
Original Research

MDM Policy & Practice
1–14
� The Author(s) 2018
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/2381468318809373
journals.sagepub.com/home/mdm

Health Savings Accounts: Consumer

Contribution Strategies and Policy
Implications

David J. Lowsky, Donald K. K. Lee, and Stefanos A. Zenios

Abstract

Background. Health savings accounts (HSAs) are tax-advantaged savings accounts available only to households with
high-deductible health insurance. This article provides initial answers to two questions: 1) How should a household
budget for its annual HSA contributions? 2) Do current contribution limits provide households with the flexibility to
use HSAs efficiently? To answer these questions, we formulate the household’s problem as one of determining a con-
tribution strategy for minimizing total expected discounted medical costs. Methods. We use the 2002–2014 Medical
Expenditure Panel Survey to develop a novel data-driven model for forecasting a household’s health care costs based
on its current cost percentile and other characteristics. A dynamic policy, in which the contribution each year brings
the HSA balance up to a household-specific threshold, is derived. This is compared to a simpler static policy in which
the target HSA balance is simply the plan’s out-of-pocket maximum, with contributions in any year capped by a
limit. Results. We find that: 1) the dynamic policy can save a household up to 19% in costs compared to the static
one that is a proxy for typical contribution behavior; and 2) the recommended contribution amounts for 9% to 11%
of households in a given year materially exceed what is currently allowed by the federal government. Conclusions.
The dynamic policy derived from our data-analytic framework is able to unlock significant tax savings for health
care consumers. To allow all households to use HSAs in a tax-efficient manner, a two-tiered contribution policy is
needed: Allow unlimited contributions up to some balance, and then impose restrictions thereafter. The resulting
impact on overall tax receipts is estimated to be well below what is currently allowed by legislation.
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Health savings accounts (HSAs) are tax-advantaged sav-
ings vehicles available to people enrolled in high-
deductible health plans (HDHPs), health plans with
higher deductibles and therefore greater consumer cost-
sharing than other plans. HSAs allow annual pretax con-
tributions and tax-free withdrawals to pay for qualified
out-of-pocket (OOP) medical expenses. The unused HSA
balance carries over year to year, and the funds may be
invested and accrue interest over time. HSAs were intro-
duced by the 2003 Medicare Modernization Act to com-
plement HDHPs as a strategy for curbing rising health
care costs. The pairing of HDHPs and HSAs was based

on the hypothesis that assigning individuals the responsi-
bility for a greater portion of their health care costs may
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incentivize them to be more prudent in their health care
spending. Each year, HSA account holders must decide
how much money to contribute to their HSA, up to an
annual contribution limit set by the federal government.

Like most health plans, HDHPs are characterized by
the following parameters: 1) the consumer must cover
annual costs up to a certain deductible; 2) the consumer
must cover a coinsurance rate (percentage) of costs above
the deductible; and 3) the total annual OOP payments is
capped by some OOP maximum. HDHPs are generally
distinguished from other plans by their higher deducti-
bles and lower premiums. In particular, HSA-qualifying
HDHPs must meet a federally mandated minimum
deductible level ($1,300 for individuals, $2,600 for fami-
lies in 2017) and maximum OOP max value ($6,550 for
individuals, $13,100 for families in 2017). These plans
may be adopted either on an individual or family basis
(though each family member must carry their own indi-
vidual HSA), and plan parameters vary widely. For
example, for family plans in 2017, the proportion of
plans with deductibles in the ranges of {$2,000-$2,999,
$3,000-$3,999, $4,000-$4,999, $5,000-$5,999, $6,000+}
were {13%, 35%, 15%, 14%, 23%}.1

While the merit of HDHPs as a health care cost con-
tainment strategy continues to be the subject of debate,2

HDHP/HSA adoption has grown rapidly since their
introduction, and they have commanded the attention of
employers as a cost-curbing mechanism. HDHP plan
enrollment has grown from about 1 million in 2005 to
over 20 million in 2016,3 and from 8% of the workforce
in 2009 to 24% in 2015.4 Additionally, a 2018 survey
found that 70% of large employers offered at least one
HDHP, up from 60% just one year prior.5

In the face of this rapid adoption, a key conclusion of
a recent comprehensive review of HDHPs is that there is
a lack of tools to assist consumers in decision making
with regard to such plans.6 To fill this gap, this article
addresses a key question for HSA adopters: How should
a household budget for its HSA contributions from year
to year? To our knowledge, this is the first article to
examine this question. Additionally, the article also seeks
to address a related question faced by policy makers: Do
current contribution limits provide all households with
the flexibility to use HSAs efficiently, and if not, which
alternative should be adopted by policy makers?

Regarding the first question, we model a household as
relying upon its HSA to cover OOP expenses over a 30-
year period, and therefore seeking to balance excessive
pretax HSA contributions against posttax expenditures
due to insufficient HSA balance. We hence seek the con-
tribution amount that minimizes the household’s total

expected discounted expenditures throughout the contri-
bution period. We consider two types of policies and use
simulations to evaluate their relative performance.

