
Host–parasite interactions during a biological invasion: The fate of
lungworms (Rhabdias spp.) inside native and novel anuran hosts
Felicity B.L. Nelson a,*, Gregory P. Brown a, Catherine Shilton b, Richard Shine a

a School of Biological Sciences A08, University of Sydney, NSW 2006, Australia
b Berrimah Veterinary Laboratories, Department of Primary Industry and Fisheries, Makagon Rd, NT 0828, Australia

A R T I C L E I N F O

Article history:
Received 31 October 2014
Revised 6 March 2015
Accepted 10 April 2015

Keywords:
Bufo marinus
Co-evolution
Immunology
Invasion
Nematode
Rhabdiasid

A B S T R A C T

The cane toad invasion in Australia provides a robust opportunity to clarify the infection process in co-
evolved versus de novo host–parasite interactions. We investigated these infection dynamics through
histological examination following experimental infections of metamorphs of native frogs (Cyclorana aus-
tralis) and cane toads (Rhinella marina) with Rhabdias hylae (the lungworm found in native frogs) and
Rhabdias pseudosphaerocephala (the lungworm found in cane toads). Cane toads reared under continu-
ous exposure to infective larvae of the frog lungworm were examined after periods of 2, 6, 10 and 15
days. Additionally, both toads and frogs were exposed for 24 h to larvae of either the toad or the frog
lungworm, and examined 2, 5, 10 and 20 days post-treatment. R. hylae (frog) lungworms entered cane
toads and migrated through the body but were not found in the target tissue, the lungs. Larvae of both
lungworm species induced inflammation in both types of hosts, although the immune response (rela-
tive numbers of different cell types) differed between hosts and between parasite species. Co-evolution
has modified the immune response elicited by infection and (perhaps for that reason) has enhanced the
parasite’s ability to survive and to reach the host’s lungs.

© 2015 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

1. Introduction

Parasites differ in virulence, with effects strongly dependent on
host phenotype and species (Poulin, 2007). Many parasites are highly
host-specific, unable to infect even closely related species (Roberts
and Janovy, 2009). Evolutionary theory attributes that host-
specificity to co-evolutionary ‘arms races’ through time – whereby
parasites constantly evolve to keep pace with the evolution of host
defences, and hosts evolve to keep pace with the evolution of new
strategies by the parasite (Anderson and May, 1982; May and
Anderson, 1983; Ebert and Hamilton, 1996). Often, a stable equi-
librium may arise whereby the relatively minor effects of a parasite
on its host mean it is not worth the host allocating more energy
to detect or fight the parasite; and the parasite benefits by their host
remaining viable, and living long enough to facilitate parasite re-
production (Ebert and Hamilton, 1996; Combes, 1997).

Although this co-evolutionary hypothesis is intuitively reason-
able, it is difficult to test empirically if all we can study is the finished
product – a host and parasite that are mutually co-adapted. To look

directly at the traits that change after a host and parasite first begin
to interact with each other, we need to see those initial stages of
the interaction before effects are blunted by co-evolution. Biolog-
ical invasions give us that opportunity. If an invader brings a new
parasite with it, then native taxa may encounter that parasite taxon
for the first time (Prenter et al., 2004). Similarly, the invader may
encounter novel parasites from native taxa within the invaded range
(Kelly et al., 2009). In such a system, we may be able to observe the
initial stages of two sets of host–parasite interactions, in both the
invasive host and the native host (Trejo, 1992).

Our understanding of host–parasite interactions is often based
on a “black box” approach, whereby data are based on what goes
into a host and what comes out of it, but not on what happens inside
the host’s body. Although valuable, such data provide only a limited
view of host–parasite interactions. Histology provides a more direct
way to look at the environments encountered by larval parasites,
and their migration through the host’s body. That perspective enables
us to answer questions such as whether the failure to set up mature
infections in a novel host is due to the parasite’s inability to migrate
to appropriate places, and/or the ability of the host’s immune system
to destroy the parasite.

The invasion of cane toads (Rhinella marina) through Australia
has created an opportunity to investigate co-evolutionary pro-
cesses in this way. Cane toads were introduced in Queensland in
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1935 from Hawaii to control an agricultural pest, the cane beetle,
Saccharum officinarum (Turvey, 2013). The toads carried with them
a native lungworm, Rhabdias pseudosphaerocephala (Nematoda), and
encountered a congeneric parasite, Rhabdias hylae, which is wide-
spread in native frogs (Dubey and Shine, 2008). Previous research
has investigated the possibility of crossover of the cane toad lung-
worm to native frogs (Pizzatto et al., 2010; Pizzatto and Shine, 2011a,
2011b) but has ignored the opposite scenario, the potential cross-
over of the native frog lungworm to cane toads.

Although cane toads can be penetrated by larvae of the frog lung-
worm species (Nelson et al., 2015), field surveys have not found any
crossover in lungworm fauna between native frogs and cane toads
(Pizzatto et al., 2012). R. pseudosphaerocephala can reduce surviv-
al, food intake, speed and endurance in metamorphs of its natural
host, the cane toad (Kelehear et al., 2009). Laboratory experi-
ments indicate that Australian frogs are penetrated by the cane toad
lungworm, but that these lungworms generally do not survive
(Pizzatto et al., 2010; Pizzatto and Shine, 2011a, 2011b). In most
Australian frog species studied to date, morbidity and mortality of
the host are unaffected by exposure to either the toad lungworm
(Pizzatto et al., 2010; Pizzatto and Shine, 2011a, 2011b) or the native
frog lungworm (Nelson et al., 2015). In laboratory trials, the toad
lungworm was less competent at locating the target tissue (the lungs)
in non-co-evolved hosts (native frogs) than in the co-evolved host
(the cane toad), and was more effectively destroyed by the non-
co-evolved host’s immune system (Pizzatto et al., 2010).

