss of newly synthesized DNA and
activation of DNA damage response. Moreover, H2ax/~:XIf /- cells exhibit a marked dependence on the ATR kinase for
survival. We propose that XLF and H2AX function in series to prevent replication stress induced by the MRE11-dependent

resection of regressed arms at reversed replication forks.

Introduction

Faithful replication of the genome in dividing cells relies on a
network of sophisticated DNA replication mechanisms that are
orchestrated in a temporally controlled manner (Masai et al.,
2010; Fragkos et al., 2015). Defects in these events can hinder
replication fork progression, leading to replication fork stalling
and replication stress (Zeman and Cimprich, 2014; Berti and
Vindigni, 2016). Replication fork stalling can lead to activation
of the ataxia-telangiectasia and Rad3-related (ATR) kinase, a
critical regulator of replication stress responses and the S-phase
checkpoint (Zou and Elledge, 2003; Cimprich and Cortez, 2008;
Nam and Cortez, 2011; Saldivar et al., 2017). Stalled replication
forks can undergo fork reversal, where newly synthesized
(nascent) DNA strands dissociate from template strands and
anneal to each other, forming a regressed arm (Sogo et al., 2002;
Quinet et al., 2017b). Several proteins are known to promote fork
reversal, including RAD51, SMARCALI, HLTF, and ZRANB3
(Zellweger et al., 2015; Kolinjivadi et al., 2017; Quinet et al.,
2017b; Taglialatela et al., 2017; Vujanovic et al.,, 2017). ATR
phosphorylates SMARCALL, providing a link between ATR ac-
tivation and fork reversal (Couch et al., 2013). While fork re-
versal may be a mechanism for limiting replication stress,
failure to restart stalled replication forks can result in replica-
tion fork collapse, activation of a DNA damage response (DDR),

and cell death (Ciccia and Elledge, 2010; Neelsen and Lopes,
2015; Quinet et al., 2017b).

Non-homologous end joining (NHE]) is a major pathway of
DNA double strand break (DSB) repair that directly joins broken
DNA ends (Chang et al., 2017). The XRCC4-like factor (XLF)
protein functions in NHEJ-mediated DNA DSB repair by forming
a filament with XRCC4 that aligns and stabilizes broken DNA
ends so they can be joined (Ahnesorg et al., 2006; Buck et al.,
2006; Andres et al.,, 2007; Zha et al., 2007; Li et al., 2008;
Hammel et al., 2011; Ropars et al., 2011; Fattah et al., 2014;
Brouwer et al., 2016). Deficiency of XLF in humans leads to se-
vere combined immunodeficiency consistent with a defect in
lymphocyte antigen receptor gene assembly by V(D)] recombi-
nation, a reaction that requires the generation of DNA DSBs by
the RAG endonuclease and their repair by NHEJ (Fugmann et al.,
2000; Ahnesorg et al., 2006; Buck et al., 2006; Helmink and
Sleckman, 2012). However, XLF-deficient murine lymphoid
cells do not exhibit overt defects in RAG DSB repair, raising the
possibility that XLF has additional functions that could con-
tribute to the phenotype of XLF deficiency (Li et al., 2008). In
this regard, cells derived from XLF-deficient patients have been
reported to have increased sensitivity to replicative stress
(Schwartz et al., 2009).
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The histone variant H2AX is phosphorylated (forming
YH2AX) by the DDR kinases ATM, DNA-dependent protein ki-
nase catalytic subunit (DNA-PKcs), and ATR in chromatin
flanking damaged DNA (Rogakou et al., 1998, 1999; Ward and
Chen, 2001; Savic et al., 2009; Blackford and Jackson, 2017).
YH2AX functions to retain DDR factors at DNA damage sites to
repair damaged DNA and amplify DDR signaling (Celeste et al.,
2002, 2003; Savic et al., 2009). YH2AX also protects broken DNA
ends from nucleolytic resection mediated by CtIP, and pre-
sumably MREI], in Gl-phase cells (Helmink et al., 2011). yYH2AX
colocalizes with proliferating cell nuclear antigen (PCNA) foci
and has been implicated in the responses to replication stress
(Ward and Chen, 2001; Sirbu et al., 2011; Schmid et al., 2018).
Indeed, H2AX-deficient cells exhibit increased sensitivity to the
DNA replication inhibitor aphidicolin, especially when ATR is
inhibited (Chanoux et al., 2009).