Regarding the second question, the federal govern-
ment imposes an annual contribution limit on both indi-
viduals and households.i We assess whether the current
limits enable households to adhere to the best perform-
ing contribution policy examined in the first question. If
not, we examine how the government should relax this
limit, and whether the resulting impact on tax receipts
would exceed what is currently allowed.

Analyzing the questions above requires a model for
the evolution of household medical expenditures from
year-to-year. We develop a cost evolution model for this
purpose whose performance is competitive with leading
commercial models. While there is considerable literature
on modelingii health care costs,11 a novel aspect of our
approach is to model the transitions of a household’s
health care cost percentile from one year to the next
rather than model actual costs directly. We discuss the
advantage of this approach in Methods.

Methods

Data Description

Our dataset is from the Medical Expenditure Panel
Survey,12 a set of large-scale surveys of families and indi-
viduals drawn from a nationally representative subset of
households in the United States. It is based on an over-
lapping panel design in which data on medical expendi-
tures (and other information) are collected for two
consecutive calendar years from each household.
Henceforth, panel p will refer to year pair tp � 1, tp

� �
.

We limited our dataset to individuals who were in-
scopeiii throughout the survey period, and for whom the
relevant covariate values (described below) were present.
This excluded less than 10% of all individuals.

As the unit of analysis, we used Health Insurance
Eligibility Units (HIEUs), ‘‘sub-family relationship units
constructed to include adults plus those family members
who would typically be eligible for coverage under the

iIn 2013, the household limit was $6,450, and for 2017 it is $6,750.

Individuals aged 55 and older and not enrolled in Medicare are allowed

to make additional annual contributions of up to $1,000.
iiMachine learning methods have also been applied to predict expected

health care costs.7-10 However, for our problem it is necessary to model

the cost distribution instead, given that the optimal dynamic policy is a

critical fractile solution.
iii‘‘In-scope’’ is defined as being a member of the US civilian noninstitu-

tionalized population. We further include individuals who were born or

died at some point during the survey period.
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adults’ private health insurance family plans.’’ For panel
p, let fX i

tp�1
,X i

tp
g be the cost percentile transition for the

ith HIEU. Collecting these percentile pairs across panels
produced the dataset used to calibrate our cost evolution
models.

We divided the dataset into three samples: Training
(Panels 7 to 14, corresponding to year pairs {2002, 2003}
through {2009, 2010}), validation (Panels 15 and 16, cor-
responding to year pairs {2010, 2011} and {2011, 2012}),
and test (Panels 17 and 18, corresponding to year pairs
{2012, 2013} and {2013, 2014}). The training set was used
to estimate all model parameters described below, and
exploratory analyses were performed on the validation
set to arrive at the chosen model. The chosen model was
then refit to the combined training and validation data-
sets, and then used to predict the second year costs in the
test set. All data preparation and model estimation was
performed using SAS.

We develop two versions of the cost evolution model
described further below: basic and expanded. The basic
version uses a small set of covariates and is well suited
for long-term planning as it does not require modeling
the evolution of a large set of demographic and clinical
variables. The expanded version includes a broader set
of covariates and is well suited for generating more accu-
rate short-term predictions that could have other appli-
cations as well. The covariates are the following:

� Basic model: Household size, percentage of individu-
als within the HIEU of each insurance type (private,
public, private + public, uninsured*). The values
marked with an asterisk (*) denote the baseline val-
ues within each group.

� Expanded model: This model additionally includes
the following: % of individuals within the household
of each sex (male, female*), age group (0-19, 20-39*,
40-59, 60+), race (White*, Black, American Indian/
Alaskan Native, Asian/Native Hawaiian/Pacific
Islander, Multiple races), perceived health status
(excellent*, very good, good, fair, poor), perceived
mental health status (excellent*, very good, good,
fair, poor), region (West*, East, South, North), % of
individuals not receiving help or supervision with
instrumental activities of daily living (IADLs), % of
individuals not receiving help or supervision with
activities of daily living (ADLs), % of individuals
without any functional limitations.

Overall, our 2002–2014 dataset includes 176,205 indi-
viduals belonging to 90,359 HIEUs. The final training,

validation, and test sets contained 57,701, 15,818, and
16,840 HIEU pairs, respectively.

Problem Formulation

In year t, a HSA-eligible plan can be characterized by
three parameters: A deductible Dt, a coinsurance rate c
(percentage of expenses exceeding Dt covered by the
household), and a maximum limit Mt on household OOP
expenses for that year.

