
INTRODUCTION

The mean age of the population is constantly increas-
ing, in 2050 1 person in 3 will be over 65 and 1 person 
in 10 will be over 80. Despite the increase in life expec-
tancy, there is no corresponding increase in healthy life 
expectancy; in 2015, it has been shown that, despite a 
life expectancy at the age of 65 of 21.2 years for women 
and 17.9 years for men, only 9.4 years will be healthy 
years. The discrepancy between increasing life expec-
tancy and life in good health will be one of the major 
challenge for the health authorities in the near future. 
Non-communicable chronic diseases (NCDs) are widely 
diffused, increases with age and have a huge impact on 
morbidity and mortality, amongst the risk factors for 
the development of NCDs as cardiovascular diseases 
(CVD) and type 2 diabetes mellitus the metabolic syn-

drome (MetS) and vitamin D deficiency may be linked.
Geriatricians and gerontologists differentiate be-

tween the terms “aging” and “senescence” that are 
frequently used as synonyms by the laypersons. Here 
I’ll refer to the term “aging” as to the physiological 
changes that occur in the organisms at all levels as 
age increases, without making reference to death and 
pathological decline. Otherwise, I’ll use the term “se-
nescence” to indicate pathological processes associated 
with aging and ending with organ failure and death [1].

This review focus on the relationship between aging/
senescence, vitamin D deficiency, gender, and patho-
genesis of MetS.

METABOLIC SYNDROME

The term MetS refers to a cluster of risk factors for 
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CVD and type 2 diabetes mellitus, it has been defined 
with different criteria, see [2] for a complete review. 
The International Diabetes Federation, the American 
Heart Association, and the National Heart, Lung, and 
Blood Institute defined MetS as the presence of at least 
three of the following criteria: central obesity, dyslip-
idemia, impaired glucose metabolism, elevated blood 
pressure, and low levels of high-density lipoprotein 
cholesterol [3].

Although there are no global data on MetS preva-
lence, it has certainly increased over the past several 
decades worldwide, and it has been estimated that, 
since MetS is about three times more common than di-
abetes, the global prevalence should involve over a bil-
lion subjects in the world [2]; these impressive numbers 
allow to define MetS as a “global epidemic” [2]. The 
prevalence of MetS is generally higher in men than 
in women [2,4] except in the Middle Eastern countries, 
were the prevalence is higher in women [5] and, in all 
the countries, it increases with age.

The prevalence of different characteristics belonging 
to MetS as overweight, obesity, hypertension, hyperlip-
idemia, and diabetes increases with age, however the 
mechanisms linking aging to MetS are fare to be com-
pletely elucidated.

The observation of high inter-individual variabili-
ties in metabolic dysregulation in older adults suggest 
that biological age, rather than chronological age, may 
be implicated in the pathogenesis of MetS. Studies on 
different mechanisms of aging suggest an association 
between high metabolic risk profiles and accelerated 
senescence.

As it is known, several markers have been proposed 
in order to measure biological rather than chronologi-
cal aging [6], unless we are far from having specific 
and reliable biomarkers of biological aging, several 
molecules and pathways have been described as possi-
ble biomarkers of senescence. Amongst these different 
biomarkers some have been related to metabolic dereg-
ulation and associated to high metabolic risk profiles 
as telomeres length [7,8], DNA epigenetic modifications 
[9], and mitochondrial dysfunction [10].

A relationship between aging/senescence, MetS, and 
vitamin D deficiency may be found in the mechanisms 
linking these three domains.

SENESCENCE AND METABOLIC 
SYNDROME

Telomeres protect the chromosomes’ integrity and 
their length becomes shorter with aging due to a de-
crease in telomerase activity. Cellular replication be-
come impossible under a certain measure of telomere 
length, this phenomenon is named Hayflick limit and 
defines cellular senescence and, consequently, biological 
rather than chronological age. Hence telomere shorten-
ing, in particular in leukocytes, has been considered 
as a marker of cellular senescence and has been as-
sociated to several aging-related diseases [11] and with 
increased metabolic risk and MetS [7,12,13].