Like XLF, H2AX is not required for NHE]J during RAG DSB
repair in murine lymphoid cells; however, a combined defi-
ciency of XLF and H2AX leads to a severe block in RAG DSB
repair in murine lymphoid cells, demonstrating that both of
these proteins have activities in NHE] during V(D)] recombi-
nation in these cells (Zha et al., 2011). XIf /- and H2ax/~ mice are
both viable, but H2ax™/~:XIf /- mice exhibit embryonic lethality
at a developmental stage much earlier than mice deficient in the
core NHE] factors, DNA ligase IV or XRCC4, suggesting that XLF
and H2AX function in fundamental cellular processes other than
NHE] (Barnes et al., 1998; Frank et al., 1998; Gao et al., 1998; Zha
et al., 2011). Here we demonstrate that XLF-deficient cells have
DNA replication defects that lead to an increase in replication
fork reversal. Moreover, loss of H2AX in XLF-deficient cells
leads to a dependence on ATR to prevent a potent MREII-
dependent DDR that would otherwise lead to cell death. We
propose that during DNA replication, XLF and H2AX function in
series to limit the formation of reversed replication forks (XLF)
and to protect regressed arms of reversed forks from being re-
sected by MRE11 (H2AX) and activating a DDR that can lead to
cell death. These important functions are independent of the
activities of XLF and H2AX in NHE].

Results and discussion

Association of XLF with DNA replication machinery

XLF from mouse embryonic fibroblasts (MEFs) or mouse Abel-
son virus-transformed preB cells (hereafter referred to as abl
preB cells) migrates as a doublet slightly below 38 kD (Fig. 1,
A-E). Phosphatase treatment leads to loss of the slower mi-
grating form, and coincubation with a phosphatase inhibitor
restores this form (Fig. 1 A). Neither inhibition of the ATR, ATM,
and DNA-PKcs DDR kinases nor mutation of murine XLF SQ/TQ
motifs (S55, S132, and T238) to AQ leads to loss of XLF phos-
phorylation (Fig. 1, C and D). However, mutation of serine 245 to
alanine leads to a complete loss of XLF phosphorylation, and
mutation of this serine to aspartic acid causes a complete shift to
the slower migrating form (Fig. 1, D and E). The CDK inhibitor
roscovitine had no effect on XLF phosphorylation (Fig. 1 C).
However, an inhibitor of the cell division cycle 7 (CDC7) kinase,
PHA-767491 (CDC7i), which is required to promote the initiation
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of DNA synthesis (Fragkos et al., 2015), leads to reduced XLF
phosphorylation (Fig. 1, B and C).

We performed mass spectrometry of proteins that coimmu-
noprecipitate with a FLAG-HA-tagged XLF fusion protein ex-
pressed in XIf/~ abl preB cells (Fig. 1 F and Table S1). As
previously reported, these analyses revealed that XLF associates
with the NHE] factors Ku70, Kug80, DNA ligase IV, and XRCC4
(Fig. 1, F and G; Ahnesorg et al., 2006; Yano et al., 2008). Ad-
ditionally, we found that XLF also associates with all five com-
ponents of the replication factor C complex (RFC1-5), which
loads PCNA at replication forks (Fig. 1 F; Shiomi and Nishitani,
2017). Immunoprecipitation of XLF from MEFs confirmed that
XLF associates with RFC1 and RFC4 (Fig. 1 G). Thus, XLF is
phosphorylated by CDC7 and associates with RFC, suggesting
that XLF may function during DNA replication.

XLF associates with DNA replication forks

We determined whether XLF associates with active replication
forks in HEK293T cells by accelerated native iPOND (aniPOND;
Fig. 2 A; Sirbu et al.,, 2011, 2012; Leung et al., 2013; Wiest and
Tomkinson, 2017). Similar to PCNA, RFCI, and RAD51, which
associate with replication forks, XLF coprecipitates with nascent
DNA labeled with the thymidine analogue EdU (Fig. 2 A; Sirbu
et al., 2011). Moreover, XLF association decreases after thymi-
dine chase, demonstrating that XLF specifically associates with
active replication forks (Fig. 2 A). XRCC4 also associates with
DNA at active replication forks (Fig. 2 A). Treatment of
HEK293T cells with hydroxyurea (HU), which causes replication
fork stalling, leads to decreased association of PCNA and in-
creased association of RAD5I at replication forks (Fig. 2 A;
Ragland et al., 2013; Dungrawala et al., 2015; Zellweger et al.,
2015). HU treatment leads to a mild increase in XLF association
with nascent DNA (Fig. 2 A). We conclude that XLF associates
with replication forks.