The household begins each year t in health state Xt�1

with initial account balance Wt�1 (with initial values X0

and W0 at the beginning of year 1). The account balance
increases by the investment return rate w and the house-
hold’s pretax contribution Ct is added to the account.
The household then transitions to a new health state Xt,
incurs actual total expenses Yt, and is responsible for
OOP expenses Vt, which are deducted from the savings
account. Therefore,

Vt =minfmin(Yt,Dt)+ c �max(Yt � Dt, 0),Mtg, ð1Þ

Wt =maxf(1+w)Wt�1 +Ct � Vt, 0g: ð2Þ

If the current account balance is insufficient to cover
these expenses (i.e., Vt.(1+w)Wt�1 +Ct), the house-
hold must pay the difference directly. The difference is
paid with after-tax dollars, so if the marginal tax rate for
the household is r, the pretax value of this payment is
h(Vt � (1+w)Wt�1 � Ct), where h= 1=(1� r). In each
year, the deductible and OOP maximum values are
increased by the health care cost inflation rate I :
Dt = I 3 Dt�1 and Mt = I 3 Mt�1. This process repeats in
year t + 1 through year T , the number of years in the
contribution period. These dynamics are illustrated in
Figure 1.

A household has the freedom to select a contribution
amount Ct for years t= 1, . . . , T , and the most economic
choice is the one that minimizes the total expected dis-
counted cost (in pretax dollars):

min
C1, ...,CT

XT

t = 1

dt ½Ct + h maxf0,Vt � (1+w)Wt�1 � Ctg�,

ð3Þ

where d= 1
1+ r

is the household’s discount factor and r

is the household’s discount rate.
The health state Xt is the percentile for the house-

hold’s total medical costs Yt in year t, and is a measure
of how costly the household is when compared to all
other households in the nation. Xt is a continuous
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random variable Xt 2 ½0, 1)ð Þ, where Xt = 0 and Xt = 1�
represent the least costly (healthiest) and most costly
(sickest) households, respectively. The costs represent
total payments to medical providers by the health plan
and the household. The evolution of Xt and Yt from year
to year are driven by the cost evolution model that is
described later.

To select the investment return rate w for the HSA, we
observe that the 30-year annualized rates of return on the
10-year US treasury note and the S&P 500 index are
about 6% and 10%, respectively.13 A HSA adopter is
likely to invest in a moderately conservative long-term
asset allocation, so we choose a rate of 8% corresponding
to a 50/50 split between equities and treasuries. We also
choose a discount rateiv of r= 8% 3 (1� 0:25)= 6%:
This represents the return on money outside of the tax-
advantaged HSA, assuming a marginal tax rate of 25%.
Finally, the health care cost inflation rate is estimated to
be 3.4%, based on a statistical analysis presented later.

Candidate Contribution Policies

We investigate two types of contribution policies in this
article. The first is a dynamic policy that optimizes (3)
over a long time horizon (T =‘). It has a closed form
solution that can be used to approximate the optimal
policy for the finite horizon setting. The second policy is
a simpler static one that strives to cover the OOP maxi-
mum in each year, subject to an annual contribution
limit.

Dynamic Policy. The contribution in each period depends
on the current account balance Wt�1 and health cost per-
centile Xt�1. The idea is to maintain the HSA balance
at a level that is no less than some household-specific
threshold vt, hence the contribution Ct that is required
in year t is

Ct =maxf0, vt � (1+w)Wt�1g: ð4Þ

Intuitively, vt should be set high enough so that it will
cover the household’s OOP expenditures in year t with a
specific desired probability. The desired probability level
strikes a balance between the benefit of having sufficient
funds to cover OOP costs against the cost of excessive
contributions. This level is mathematically determined
from the calculations in the supplementary material:

vt =min v : P(Vt� vjXt�1) �
h� 1

h� d(1+w)

� �
: ð5Þ

Static Policy. The household contributes the amount
that brings its HSA balance up to the OOP maximum Mt

in a given year, capped by some annual maximum con-
tribution value Cmax

t :

Ct =minfCmax
t , max(Mt � (1+w)Wt�1, 0)g: ð6Þ

The rationale is that in the absence of a personalized pre-
dictive cost model, a reasonable strategy would be to
strive to cover all OOP expenses from within the HSA.
This is intuitively more conservative than the dynamic
policy. The annual maximum contribution value Cmax

t

may represent the government’s maximum allowable
annual contribution or other budgetary constraints.

Cost Evolution Model

Our model for producing year to year forecasts of house-
hold health care costs uses as predictors: 1) the house-
hold’s health care costs in the prior year and 2)
demographic information and a set of self-reported
health variablesv described in Data Description. The use
of prior year costs is based on evidence that their use
alone can perform almost as well as models that employ
a broader set of clinical/demographic variables.7,9,18,19

Furthermore, using more than one year of prior infor-
mation has been shown to add little predictive power.20

Rather than directly predict cost or some transforma-
tion of it, a novel aspect of our approach is to model the
transitions of a household’s health care cost percentile
from one year to the next.vi The rationale for modeling
percentiles rather than actual costs is apparent from
Figure 2: The presence of a linear association among cost
percentiles in two consecutive years is apparent in the
right panel. Indeed, the correlation among consecutive
year percentile values is 0.70, much higher than the cor-
responding correlation among actual costs in consecutive
years (0.39).