Besides telomeres length, epigenetics DNA modifica-
tion as methylation have been regarded as markers of 
cellular senescence, aging, and aging-related diseases. 
The presence of multiple epigenetic changes and in 
particular of multiple DNA methylation sites on a set 
of CpG dinucleotides has been defined as “DNA meth-
ylation clock” that is an accurate predictor of age, nev-
ertheless different “epigenetic clock” showed different 
association with senescence and frailty [14].

Mitochondrial dysfunction and oxidative stress have 
been studied as biomarkers of biological aging and 
senescence. Aging is associated with a decreased mito-
chondrial function, number and replication and with 
an increased oxidative stress, when this phenomenon 
reached a not yet defined threshold, aging becomes se-
nescence and a progressive decline in different organs 
begins [15].

Inflammation links aging, MetS and cellular se-
nescence; inflammation increases with aging due to a 
progressive deregulation of immune function and to 
the accumulation of senescent cells, these phenomena 
bring to a chronic, low-grade inflammatory status that 
progressively contribute to senescence [16]. Immune 
cells in the inflammatory infiltrates influences me-
tabolism and vice versa, inflammation is influenced by 
metabolic rate and nutrients availability. As regards 
MetS, obesity have been associated to a chronic in-
crease in inflammatory status, this further contribute 
to the deregulation of metabolism [17]. In the same 
way the telomeres length and the epigenetic clocks are 
influenced by inflammation, increased oxidative stress 
[18] and by lifestyle and environmental factors [19-21].

The above mentioned biomarkers of cellular senes-
cence and biological aging have been associated to 
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increased metabolic risk profiles and different char-
acteristics of MetS [7,9,12,22,23]. Interestingly a recent 
experimental study on mice model suggest that ame-
lioration of the mitochondria metabolic profile reduces 
certain characteristics of MetS as obesity and type 2 
diabetes [24].

The complex and bi-directional relationships between 
the different factors promoting cellular senescence and 
metabolic dysfunction complicates the understanding 
of the role of each factor in the development of MetS 
in aging persons.

Moreover, environmental factors as air pollution [19-
21], physical activity [25,26], and diet [27,28] greatly in-
fluences senescence biomarkers and MetS development.

Several evidences suggested the hypothesis that vi-
tamin D may act as a modulator of different aspects of 
cellular senescence and metabolic deregulation.

VITAMIN D AND AGING

Vitamin D may be considered a nutrient as it is in-
troduced trough diet, but also as a hormone as it can 
be synthetized by the skin and, after two hydroxyl-
ation in the kidney and in the liver acquires the ability 
to regulate calcium and phosphate metabolism. About 
20% of vitamin D comes from dietary intake, whereas 
80% is synthetized by the skin from its precursors 7-di-
hydrocholesterol thanks to the action of UVB. Despite 
the ability of the body to actively synthetize vitamin D, 
hypovitaminosis D is largely prevalent amongst gen-
eral population and this prevalence increases according 
with age.

The prevalence of hypovitaminosis depends on the 
cut-offs used in order to define it; different scientific 
societies and different countries suggested differ-
ent threshold for hypovitaminosis D. The majority of 
the studies agree in defining desirable levels higher 
than 30 ng/mL or 75 nM/L of blood 25(OH) vitamin D 
(25(OH)D), under this level the risk of bone metabolism 
alteration, falls, and myopathy increases, see [29] for a 
complete review.

The prevalence of hypovitaminosis D augments with 
aging as elderly subjects are at higher risk for several 
reasons, as reduced sunlight exposure, reduced intake 
of foods rich in vitamin D as dairy products due to lac-
tase deficiency, reduction of skin synthesis and reduced 
gut absorption [30].

AGING, SENESCENCE AND 
HYPOVITAMINOSIS D: WHAT ARE 
THE RELATIONSHIPS?