XLF deficiency impairs replication fork dynamics

We analyzed DNA fibers in WT and XIf/~ MEFs that were
consecutively incubated with 5-iodo-2'-deoxyuridine (IdU; red)
and 5-chloro-2'-deoxyuridine (CldU; green) to label newly
synthesized DNA tracts (Fig. 2 B). As compared with WT MEFs,
the lengths of the bicolor DNA tracts were significantly reduced
in XIf /- MEFs, and this reduction was corrected by the ectopic
expression of XLF (Fig. 2 B). There was a higher frequency of
DNA tracts labeled only with IdU (red) in XIf /- MEFs as com-
pared with WT MEFs (Fig. 2 C). The lengths of bidirectional
newly synthesized DNA tracts emerging from single replication
origins (two CldU tracts extending from a single IdU tract) were
measured (Fig. 2 D). Under conditions of unperturbed DNA
synthesis, the lengths of these newly synthesized DNA tracts
should be approximately equal. Indeed, in WT MEFs, the ratio of
the lengths of the bidirectional newly synthesized DNA tracts
are close to one (1.2; Fig. 2 D). In contrast, this value is signifi-
cantly greater (1.8) in XIf /- MEFs, indicating that loss of XLF
leads to increased replication fork asymmetry (Fig. 2 D). Xrccd~/~
MEFs exhibit defects in DNA replication that are similar to those
observed in XIf /- MEFs (Fig. 2 E). Analyses of DNA ligase IV-
deficient (Lig4~/-) MEFs, which, like Xrcc4~/- MEFs, have a block
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in NHE], revealed no significant differences in newly synthe-
sized DNA tracts as compared with WT MEFs (Fig. 2 E). To-
gether, these data are indicative of a DNA replication defect due
to diminished replication fork progression, replication fork
stalling, or nucleolytic resection of newly synthesized DNA in
XRCC4- and XLF-deficient MEFs. Moreover, that DNA fiber
defects were not observed in Ligd~/~ MEFs suggests that the
replication defects in XIf /- and Xrcc4~/~ MEFs are not due to the
function of XLF and XRCC4 in promoting NHE].

Replication fork stalling can lead to fork regression, which is
best visualized by EM (Sogo et al., 2002; Vindigni and Lopes,
2017). We visualized the fine architecture of the replication in-
termediates using a combination of in vivo psoralen cross-
linking and EM (Fig. 2 F and Fig. SI; Neelsen et al., 2014).
Treating WT MEFs with HU leads to a significant increase in the
frequency of reversed forks (Fig. S1). Analysis of untreated XIf /-
MEFs reveals an increase in the frequency of reversed forks of
similar magnitude to that observed in WT MEFs treated with HU
(Fig. 2 F and Fig. S1). Ligd~/~ MEFs do not exhibit an increase in
replication fork reversal, demonstrating that the reversed forks
in XIf /- MEFs are not due to a defect in NHE]J per se (Fig. S1).
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Knockdown of RAD51, which is required for fork reversal, leads
to partial recovery of newly synthesized DNA tracts in XIf /-
MEFs (Fig. 2 G; Zellweger et al., 2015). Thus, XLF deficiency
leads to increased fork reversal during DNA replication.

ATR inhibition leads to increased DDR in XLF-deficient cells

XLF-deficient MEFs appear to divide normally, suggesting that
any replication defects are resolvable, likely through the acti-
vation of ATR. Indeed, as compared with WT MEFs, treatment of
XIf/- MEFs with the ATR kinase inhibitor VE-821 leads to DDR
activation, as indicated by increased yYH2AX and phospho-KAP1
(pKAPI; Fig. 3 A and Fig. S2 A). This increased DDR is reduced
when Rad5l is knocked down, consistent with the notion that it
is due to replication fork reversal (Fig. 3 B). Treatment with the
ATM kinase inhibitor KU55933, but not the DNA-PKcs kinase
inhibitor NU7441, leads to abrogation of the DDR (Fig. 3 C). MEFs
deficient in XRCC4 also exhibit an enhanced DDR in response to
ATR inhibition (Fig. 3 D and Fig. S2 B). Moreover, both XIf /- and
Xrcc4~/~ MEFs exhibit diminished survival in response to ATR
inhibition as compared with WT MEFs (Fig. 3 E and Fig. S2 C).
Thus, XLF- and XRCC4-deficient MEFs have DNA replication
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Figure 2. XLF regulates replication fork dynamics. (A) 293T cells not labeled (1), labeled with EdU followed by thymidine chase (2), labeled with EdU (3), or
labeled with Edu followed by HU treatment (4) were subject to aniPOND, and the isolated proteins were analyzed by Western blotting. Shown is solubilized
chromatin (Input) and proteins eluted from streptavidin beads (Capture). (B) WT and XIf/~ MEFs transduced with a control lentivirus (TRE-Empty) or lentivirus
with tetracycline-inducible XLF (TRE-XIf) were consecutively labeled with I1dU and CldU for 30 min each. Size distribution of total tract length (IdU+CldU)
scored from bicolor DNA fibers is shown with red lines representing median. At least 450 tracts were scored for each dataset from three independent ex-
periments (Mann-Whitney U; ****, P < 0.0001). (C) Frequency of IdU (red) only tracts in DNA fiber assay described in B (unpaired t test; *, P < 0.05).
(D) Representative image of a symmetric (WT) and an asymmetric (XIf/~) fork, and quantification of the ratio of the lengths of sister forks. The top and bottom
bars on the whiskers of the box-and-whisker plots represent the 90th and 10th percentiles. At least 40 bidirectional forks were analyzed in three independent
experiments. (E) Size distribution of total tract length from indicated MEFs as described in B. At least 450 tracts were scored for each dataset from three
independent experiments (Mann-Whitney U; ****, P < 0.0001). (F) Left: Electron micrograph of a representative reversed fork on enriched genomic DNA from
XIf'~ cells. Inset: Magnified four-way junction at the reversed replication fork. The Daughter (D) and Parental (P) strands are indicated as is the Reversed arm
(R). The frequency of fork reversal in WT and XIf/~ MEFs is shown for two independent experiments. The percentage of reversed forks and total number of
replication intermediates analyzed are indicated in parentheses. (G) Size distribution of tract lengths of bicolor DNA fibers from XIf/~ cells expressing control
(shCT) and RADS51 (shRAD51) shRNAs labeled as described in B. At least 450 tracts were scored for each dataset from two independent experiments
(Mann-Whitney U; ns, non-significant; ****, P < 0.0001).
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Figure 3. ATR inhibition leads to DDR in XIf /- cells. (A) Cell lysates from XIf/~ MEFs treated with ATRi for the indicated times were analyzed by Western
blotting using the indicated antibodies. (B) Cell lysates from XIf '~ MEFs transduced with Control (shCT) or RAD51 (shRAD51) shRNAs and treated with ATRi for
8 h were analyzed by Western blotting using the indicated antibodies. (C) Cell lysates from XIf/~ MEFs untreated or pretreated with ATMi or DNA-PKcsi for
30 min before treatment with ATRi for 8 h were analyzed by Western blotting using the indicated antibodies. (D) Western blot analysis of whole cell lysates
from WT and Xrcc4™/~ MEFs treated with ATRi for indicated times using the indicated antibodies. (E) Cell viability of WT, XIf/~, or Xrcc4~/~ MEFs treated with
the ATRI at indicated concentrations for 4 d. Error bars indicating SD of three technical repeats from a representative experiment from analyses of two