Specifically, we propose a four-stage model for evol-
ving costs: 1) a binary outcome model for the event that
a household incurs zero cost in the current year (a non-
negligible percentage of households have zero cost in a
given year); 2) conditional on having positive costs, a

ivWe also performed an analysis of the sensitivity of results to discount

rate (see Results).

vSelf-reported health variables, including perceived health status, have

been shown to be a valuable predictor of health care costs.14-17

viThis is a continuous version of a similar approach for modeling tran-

sitions among discrete cost states: Low, Medium, High, and Very

High.21
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continuous parametric model for the household’s cost
percentile; 3) a mapping from cost percentile to actual
cost; and 4) inflation adjustment of actual costs from
year to year.

Some of the models can incorporate either the basic
or the expanded covariates vt�1 2 R

p described in Data
Description. We report out-of-sample performances for
both versions, and use the basic one to study the two key
questions.

Zero Cost Model. In any given year, a fraction of house-
holds incur zero cost. We employ logistic regression to
estimate the probability p0

t =PrfYt = 0jXt�1, vt�1g that a
household with prior year cost percentile Xt�1 and cov-
ariates vt�1 will have zero cost in the current year. The
independent variables used in the model are vt�1, Xt�1,
and X 2

t�1. The last variable is included because explora-
tory analyses suggest a quadratic relationship between p0

t

and Xt�1.

Percentile Transitions. Conditional on incurring positive
costs in year t, the household’s cost percentile is

Xt = p0
t +(1� p0

t )X
0
t ,

where X 0t is the percentile of the cost distribution condi-
tional on having positive costs. To model a household’s
transition from cost percentile Xt�1 in year t � 1 to Xt in
year t, we use mixtures of truncated Gamma distribu-
tions. Since the Gamma distribution is nonnegative while
percentile values fall in the range of ½0, 1), it is necessary
to truncate the distribution to ½0, 1). The truncated prob-
ability density function is

g½0, 1)(x; k, u)=
g(x; k, u)

G(1; k, u)
, ð7Þ

where g(x; k, u) and G(x; k, u) are the density and cumula-
tive distribution functions for the Gamma distribution
with shape and scale parameters (k, u).

Figure 1 A schematic description of the sequence of events within a period t.
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Figure 2 Scatter plots of year to year cost transitions. X-axis represents costs in year t and the y-axis represents year t+ 1 for
t 2 f2002, . . . , 2010g. The size of each point is proportional to the number of households in each group. Left: Actual costs

(truncated at $100,000); correlation between a households costs in two consecutive years is 0.39; Right: Cost percentiles;
correlation 0.70. Roughly 9% of households have zero costs, as reflected in the plot.
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The rationale for the Gamma distribution can be seen
from Figure 3. Each subplot shows the empirical probabil-
ity density of X 0t conditional on a particular value of Xt�1,
that is, Pr(X 0t jXt�1). For example, the upper-left plot is con-
ditional on Xt�1 2 ½0:1, 0:15), and the one to its right is
conditional on Xt�1 2 ½0:15, 0:2), and so forth. The smooth
fits overlayed onto each plot represent our fitted mixture
model, which closely resembles the empirical density.
Incidentally, previous studies have found that Gamma
mixtures are good for modeling health care costs.22,23

The mixture we use has to accommodate both the pos-
itive and negative skews on display in Figure 3. Since the
skew of a Gamma distribution is positive, its reflection
has negative skew. We therefore use a mixture of a trun-
cated Gamma and a reflected truncated Gamma distri-
bution to model cost percentile transitions:

Pr(X 0t jXt�1, vt�1)= (1� at) � g½0, 1)(X 0t ; kt, ut)

+at � g½0, 1)(1� X 0t ; k 0t , u
0
t): ð8Þ

Setting at = 0 recovers a pure truncated Gamma distri-
bution, while setting at = 1 yields a reflected one. Values
in between these two extremes provide varying degrees of
skew. Given that the skew of the plots in Figure 3 shifts
from positive to negative as Xt�1 increases, we model at

as a linear function of Xt�1. The shape and scale para-
meters (kt, ut) and (k 0t , u

0
t) are modeled as linear functions

of the same independent variables used in the zero cost
model.

Distribution of Nonzero Expenditures. To map the condi-
tional percentile X 0t in year t to a corresponding dollar
value, we need a model for the distribution of positive
costs. Figure 4 displays the empirical probability densities
for log household health care costs conditional on posi-
tive spending. A fitted skew-normal distribution is over-
layed onto each subplot, providing a remarkably good
visual fit. We therefore model the positive costs with a
log-skew-normal distribution (that is, its logarithm has a
skew-normal distribution).