Hypovitaminosis D has been associated with in-
creased mortality for different causes [31], hence it has 
been suggested that lower levels of 25(OH)D may be 
regarded as a marker of aging, however the relation-
ship between vitamin D status and other markers of 
aging are far from being elucidated.

As regards telomeres length the results of different 
studies are controversial as some papers suggested that 
25(OH)D levels are not correlated and do not influence 
telomeres length [32-35], whereas others suggest a posi-
tive correlation [14,35-39] showing that higher levels 
of 25(OH)D are associated with longer telomeres and, 
hence, with lower biological age. Furthermore it has 
been suggested that the effect of vitamin D on telo-
meres length may be genetically determined [40] and 
may start in early life [41] depending also on the ma-
ternal vitamin D status.

Association between 25(OH)D and epigenetic modifi-
cation has been explored with controversial results, a 
recent cross-sectional study on a large cohort suggest 
that both epigenetic clock and telomeres length are as-
sociated with vitamin D status, however the authors 
did not observed any clinical correlation with frailty 
[14]. On the other hand, a large cohort study suggested 
that vitamin D is a markers of aging and specifically 
of senescence per se, regardless any correlation with 
epigenetic clock [32]. A small intervention trial on obese 
Africans Americans with vitamin D insufficiency 
shows different effects of vitamin D supplementation 
on epigenetic clock; the authors observed a slowdown of 
aging measured by the Horvath, but not by the Han-
num epigenetic clock [42]. Controversial results may 
be due to several techniques used to measure different 
“clocks” analyzed in various studies.

Besides these effects, vitamin D has some antioxi-
dant effects [43], whereas hypovitaminosis D is associ-
ated with a pro-oxidative state due to the decrease in 
intracellular glutathione [44].

The presence of vitamin D receptor (VDR) in mi-
tochondria from platelets and megakaryocytes and 
its relation with different diseases have been demon-
strated by my lab [45]; however, VDR function within 
the organelles remains unclear. Studies on the role of 
vitamin D on mitochondria function are contradictive, 
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the results are particularly different depending on the 
tissue analyzed, see [46] for a complete review. Interest-
ing studies show that the active form of vitamin D, cal-
citriol, enhance mitochondrial function in animal, and 
in vitro models [47,48]. Moreover, the administration of 
paricalcitol or of calcipotriol, analogous of vitamin D, 
in animals and in in vitro models have protective ef-
fect on mitochondrial function [49,50]. The protective 
effect have been shown in different cells and organs 
as kidney, melanocytes, endothelial cells, hepatocytes, 
astrocytes, and neurons, however there are not human 
studies confirming these effects.

The antioxidant and anti-inflammatory effects of 
vitamin D [29] may explain its relation with aging and 
senescence markers, thus it is not clear which come 
first, the chicken or the egg?

VITAMIN D DEFICIENCY AND 
METABOLIC SYNDROME

Vitamin D has been implicated in the regulation 
of several pathways, besides its well-known role as 
regulator of the calcium-phosphate metabolism, it has 
been suggested that it may be implicated in immune 
system modulation [29], in the regulation of muscle 
strength and metabolism and in the cognitive decline 
[51]. Moreover, hypovitaminosis D has been considered 
risk factors for CVD [52]. Both cross-sectional [53-55] 
and longitudinal studies [56] suggested a role for hypo-
vitaminosis D in predicting the development of cardio 
metabolic risk factors as MetS and diabetes.

Despite these studies, the causal direct role of vita-
min D in the development of MetS and CVD has not 
been clearly demonstrated in humans, in fact con-
founding factors as obesity [53] and dietary intake [55] 
have been evoked to explicate this association. More-
over, recently a Mendelian randomization study per-
formed on a cohort of more than 33,000 subjects does 
not confirm the association between 25(OH)D levels 
and CVD [57]. As regards intervention studies, recent 
clinical trials did not demonstrate any positive effect of 
vitamin D supplementation on cardiovascular health 
[58-60].

Taking into accounts different features of MetS, low 
levels of vitamin D have been associated with obesity, 
impaired glucose metabolism, and elevated blood pres-
sure.