independent cell lines of each genotype analyzed in two experiments, each in triplicate.

defects that must be resolved by ATR to prevent the activation of
an ATM-dependent DDR.

H2AX deficiency amplifies the replication defect in XIf /- MEFs
ATR inhibition of either H2ax/~ or XIf /- MEFs leads to activation
of the DDR as indicated by pKAP1 (Fig. 4, A and B; and Fig. S2, D
and E). However, ATR inhibition of H2ax/~:XIf /- MEFs leads to a
synergistic increase in pKAP], suggesting that the combined loss of
H2AX and XLF leads to significant defects in DNA replication that
require ATR for resolution (Fig. 4, A and B; and Fig. S2, D and E).
Indeed, inhibition of DNA replication initiation by CDC7 limits
the DDR in H2ax™/~:XIf /- MEFs treated with the ATR inhibitor
(Fig. 4 C). Moreover, H2ax/~:Xlf /- MEFs exhibit a significant loss
of viability upon ATR inhibition as compared with WT, H2ax /-, or
XIf /- MEFs (Fig. 4 D and Fig. S2 F). This increased sensitivity and
DDR to ATR inhibition exhibited by H2ax~/~:XIf /- MEFs is not due
to XLF and H2AX function in NHE], as Lig4~/~ MEFs do not exhibit
increased pKAPI upon ATR inhibition (Fig. 4 E). Moreover, while
Lig4~/~ and H2ax~/~:XIf /- MEFs both exhibit increased sensitivity
to ionizing radiatio indicative of NHE] defects, only H2ax~/~:XIf /-
MEFs exhibit sensitivity to ATR inhibition (Fig. 4 F). Finally, a
neutral comet assay of H2ax/~:XIf /~ MEFs treated with the ATR
inhibitor did not reveal a detectable increase in unrepaired two-
ended DSBs (Fig. 4 G). Together, these data demonstrate that XLF
and H2AX have NHE]J-independent functions during DNA repli-
cation, preventing the formation of lesions that, if not resolved by
ATR, lead to a robust DDR and cell death.
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Replication defects in H2ax~/~:XIf /- MEFs