Let us denote the cumulative distribution function of
the log-skew-normal distribution for positive costs in
year t as S(y; ft), where ft is a collection of three para-
meters that define the skew-normal distribution. The
inverse function of S therefore maps X 0t to the corre-
sponding actual cost

Yt = S�1(X 0t ; ft): ð9Þ

Cost Parameter Evolution and Inflation Estimation. For
planning over long horizons, we need to account for the
evolution of costs from year to year, including inflation.
We therefore require a model for the evolution of the
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Figure 3 Plots of the empirical probability density for X 0t jXt�1. The upper-left plot is Pr(X 0t jXt�1 2 ½0:1, 0:15)), and the one to its
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parameters ft in S(y; ft) over time. Exploratory analyses
suggest that the maximum likelihood estimate for the
components in ft increase linearly from year to year. We
therefore model each component of ft linearly in time.

To estimate the health care cost inflation rate I , in
each year of the data, the households were sorted into
100 equally sized bins by expenditure. For the jth bin
and the tth year, we computed the mean expenditure E

j
t

for the bin. We then fitted the linear model E
j
t = I � Ej

t�1

to the data. The estimated value for I is 3.4%.

Evaluation of Model Performance

We test the performance of our cost evolution model
against ones employed in industry. The comparative
studies by the Society of Actuaries24,25,26 report perfor-
mances for these models in terms of out-of-sample (pro-
spective) R2 and mean absolute prediction error
(MAPE).vii We therefore evaluate the accuracy of our
model’s cost prediction for household i in year t,

Ŷ i
t =E½Yt; Xt�1, vt�1�
=(1� p0

t )
R 1

0
Pr(x0jXt�1, vt�1) � S�1(x0; ft)dx0,

ð10Þ

using the same metrics for comparison. We also calculate
the predictive ratio, the ratio of the sum of predictions
divided by the sum of actual expenditures. For R2, higher
values are better, while for MAPE, lower values are better,
and for predictive ratio, values closest to 1 are best. In
order to limit the impact of outliers, we adopt the
approach used in the comparative studies to truncate the
forecast year expenditure values at $100,000 and $250,000.

Recall that R2 measures how much variance a model
(linear regression or otherwise) explains relative to the
straw rule of using the average response as the one-size-
fits-all prediction. For our model, we report R2, MAPE
and predictive ratio on the out-of-sample data in the
2013–2014 test panels. Since the predictions are made for
household observations that were not used to develop the
model, they are not sensitive to overfitting by complex
models the way that their in-sample counterparts are.

Evaluation of Contribution Policies

To compare the performances of the static and dynamic
policies, we simulate the total expected discounted cost
under each of these policies over a 30 year contribution
period.

The results are calculated for an HSA-eligible family
plan with a $3,500 deductible, $12,500 OOP maximum,
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Figure 4 Plots of the empirical probability density for the logarithm of the nonzero household expenditures. The upper left plot
is for the nonzero costs in the second year of panel 7, and the bottom right is for panel 14. The x-axis is log(Yt) and the y-axis is
the probability density. Details of the panel data are given in Data Description under Methods. Fitted skew-normal distributions
are overlayed.

viiMAPE is expressed as a fraction of the mean out-of-sample costs.
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and 20% coinsurance rate.viii We focus on family plans
because individual and family plans have different fed-
eral requirements on their HDHP parameters (minimum
deductible, maximum OOP max). As such, we assume a
family of size of 2.8 (the average size of family units of 2
or more individuals).ix We further restrict attention to
private (employer-sponsored) insurance holders, as this
is the population most likely to use HDHPs, and there-
fore we assume all participants are covered by private
health insurance.

Since the health care inflation rate I and investment
return rate w are really time-varying random variables,
we try to account for this qualitatively by using a basic
random walk to capture their evolution over time: In
each simulation of the 30-year contribution period, we
randomly sample initial values for each of these para-
meters from within a range of 650% of the default
(I = 3:4%, w= 8%). Then in each year, each parameter
is either increased by 5%, decreased by 5%, or left
unchanged, with equal chance for each outcome.

The policies that we considered are the following: 1)
dynamic policy; 2) static policy with annual contribu-
tion limit of $2,000 (static $2,000); 3) static $4,000; and
4) static $6,450.x We use the static $2,000 policy as the
comparison benchmark because it is close to the med-
ian annual contribution for HSAs with nonzero
account balances,27 and as such serves as a proxy for
common HSA contribution behavior. Household costs
are simulated using the basic model because modeling
the evolution of household covariates in the expanded
model is beyond the scope of this article. All computa-
tions were performed in R 3.3.2.