As regards obesity a recent meta-analysis showed 

that low 25(OH)D levels are associated with increased 
body mass index in both diabetic and non-diabetic 
subjects [61], interestingly hypovitaminosis D is as-
sociated especially with visceral fat accumulation and 
android obesity [62,63]. The android obesity has also 
been defined as “metabolically unhealthy obesity” as 
respect to “metabolically healthy obesity”. Subjects 
with unhealthy obesity are at higher risk for CVD and 
are characterized by higher liver and visceral fat, but 
lower subcutaneous fat, lower cardiorespiratory capac-
ity, higher insulin sensitivity, and higher grade of in-
flammation [64].

Hypovitaminosis D have been associated to an im-
paired glucose metabolism and with the development 
of diabetes in some cross-sectional and prospective 
studies [65,66]. A biological role of vitamin D in main-
taining pancreatic β-cells function has been postulated 
and related to its antioxidant and anti-inflammatory 
effects [67]. The postulated role of vitamin D in the 
homeostasis of the epigenome may further explain is 
protective effect on diabetes onset as diabetes-related 
genes are inactivated by hypermethylation [68].

As regards hypertension a specific association with 
sunlight exposure and vitamin D status has been 
suggested [69,70]. The mechanism evoked in order to 
explain this association is the role of vitamin D in the 
regulation of endothelial cells. In in vitro and in vivo 
models Vitamin D exerts protective effects on endothe-
lial cell reducing apoptosis and autophagy, through its 
antioxidant effect [71-73]. Despites these experimental 
evidences and the association between low level of 
25(OH)D and hypertension showed by observational 
studies, some studies are discordant and obtained op-
posite results [74,75]. Interventional trials reported con-
troversial results, some studies suggested the efficacy 
of vitamin D supplementation in reducing blood pres-
sures [76,77], however others did not [78-80].

Pathways linking hypovitaminosis D, senescence, and 
MetS are summarized in Fig. 1.

ROLE OF LIFESTYLE AND 
ENVIRONMENT

Lifestyle and environment further complicate the 
study of the relationship between hypovitaminosis D, 
aging/senescence, and development of MeTS. As it is 
known, a healthy diet and a good level of physical ac-
tivity are associated with higher levels of 25(OH)D [55], 
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with lower incidence of MeTS and CVD [55,81], and 
with an healthy aging.

Furthermore, biological pathways leading to senes-
cence are influenced by physical activity [25,26,82] and 
nutritional intake [27,28,51]. Also air pollution has been 
associated with accelerated senescence, lower 25(OH)D 
levels, and increased risk of MeTS [19,83].

Recently we demonstrated that mitochondria bio-
energetics can be improved by supplementation with 
essentials aminoacids this improvement leads to reduc-
tion of oxidative stress, increased muscle performance, 
and improvement of cognitive performance [84].

The complex influence of lifestyle and environment 
in the pathogenesis of MeTS, its relationships with hy-
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Fig. 1. The cartoon summarizes the relationship between vitamin D markers of senescence and features of metabolic syndrome. ROS: reactive 
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povitaminosis D and senescence add complexity in the 
unravelling of the role of hypovitaminosis D as risk 
factor for MeTS.

Relationships between aging/senescence and lifestyle/
environment are summarized in Fig. 2.

IS THERE A ROLE FOR GENDER?

It is known that MetS has a higher prevalence in 
men than in women [2,4], however this gender-related 
difference may vary according with countries; as in 
the north Africa is has been reported that MetS has 
a higher prevalence in women [5]. Moreover, MetS is 
globally increasing regardless to gender [2]. Neverthe-
less some interesting gender differences have been 
reported on the effect of MetS on vascular aging, and 
in particular on arterial stiffness; Kruszyńska et al 
[85] recently reported an accelerated vascular aging in 
women affected by MetS as compared to men in the 
middle-aged population. This difference may be due to 
the drop of estrogen levels at the onset of menopause, 
as estrogens modulate arterial stiffness over the lifes-
pan [86].