The regressed arm of a reversed fork generates a one-ended
DNA DSB that could activate a DDR. In Gl-phase cells, yH2AX
protects DNA ends from resection; therefore, it is possible that
YH2AX protects regressed arms from being resected, which
would activate a DDR and prevent fork restart. In agreement,
complementation of H2ax~/~:XIf /- MEFs with WT H2AX, but not
a serine 139 to alanine mutant of H2AX (H2AX5!394)  which
cannot form yH2AX, leads to reduced pKAP1 formation in re-
sponse to ATR inhibition (Fig. 5 A). To determine whether
YH2AX may function by protecting the regressed arm from re-
section, we initially examined newly synthesized DNA tracts in
MEFs treated with the ATR inhibitor (Fig. 5 B). There was no
significant difference in these tracts when comparing WT and
H2ax/~ MEFs treated with the ATR inhibitor (Fig. 5 B). In
contrast, after ATR inhibition, XIf/~ MEFs exhibited shorter
tract lengths, and H2ax/~:XIf /~ MEFs markedly shorter tract
lengths, when compared with WT MEFs (Fig. 5 B). Moreover,
after ATR inhibition, H2ax/~:Xlf/~ MEFs had significantly
fewer reversed forks as compared with XIf/~ MEFs by EM
analysis (Fig. 5 C). Together, these findings are consistent with
the notion that in the absence of H2AX, regressed arms of re-
versed replication forks may be resected. Notably, H2ax/~:XIf /-
MEFs have slightly longer newly synthesized DNA tract lengths
than XIf-/~ MEFs, suggesting that H2AX could have additional
roles in promoting replication fork reversal under unperturbed
conditions (Fig. 5 B).
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DNA end resection is initiated by MREI11 and CtIP (Lengsfeld
etal., 2007; Sartori et al., 2007). MRE11 mediates the degradation
of reversed replication forks in BRCAI- and BRCA2-deficient
cells (Schlacher et al., 2011; Ray Chaudhuri et al, 2016;
Kolinjivadi et al., 2017; Lemacon et al., 2017; Mijic et al., 2017;
Taglialatela et al., 2017). If YH2AX protects regressed arms from
resection, then the replication defects observed in H2ax~/~:XIf/~
MEFs should be dependent on MREI1I nuclease activity. Indeed,
inhibition of MRE11 nuclease activity with mirin leads to a re-
duction in the DDR in H2ax™/~:XIf /- MEFs treated with the ATR
inhibitor (Fig. 5 D and Fig. S2 G). Moreover, DNA tracts were
significantly longer in ATR inhibitor-treated H2ax~/~:XIf/~
MEFs that were also treated with mirin (Fig. 5 E). Mirin treat-
ment of ATR-treated XIf /- MEFs led to an increase in DNA tract
length, suggesting that even in the presence of H2AX, regressed
arms may undergo some resection (Fig. 5 E). Indeed, pKAP1 and
YH2AX levels in XIf /- MEFs in response to ATR inhibition are
also abrogated by mirin treatment (Fig. 5 F and Fig. S2 H). In
agreement, another study found that the DNA tract length
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shortening in human cells expressing H2AX S139A also depends
on Mrell activity (Schmid et al., 2018). Notably, deficiency of
53BP1, which is recruited to DNA DSBs by yH2AX and antago-
nizes DNA end resection in mammalian cells, or deficiency in
the yeast 53BP1 counterpart, Rad9, also leads to degradation of
DNA at stalled replication forks (Bunting et al., 2010; Her et al.,
2018; Schmid et al., 2018; Villa et al., 2018). We conclude that the
defects in newly synthesized DNA tracts, and the resulting DDR,
observed in H2ax /~:Xlf /-~ MEFs are dependent on MREIl nu-
clease activity.

We have shown that XLF functions during DNA replication in
a manner that is independent of NHE]. Moreover, loss of XRCC4
leads to DNA replication defects that are similar to those ob-
served in XIf/~ cells, suggesting that XLF-XRCC4 filament for-
mation, which functions during NHE], may also function during
DNA replication to prevent or resolve reversed DNA replication
forks. H2AX deficiency synergistically exacerbates the replica-
tion defects and DDR activation in XIf/~ MEFs, suggesting
that the defects imposed by the loss of these proteins are

Journal of Cell Biology
https://doi.org/10.1083/jcb.201808134

2118


https://doi.org/10.1083/jcb.201808134

A Control WT S139A E 2h 30 mins 30 mins
ATRi - + - + - 4+ T ldU  Cldu
KAPA | = == |_ 102 KD ATRI (10 uM) +/- mirin (50 uM)
P — . ns ns Fokkk [
KAp1|--—..~--._|—102KD _
€ i
= 40
H2AX | - |— 24 KD =
! 5 30
. <@
H2AX| 2 .--.—|—24KD 8 90
i
B 2h 30 mins 30 mins 2 107
) IdU  CldU 0
+-ATRi (10 uM) + Mirin
801 - s wT H2ax” XIF* H2ax X+
_ : ' rhx F XIF:
€
f Mirin - = + +
3 AR - + -  +
L pKAPT | |- 102 kD
£
KAP | 102 <

YHZAX| L —|'24KD

H2AX |--.. |‘ 24 KD

no ATRi + ATRi
G /=
C 307 24 23
(81) 69 /
& (69) i
¥ 20- 15 »
g (94) ‘ XLF deficiency
% 9 Fork reversal
$ 10 (85) K 0 yH2AX
)

3 +{< & K l Loss of yH2AX and ATR

2
W N MRE11-dependent
fork degradation
Replicate 1 Replicate 2

D H2ax":XIf" } N
Mirin - - + + <

ATRI - + - o+

pKAP1 | e I— 102 KD l
DDR activation,
KAP1 | — = S m— |- 102 KD cell death

Figure 5. MRE11-mediated replication defects in H2ax~/~:XIf /- MEFs. (A) Cell lysates from H2ax~/=:XIf/~ MEFs expressing WT or S139A mutant H2AX,
treated with ATRi for 8 h, were analyzed by Western blotting using the indicated antibodies. (B) DNA tract lengths in ATRi treated or untreated MEFs of the
indicated genotype were assayed as described in Fig. 2 B. At least 450 tracts were scored for each dataset from three independent experiments (Mann-
Whitney U; ***, P < 0.001; ****, P < 0.0001). (C) Frequency of reversed forks in XIf/~ and H2ax~/=:XIf/~ MEFs treated with ATRi for 3 h before EM analysis as
described in Fig. 2 F. (D) pKAP1 analysis in whole cell lysates from H2ax~/~:XIf/~ MEFs treated with ATRi, mirin, or both were analyzed by Western blotting.
(E) DNA tract lengths in ATRi treated MEFs of the indicated genotype in the presence or absence of mirin were assayed as described in Fig. 2 B. At least 450
tracts were scored for each dataset from three independent experiments (Mann-Whitney U; ns, non-significant; ****, P < 0.0001). (F) Whole cell lysates from
XIf/~ MEFs treated with ATRi, mirin, or both were analyzed by Western blotting for the indicated proteins. (G) A model for replication defects caused by H2AX
and XLF deficiency as described in the text.