We also perform sensitivity analyses on the results as
different parameters are varied. First, we focus on the
parameters of the HDHP that vary the most in the mar-
ketplace. Specifically we examine the nine pair-wise com-
binations of deductible values ($2,500, $3,500, $4,500)
with OOP maximum values ($7,500, $10,000, $12,500).xi

Second, we separately assess sensitivity to the discount
rate by examining three discount rate values (4%, 6%,
8%).

Assessment of Tax Impact and Federal
Contribution Limit

To determine if adopting the dynamic policy would lead
to total contribution amounts exceeding what the federal
contribution limit allows for over 30 years, we examine
the distribution of inflation-adjusted contributions over
this timeframe. To take a conservative approach in this
analysis, we focus on households on the high end of the
contribution spectrum. Specifically, we assume an initial
cost percentile of X0 = 0:9 and the highest marginal tax
rate of 40%. We also take the highest deductible ($4,500)
and OOP maximum ($12,500) values from our sensitivity
analysis. These parameter choices yield the highest con-
sumer cost burden, which requires the highest levels of
HSA contributions. If the inflation-adjusted sum is less
than what is allowed, then the dynamic policy’s long-
term tax impact will be within what is currently budgeted
by legislation.

We also analyze the proportion of annual contribu-
tions that exceed the federal annual limit. A high propor-
tion would indicate that the current federal limit needs to
be raised to enable households to take full advantage of
the dynamic policy. We perform this analysis using our
default parameters of deductible ($3,500) and OOP maxi-
mum ($12,500). For this analysis, using $3,500 rather
than $4,500 represents a more conservative approach,
since it leads to a lower proportion of limit-exceeding
contributions.

Results

Performance of Cost Evolution Model

Table 1 compares our basic and expanded models to the
commercial models detailed in the comparative stud-
ies.24–26 On the basis of R2, we see that our parsimonious
models are superior to those in the first study.24

Compared to the more sophisticated models evaluated in
the other two studies, our models’ performances are in
the middle of the range when truncation is applied at
$250,000, and are at the high end when truncation
applied at $100,000. Of course, for our HSA application,
it suffices to truncate at the much lower level of the OOP
maximum. On the basis of MAPE, our models’ perfor-
mances are at the better end of the range in the compari-
son studies.

Performance of Contribution Policies

Figure 5 presents boxplots representing the costs of the
static $4,000, static $6,450, and the dynamic policies as a

viiiThe relative performance of the policies was insensitive to the deduc-

tible amount or OOP maximum, per the results of our sensitivity analy-

sis reported in Results.
ixFamily size is modeled as a continuous covariate in our cost evolution

models.
xThe 2013 federal annual contribution limit was $6,450.
xiWe selected $2,500 as the lowest deductible and $12,500 as the highest

OOP maximum. These correspond to the lowest and highest federal

allowable limits, respectively, for all HSA-eligible plans in 2013.
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percentage of the cost of the static $2,000 policy. Each
boxplot summarizes the distribution of outcomes across
10,000 simulations of the 30-year contribution period.
The columns represent initial cost percentile (X0) values
of 0.25, 0.50 and 0.75, while the rows represent marginal
tax rates of 15%, 25%, and 40%. Figures 6 and 7 pres-
ent the results of the sensitivity analysis on plan para-
meters and discount rate. Figure 8 shows how the mean
total discounted costs for the static $2,000 and dynamic
policies vary with X0 and with tax rate. The main quali-
tative results are the following:

1. Both the dynamic and static $6,450 policies consis-
tently outperform the static $2,000 one. For example,
at a marginal tax rate of 40% and X0 = 0:75, the
dynamic policy costs 19% less than the static $2,000
one (based on median performance), with the static
$6,450 policy not far behind (Figure 5).

2. The dynamic policy has just a moderate edge over the
static $6,450 one, around 2 to 3 percentage points
lower based on median performance (Figure 5).

3. The cost advantage of the dynamic and static $6,450
policies over the static $2,000 ones rises with marginal
tax rate. For example, at X0 = 0:5, for marginal tax
rates of 15%, 25%, and 40%, the dynamic policy is
about 7%, 10%, and 17% less costly than the static
$2,000 policy, respectively, based on median perfor-
mance (Figure 5).

4. The advantage the dynamic policy has over the static
$2,000 one is not sensitive to the parameters that
define the HDHP. Across the nine combinations of
deductible and OOP maximum tested, the cost

advantage was 8% to 11% based on median perfor-
mance, about the same as those for the default plan
parameter values (Figure 6).

5. The advantage the dynamic policy has over the static
$2,000 policy decreases moderately as the discount
rate rises. When the discount rate doubles from 4%
to 8%, the cost advantage of the dynamic policy fell
from 13% to 9% (Figure 7).

6. The initial cost percentile X0 significantly impacts the
total costs of all policies. For example, at a marginal
tax rate of 25%, the mean costs under the dynamic
policy for X0 = 0:75 is 17% greater than for
X0 = 0:25, while the equivalent cost differential for
the static $2,000 policy is 20% (Figure 8).