According with the above-described evidences one 
may hypothesize that the difference in the prevalence 
of MetS in men and women may be explained with the 
different prevalence of hypovitaminosis D or with dif-
ferent biological aging rate according with genders.

The majority of studies dealing with hypovitaminosis 
D have been performed in postmenopausal women; this 
is mainly due to the historical role of vitamin D in the 
control of bone turnover and to the higher incidence 
of osteoporosis in women. A systematic review on the 
prevalence of hypovitaminosis D involving more than 
168,000 participants does not find any gender related 
differences in the prevalence of hypovitaminosis D, 
however, amongst the studies included in the review, 
only 10 were focused on male and only 3,143 partici-
pants were men [87]. Subsequent studies in Chile [88] 
and in Saudi Arabia [89] showed that 25(OH)D levels 
were lower in men than in women, even after correc-
tion for lifestyle factors. Hence, we have no conclusive 
data on a possible difference in vitamin D levels across 
genders and consequently it is not possible to hypoth-
esize a role for hypovitaminosis D in explaining differ-
ent gender prevalence of MetS.

As regards biological aging and its different markers, 
a gender difference have been observed as regards telo-

meres length, oxidative stress [90], and inflammation 
[91] that are generally lower in women than in men. 
These differences have been mainly attributed to the 
action of estrogens that reduce reactive oxygen species 
and telomerase attrition through multiple mechanisms. 
Some studies suggested that estrogens are potent anti-
oxidants and simulates antioxidant genes [92], affects 
DNA repair [93] and stimulate telomerase activity [94]. 
On the contrary, testosterone has been associated to 
increased oxidative stress in animal models, this may 
contribute to telomeres shortening [95].

The mechanisms underlying the difference in telo-
meres length in men and women are not completely 
clear. In fact, even after menopause, when the levels of 
estrogens drop, women had lower telomeres length as 
compared to age-matched men [96]. Solid data obtained 
by a meta-analyses on more than 36,000 individuals 
confirm the association between senescence markers 
and gender, showing a generally lower biological age in 
women [97]. In addition, a study on heterozygotes twins 
confirmed that leucocytes telomeres length is higher in 
female than in male twin [98].

As regards the role of chronic low-grade inflamma-
tion, the different fat distribution in men and women 
may play an important role, as it is known that men 
have a predominant “unhealthy obesity” with in-
creased visceral fat as respect to women, this is as-
sociated with increased inflammation [64]. Obese men 
exposed to a high-fat meal produced elevated levels 
of inflammatory cytokines [99], moreover experimen-
tal mice models showed that an high-fat diet induced 
more inflammation in males than in females, this 
phenomenon is only partially reduced by ovariectomy, 
showing that estrogens explains only partially this dif-
ference [100]. Furthermore, a sex-difference in immune 
response showing a higher propensity of immune cells 
from male to produce inflammatory cytokines has been 
described, interestingly this different answer to im-
mune stimuli is not totally explained by sex hormones, 
see for a complete review [91].

According to this data is possible to hypothesize a 
role for senescence rate in explaining different gender 
prevalence of MetS, however, there are no direct evi-
dences of an association between senescence and gen-
der in MetS.
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CONCLUSION

Vitamin D deficiency is highly prevalent, particu-
larly amongst older person and hypovitaminosis D may 
accelerate senescence. Despite some evidences linking 
hypovitaminosis D and MetS, observational studies 
cannot prove causality and there are not convincing 
data from intervention studies showing than the ad-
ministration of vitamin D in different forms is effec-
tive in reducing MetS and CVD.

Aging and, in particular, senescence is associated 
with an increased risk of MetS.

Gender differences in the biological mechanisms 
leading to senescence have been described and these 
differences may influence different prevalence of MetS 
according to gender.

Multiple and bi-directional relationships between 
hypovitaminosis D, aging/senescence, MetS, lifestyle, 
and environment complicate the study of this interest-
ing topic, greatly increasing the risk of biases, further 
intervention studies taking into account these multiple 
confounding factors are needed in order to clarify this 
topic.
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