mechanistically in series. Moreover, this exacerbation of rep- that when a reversed fork is generated yYH2AX functions to
lication defects in H2ax/~:XIf /- MEFs depends on MREI1l ac- prevent MREll-dependent resection of the regressed arm and
tivity. We propose that XLF functions during DNA replication ~DDR activation (Fig. 5 G). Thus, the lymphopenia observed in
to prevent the accumulation of reversed replication forks and XLF-deficient humans and embryonic lethality observed in
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H2ax~/~:XIf /- mice may be due, in part, to the requirement for
XLF and H2AX during DNA replication. Although this seems at
odds with the growth of H2ax™/~:XIf /- and XIf/~ MEFs in cell
culture, this growth is more dependent on ATR activity than
WT MEFs. Moreover, different cell types could have differen-
tial requirements for pathways that promote efficient DNA
replication. Indeed, embryonic stem cells exhibit decreased
replication fork speed, increased fork reversal, and a higher
level of associated DDR activation (Ahuja et al., 2016).

Materials and methods

Cells culture and chemicals

Abl preB cells were generated as described previously
(Bredemeyer et al., 2006). MEFs were generated from embry-
onic day 13.5 embryos of mice that are XIf*/* or XIf /- carrying
conditional H2ax alleles (H2ax® <) flanked by loxP sites.
Multiple H2ax®/conXIf*/* and H2ax<"/cmXIf-/~ primary MEFs
were generated from two mice. Primary MEFs were propagated
for two passages before being immortalized with SV40 large T
antigen. Cre recombinase was transiently introduced to these
cells to generate H2ax/~:XIf*/* or H2ax™/~:XIf /- cells. MEFs used
in this work were derived from embryos from each mouse: the
first set (from mouse 1) includes H2axcov/con:xlf*/+ (WT, AB-2),
H2ax/~ (AB-4), H2ax®ov/conxlf/- (XIf /-, AB-2), and H2ax /"
XIf/- (AB-8); the second set (from mouse 2) includes H2axcom/con;
XIf/+ (WT, 4A-8), H2ax ™/~ (4A-9), H2ax/on:XIf /- (XIf /-, 2A-8),
and H2ax/~XIf /- (2A-1). Ectopic expression of XLF in XIf /-
MEFs was achieved by transducing cells with lentivirus ex-
pressing XLF inducibly under a tetracycline-regulated element
(TRE) promoter and treating cells with 0.1 pg/ml of doxycycline
for 7 d. All cells were cultured in DMEM supplemented with 10%
fetal bovine serum and 0.4% [-mercaptoethanol. ATR inhibitor
VE-821(10 p.M; S8007), ATM inhibitor KU55933 (15 uM; S1092),
DNA-PKcs inhibitor NU7441 (10 uM; S2638), CDC7 inhibitor
PHA-767491 (5 uM or 10 uM; S2742), and CDK inhibitor rosco-
vitine (10 uM; S1153) were purchased from Selleckchem. MRE11
inhibitor mirin was purchased from Sigma-Aldrich (50 pM;
M9948).