7. The impact of the marginal tax rate on total costs is
highest for the static $2,000 policy, falls as contribu-
tion limit rises, and is negligible for the dynamic pol-
icy. For the static $2,000 policy, with X0 = 0:5, a
40% marginal tax rate results in 15% greater costs
than at the 15% tax rate, while for the dynamic pol-
icy, this difference is 1%. This is because the
dynamic save-up-to threshold is allowed to be as
high as the OOP maximum, thereby keeping tax
penalties to a minimum (Figure 8).

Tax Impact and Implications of Federal
Contribution Limit

We compute the distribution of inflation-adjusted contri-
butions over 30 years. The 25th, 50th, and 75th percen-
tiles are $50,100, $71,400, and $96,300, respectively, in

Table 1 Out-of-Sample Model Performance Comparison

Model Cap at $250,000 Cap at $100,000

R2 Expanded model 23.9% 30.3%
Basic model 22.0% 27.6%
Methods in (24) N/Aa 14.0% to 19.8%
Methods in (25) 20.5% to 29.1% 21.5% to 33.1%
Methods in (26) 11.9% to 27.7%b N/Aa

MAPE Expanded model 79.0% 78.1%
Basic model 80.0% 79.1%
Methods in (24) N/Aa N/Ac

Methods in (25) 78.3% to 86.6% 76.1% to 85.2%
Methods in (26) 89.1% to 107.5% N/Aa

Predictive ratio Expanded model 97.8% 101.8%
Basic model 96.1% 100.1%

MAPE, mean absolute prediction error
aNot reported in this study.
bResults based on out-of-the-box models without further recalibration.
cMAPE values in this study were not normalized to a relative scale and were therefore not comparable.
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2013 dollars. These are all significantly lower than the
2013 federal limit of 30 3 $6,450= $193,500:

We compute the proportion of annual contributions that
exceed the federal annual limit, for combinations of initial
cost percentiles (0.25, 0.50, 0.75) with tax rates (15%, 25%,
40%). We find that 9% to 11% of households in a given
year have recommended contributions that exceed the fed-
eral limit. For these households, the mean amount ranges
from $10,100 to $10,300 in 2013 dollars.

Discussion

Taking advantage of the strong correlation between a
household’s cost percentiles in consecutive years, the 1-
year predictive accuracy of our cost evolution model is

on par with leading industrial models. A key difference
is that our model uses variables whose evolution is easy
to track, making it possible to project a household’s cost
over a long horizon. By contrast, the objective of the
industrial models is to generate short-term forecasts
using clinical variables that evolve stochastically over
time. We use the results produced by our model to
answer the two questions posed in the introduction:

How Should a Household Budget for Its HSA
Contributions?

Our recommended dynamic policy and the static $6,450
one both incur substantially lower costs than our proxy

Figure 5 Boxplots of the expected discounted costs for the static policies with contribution limits of $4,000 and $6,450, and the
dynamic policy. Costs are expressed as % of the cost of the static $2,000 policy. Columns: The left, middle, and right columns
display results for the 25th, 50th, and 75th initial cost percentiles X0, respectively. Rows: The top, middle, and bottom rows
represent marginal tax rates of 15%, 25%, and 40%, respectively.
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for common contribution behavior (the static policy
with a $2,000 contribution limit). The cost advantage is
explained as follows. In the first few years following
HSA adoption, there is a risk that the account will
have insufficient funds to cover OOP expenses. By
recommending that the household make a substantial
contribution in year 1, the dynamic policy optimizes
against this risk. Similarly, the static $6,450 limit policy
makes large contributions in the first several years to
quickly bring the balance up to the OOP max, thereby
reducing this risk substantially. By contrast, the static
$2,000 policy grows the balance more slowly, and is at
greater risk of account insufficiency early on. The same

phenomenon applies in years immediately following
large expenditures, when the account is depleted. The
dynamic and static $6,450 policies can quickly replen-
ish the account, while the $2,000 policy requires more
years to do so.

Our results suggest that while the dynamic policy is
the most cost efficient among the ones examined, the
static $6,450 policy is a worthy alternative. In the
absence of personalized analytic guidance, the latter
policy is a sensible strategy: Households outside the
top tax brackets can capture most of the cost savings
of the dynamic policy while still operating within the
federal contribution limit. Our findings also indicate

Figure 6 Sensitivity analysis to changes in health plan parameters. Other parameters held at: Initial cost percentile X0 = 0:5, 25%
tax rate. Columns: The left, middle, and right columns displays results for deductible values of $2,500, $3,500, and $4,500,
respectively. Rows: The top, middle, and bottom rows represent OOP maximum values of $7,500, $10,000, and $12,500,
respectively.
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that insufficient annual contributions can result in sub-
stantially higher total costs.

The advantage the dynamic policy has over the
static policies holds true across a range of parameter
values, and is greatest for households with lower dis-
count rates—those who place greater weight on future
outcomes.

Should Policy Makers Revisit the Current
Federal Contribution Limits for HSAs?

The last portion of our results suggest that 9% to 11%
of households in a given year will need to make a HSA
contribution that materially exceeds the current federal
contribution limit. To allow these households to make
full efficient use of HSAs, we propose an alternative to
the current approach of capping annual contributions:
Permit households to contribute to their HSA without
limit up to a certain account balance (the limit-free bal-
ance), and then impose an annual limit on contributions
thereafter. The limit-free balance could be set equal to
each plan’s OOP maximum. This two-tiered approach
allows households to quickly save up to the threshold
recommended by the dynamic policy. Importantly, our
results suggest that the resulting impact on overall tax
receipts will be well below what is currently allowed by
legislation.

To our knowledge, this is the first article to develop
rigorous guidelines for HSA contributions, and we view
it as a promising first step. To improve the accuracy of
the model, future research should examine some of the
possible extensions described below.

� Health care costs during retirement. We might also
factor into our objective health care costs during
retirement, during which no contributions are made.
For this objective, a preferred policy is likely to be a
hybrid of the dynamic policy (to cover current costs)

Figure 7 Sensitivity analysis to changes in discount rate. Other parameters held at: Initial cost percentile X0 = 0:5, 25% tax rate,
$3,500 deductible, $12,500 OOP maximum.

Figure 8 Mean discounted total costs of the static $2,000
policy and the dynamic policy, as tax rate and initial cost
percentile X0 vary.
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and a fixed contribution component (to cover esti-
mated retirement costs), with the goal of attaining an
account balance at the end of the contribution period
that is sufficient to cover costs during retirement. We
can leverage the modeling framework developed here
to analyze this type of policy.

� HSA withdrawals for nonmedical expenses. A reviewer
correctly pointed out that a household can withdraw
money from its HSA for nonmedical expenses. Such
a withdrawal would trigger a penalty on top of the
tax due on the withdrawal amount, so our current
model prohibits negative contribution amounts. This
can be relaxed by developing an additional model for
predicting whether a withdrawal may be needed, as a
function of the household’s wealth and spending
needs. Fitting such a model requires gathering addi-
tional household financial data, which we leave for
future research. If the current dynamic policy is oper-
ationalized to provide contribution recommenda-
tions, we advise that users contribute the minimum
of what is recommended and the amount they antici-
pate would not be needed for other purposes.

� Impact of HSAs and high-deductible plans on expendi-
ture distribution. In this article, we did not attempt to
model this because the Medical Expenditure Panel
Survey dataset only has limited information about
the insurance plan parameters of individuals, and
only up to 2001 (before the implementation of
HSAs). In the future our model could be recalibrated
to data from households with multi-year enrollment
in HDHPs. The results of the RAND Health
Insurance Experiment suggest that increased cost
sharing reduces the likelihood of visiting a physician,
but has a smaller effect on the costliness per episode
of care.28 We hypothesize the effect might appear as
an increase in the probability of zero costs, and/or as
a shifting of the overall yearly cost distribution curve
to the left.

� Switching to a low-deductible health plan. Some house-
holds have access to both HDHPs and low-deductible
plans, and may choose to switch between them. Under
this scenario, the optimal policy may be of the formxii:
If the household’s current cost percentile is below a
certain level, use a HDHP and contribute the amount
(4) to a HSA; otherwise, select the low-deductible plan.
Further exploration of the choice between high- and
low-deductible plans is left for future research, possibly
along the direction discussed above.

� Time-dependent covariates in cost prediction. Our cost
evolution model uses time-fixed covariates to pro-
duce long-term forecasts, whereas leading industrial
models use the most recently available values of
time-dependent variables to forecast a little ahead
in time. To incorporate these variables into our
model for long-term planning, we need to have a
way to simulate the evolution of these variables
over time. This itself is a complex problem that is
worthy of a separate research question. We note
however that the short-term predictive performance
of our model is already on par with the industrial
ones. Hence, feeding a household’s most recent cov-
ariate values into our model should provide contri-
bution recommendations that approximate the
more sophisticated model.

We anticipate that our policy (or a version of it built
atop more elaborate versions of the same models) could
in the future be turned into a web application that consu-
mers can use to determine contributions on an annual
basis. While the details of such an implementation are
outside the scope of this article, we imagine the applica-
tion would operate as follows: The user would be
requested to submit parameter values such as household
size, prior year health care spending, marginal tax rate,
and current health savings account balance. The applica-
tion would then display the recommended contribution
amount.

To conclude, we have developed a new analytical
framework for modeling a HSA balance over time. We
used this model to formulate a contribution policy that
enables a household to optimize their expected dis-
counted costs. With the growth trend in consumer-driven
health plans, we expect that evidence-based modeling
will play an increasing role in consumer health care
financial planning.
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