Immunoprecipitation and Western blotting

For nuclear extract immunoprecipitation, cells were lysed in
cytoplasmic extraction buffer (10 mM Tris-HCl, pH 7.4, 10 mM
KCl, 1.5 mM MgCl,, 1 mM EDTA, and 0.05% Triton X-100) sup-
plemented with a protease and phosphatase inhibitor cocktail on
ice for 15 min. After centrifugation at 3,000 rpm, 4°C for 5 min,
the pellet was washed with cytoplasmic extraction buffer and
incubated in 0.5 pellet volume of nuclease buffer (20 mM Tris-
HCI, pH 7.4, 1.5 mM MgCl,, and 25% vol/vol glycerol) with 5 U/pl
benzonase (E1014; Sigma-Aldrich) on ice for 1 h to digest genomic
DNA. 1x pellet volume of nuclear extraction buffer (20 mM Tris-
HC], pH 7.4, 500 mM KCl, 1.5 mM MgCl,, 0.2 mM EDTA, and 25%
vol/vol glycerol) was then added, and the pellet was ground
using a dounce tissue grinder (D8938; Sigma-Aldrich) before
incubation with gentle rotation at 4°C for 1 h. The lysate was
clarified by centrifugation at 15,000 rpm, 4°C for 30 min, and the
supernatant was dialyzed in BC100 buffer (20 mM Tris-HCl, pH
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7.4,100 mM KCl, 0.2 mM EDTA, and 20% vol/vol glycerol) at 4°C
overnight using the Pur-A-Lyzer Maxi 6000 Kit (PURX60015;
Sigma-Aldrich). The dialyzed supernatant was clarified again by
centrifugation at 15,000 rpm, 4°C for 30 min, and incubated with
EZView Red HA affinity gel beads (E6779; Sigma-Aldrich) on a
rotator at 4°C for 4 h. The beads were washed four times with
TAP buffer (50 mM Tris-HCl, pH 7.4, 100 mM KCl, 5 mM MgCl,,
0.2 mM EDTA, 10% vol/vol glycerol, and 0.1% vol/vol Triton X-
100). Protein complexes were eluted by boiling in LDS sample
buffer (NPO007; Thermo Fisher Scientific) and resolved in 4-12%
NuPAGE Bis-Tris gels for Western blotting. For detecting phos-
phorylated XLF, protein was resolved in 10% Tris-Glycine gels
for Western blotting analysis. Anti-XLF, anti-PCNA, and anti-
pKAPI (S824) antibodies (all produced in rabbits) were ob-
tained from Bethyl Laboratories (A7300-730A, A300-276A, and
A300-767A, respectively). Anti-KAP1 and anti-RFC4 anti-
bodies were obtained from Genetex (GTX10484, rabbit, and
GTX104052, rabbit, respectively). Anti-KU70 (D10A7) antibody
was obtained from Cell Signaling Technologies (4588S, rabbit).
Anti-phospho-histone H2AX (S139), yH2AX, clone JBW301,
anti-H2AX, and anti-RAD51 antibodies were obtained from
EMD Millipore (05-636, mouse; 07-627, rabbit; and 07-1782,
rabbit, respectively). Anti-histone H3 and anti-RFCI antibodies
were obtained from Abcam (abl791, rabbit, and abl193559,
rabbit, respectively). Anti-XRCC4 (C-20) was obtained from
Santa Cruz Biotechnology (sc-8285, goat).

Mass spectrometry

Immunoprecipitation for mass spectrometry was described
previously (Ciccia et al., 2009). Briefly, lentiviral construct TRE-
FLAG-HA-XLF was used to transduce XIf /- abl-preB cells. 150
million transduced cells were treated with 3 uM imatinib and
0.2 pg/ml doxycycline for 48 h before harvesting for protein
lysates in low-salt buffer (50 mM Tris, pH 7.5, 150 mM NaCl, and
1% NP-40) supplemented with protease inhibitor (P8340;
Sigma-Aldrich) and phosphatase inhibitor cocktails 2 and 3
(PO044 and P5726; Sigma-Aldrich). Cell lysis was performed on a
rotator at 4°C for 30 min and then centrifuged at 14,000 rpm for
20 min. Cell pellets were resuspended in high-salt buffer
(50 mM Tris, pH 7.5, 500 mM NaCl, and 1% NP-40) and incu-
bated on a rotator at 4°C for 1 h, followed by centrifugation at
14,000 rpm for 20 min. The high- and low-salt extracts were
mixed together, and the salt concentration was adjusted to
150 mM NaCl. The final cell lysate was precleared with protein
A/G agarose (sc-2003; Santa Cruz Biotechnology), and pre-
cleared lysate was immunoprecipitated with anti-HA agarose
(sc-7392 AC; Santa Cruz Biotechnology) overnight at 4°C. Pre-
cipitated protein complex was washed five times in low-salt
buffer and eluted with HA peptide (500 pg/ml; 12149; Sigma-
Aldrich). Eluted proteins were TCA-precipitated and analyzed
by tandem mass spectrometry at the Taplin Mass Spectrometry
Facility at Harvard Medical School.

AniPOND analysis

AniPOND analysis was performed as previously described with
some modifications (Leung et al., 2013; Wiest and Tomkinson,
2017). Cells were pulse-labeled with 10 uM EdU in DMEM for

Journal of Cell Biology
https://doi.org/10.1083/jcb.201808134

2120


https://doi.org/10.1083/jcb.201808134

15 min, washed with PBS, and then incubated in medium with
10 pM thymidine for 1 h or with 4 mM HU for 2 h. After labeling,
cells were immediately lysed and harvested with nuclei ex-
traction buffer (20 mM Hepes, pH 7.2, 40 mM NaCl, 3 mM
MgCl,, 300 mM sucrose, and 0.5% NP-40). Nuclei pellets were
washed with 1x PBS, resuspended in click reaction mix (in order
of addition: 25 mM biotin picolyl azide [Click Chemistry Tools],
10 mM (+)-sodium l-ascorbate, and 2 mM CuSO,) and rotated at
4°C for 1 h. Samples were then washed with 1x PBS. The re-
sulting pellets were resuspended in 500 ul Buffer Bl (25 mM
NaCl, 2 mM EDTA, 50 mM Tris-HCl, pH 8.0, 1% NP-40, and
protease inhibitors), rotated for 30 min at 4°C, and spun down at
maximum speed for 10 min at 4°C. The above procedure was
repeated once more, and the resulting nuclei were resuspended
in 500 pl Buffer Bl. Samples were then sonicated using a Model
50 Sonic Dismembrator (Thermo Fisher Scientific) 12 x 10 s at 20
amplitude to solubilize DNA-bound proteins. Samples were spun
down at maximum speed for 10 min, and the supernatant was
collected. 500 pl Buffer B2 (150 mM NaCl, 2 mM EDTA, 50 mM
Tris-HCl, pH 8.0, 0.5% NP-40, and protease inhibitors) was
added to the supernatant to bring the total sample size to ~1 ml.
Samples were rotated overnight (16-20 h) with streptavidin
beads (Thermo Fisher Scientific). A chromatin input sample was
collected immediately before streptavidin capture. Beads were
washed extensively with Buffer B2, and captured proteins were
eluted by boiling in Laemmli buffer.

EM of replication intermediates

EM analysis of replication intermediates was performed as
previously described (Neelsen et al., 2014). Briefly, 5-10x10°
asynchronously growing MEFs were collected, and genomic
DNA was cross-linked by three rounds of incubation in 10 pug/ml
4,5',8-trimethylpsoralen (T6137; Sigma-Aldrich) and 3 min of
irradiation with 366 nm UV light on a precooled metal block.
Cells were lysed, and genomic DNA was isolated from the nuclei
by proteinase K digestion and phenol-chloroform extraction.
DNA was purified by isopropanol precipitation, digested with
Pvull High Fidelity for 3-5 h at 37°C, and replication inter-
mediates were enriched on a benzoylated naphthoylated
DEAE-cellulose (B6385; Sigma-Aldrich) column. EM samples
were prepared by spreading the DNA on carbon-coated grids in
the presence of benzyl dimethylalkylammonium chloride and
visualized by platinum rotary shadowing. Images were acquired
on a transmission electron microscope (JEOL 1200 EX) with
side-mounted camera (AMTXRA41 supported by AMT software
v601) and analyzed with Image] (National Institutes of Health).

DNA fiber assay

The DNA fiber assay was performed as described previously
(Quinet et al., 2017a). Briefly, MEFs were labeled with two
thymidine analogues: 20 pM IdU (17125; Sigma-Aldrich) fol-
lowed by 200 pM CldU (C6891; Sigma-Aldrich) for the indicated
times. Where indicated, ATR inhibitor (10 wM) and mirin
(50 M) were added 2 h before labeling and remained in culture
during the course of the experiments. Labeled cells were re-
suspended in 1x PBS at 106 cells/ml. 2 pl of cell suspension was
mixed with 6 ul of lysis buffer (200 mM Tris-HCI, pH 7.5,
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50 mM EDTA, and 0.5% SDS) on a glass slide. After 5 min, the
slides were tilted at a 15-45° angle, and the resulting DNA
spreads were air-dried, fixed in 3:1 methanol/acetic acid for
5 min, and stored at 4°C. The DNA fibers were denatured with
2.5 M HCl for 1 h, washed with 1x PBS, and blocked with 5% BSA
in 1x PBS for 1 h. DNA immunostaining was performed with rat
anti-BrdU antibody (1:100; Ab6326; Abcam) for CIdU and mouse
anti-BrdU antibody (1:20; 347580; Becton Dickson) for IdU in a
humid chamber at room temperature for 1 h. The following
secondary antibodies were used: anti-rat Alexa Fluor 488 (1:100;
A21470; Molecular Probes) and anti-mouse Alexa Fluor 546
(1:100; A21123; Molecular Probes) at room temperature for 1 h.
The slides were air-dried and mounted with Prolong Gold Anti-
Fade reagent (P36930; Invitrogen). Images were acquired with
LAS AF software using a TCS SP5 confocal microscope (Leica).
The DNA tract lengths were measured using Image]. Only bi-
color fibers were scored, and the total length (IdU + CIdU) per
fiber is presented in micrometers. Statistical analysis (Mann-
Whitney U) was performed using GraphPad Prism Software.

Cell survival assay

PrestoBlue Cell Viability Reagent (A13261; Thermo Fisher Sci-
entific) was used to estimate the fraction of viable cells present
in 24-well plates after treating 3,000 cells/well with ATR in-
hibitor VE-821 for 4 d. The drug-containing media were then
replaced with 0.5 ml of 1x PrestoBlue in growth media followed
by incubation for 3 h at 37°C. The absorbance was recorded at
560 nm (experimental wavelength) and 570 nm (reference
wavelength) using a Multiskan Ascent plate reader (Thermo
Fisher Scientific).

Online supplemental material

All the peptides identified in our mass spectrometry analysis of
XLF interaction proteins are available in Table S1. Additional
analyses of reversed replication forks by EM and images are
shown in Fig. S1. Independent biological replicates of Western
blots are shown in Fig. S2.
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