To assess whether the interaction between cane toads versus frog
lungworms was similar to that documented by Pizzatto et al. (2010)
for frogs versus toad lungworms, we examined the infection dy-
namics of the frog lungworm both in a co-evolved host (the native
frog) and in a novel host (the cane toad). We also conducted further
studies on the toad lungworm for comparison. By exploring host–
parasite biology at the time of first encounter as well as in long-
term co-evolved systems, we can wind back the clock and observe
how hosts and parasites interact with each other before selection
pressures on both participants have modified those relationships.

2. Materials and methods

2.1. Host–parasite system

Nematode lungworms of the genus Rhabdias have a direct life cycle;
infective larvae (L3) in the soil penetrate the host’s skin and migrate
through the body to the lungs where they develop into protandrous
hermaphroditic adults. These adult worms attach to the internal lining
of the lung and feed on blood from the capillary network. Eggs laid into
the lung lumen are carried up through the trachea into the mouth, then
swallowed into the digestive system where they hatch. The larval nema-
todes develop as they pass down the gastrointestinal tract and soon
after being released into the environment in faeces, they become free-
living adult males and females. These free-living adults mate within
4–7 days and give rise to infective larvae that subsequently break out
through their mother’s cuticle and move about actively to infect a new
host (Baker, 1979).

2.2. General methods

In November 2013, we captured adult anurans (5 Cyclorana aus-
tralis, 8 Limnodynastes convexiusculus, 20 Litoria nasuta and 4 Rhinella
marina) within 10 km of the Tropical Ecology Research Facility (TERF)
on the Adelaide River floodplain in the wet-dry tropics of Austra-
lia (12°34’42.1”S, 131°18’50.5”E). These animals were injected with
the gonadotropin-releasing hormone (GnRH) agonist leuprorelin
acetate diluted at 1:20 with amphibian Ringer’s solution to induce
spawning. After the resultant eggs hatched, we transferred 100 tad-
poles of each species to large plastic containers (107 cm in diameter,

42 cm tall) and added algae as food. Emerging metamorphs were
then maintained individually in tilted plastic containers
(7.5 × 17 × 12 cm) half-filled with untreated bore water.

To obtain R. hylae larvae, we collected 148 adult frogs of 11 species
near TERF in October 2013 and housed them as above. The frogs’
faeces were examined in water under a dissecting microscope to
look for lungworm larvae (Rhabdias spp.). Only one frog species (Lit.
nasuta) was found to be infected; and of 96 Lit. nasuta, only 45 carried
mature Rhabdias spp. in their lungs (as indicated by free-living nema-
todes in faeces). We collected faeces from infected frogs every second
day, and placed them in a Petri dish with untreated bore water. After
2–4 days, the free-living adult worms had produced infective third
stage larva (L3) that we used for experimental infections. We ob-
tained R. pseudosphaerocephala larvae from locally caught R. marina
in the same way.

2.3. Experiment 1: Infecting cane toads with Rhabdias hylae
(sustained exposure to infective larvae)

This experimental treatment was designed to mimic potential ex-
posure levels experienced by anurans sharing diurnal retreat sites.
Suitable moist daytime refugia may be rare during the dry season
in our tropical study area (Bleach et al., 2014). Furthermore, local
native anuran species do not avoid sharing such shelters with toads
(Bleach et al., 2014). Sharing a small diurnal shelter with even one
infected native anuran is likely to expose toads to an environment
containing a large number of infective larvae. If this shelter is used
daily on an ongoing basis, exposure to high densities of larvae over
a prolonged period will result. Thus, in November 2013, we placed
21 captive-bred cane toad metamorphs in a 17 × 22 × 7 cm plastic box
lined with a 1 cm layer of sand (disinfected through boiling), un-
treated bore water and 800 R. hylae larvae (counted and extracted
from Petri dish cultures using a glass pipette). R. hylae larvae were
extracted from the faeces of Lit. nasuta collected from the vicinity
of Middle Point, Northern Territory TERF (DNA analysis confirmed
the species of nematode used in the experiment: Nelson et al., 2015).
We fed metamorphs with termites ad libitum over 15 days (exclud-
ing a 24-hour fasting period before euthanasia). The experiment was
long enough for the larvae to reach the lungs of the cane toads. As
larvae survive up to 7 days in these conditions, the cane toads may
have been exposed to larvae for this period (Pizzatto et al., 2010). Five
toads were chosen at random and euthanised at 2, 6, 10 and 15 days
post-treatment (DPT). Toads were euthanised by overdose in an an-
aesthetic bath of tricaine methanesulfonate (MS-222; 5 mg/ml,
buffered with sodium bicarbonate). All cane toads were then fixed
in 10% neutral buffered formalin for histological examination.

2.4. Experiment 2: Infecting cane toads and native frogs with
Rhabdias hylae and R. pseudosphaerocephala (short-term exposure
to infective larvae)

To infect toads and frogs with R. hylae and R. pseudos-
phaerocephala, we placed treatment metamorphs in a 3.5 cm di-
ameter Petri dish with 2 ml water and 30 L3 Rhabdias spp. larvae
(collected from adult frogs or toads between 4 and 18 days previ-
ously). Control metamorphs were placed in Petri dishes with 2 ml
of water. All Petri dishes were kept on a tray tilted to ensure that
frogs could sit halfway out of the water. Twenty cane toads and 20
C. australis metamorphs (captive-produced: see above) were placed
in Petri dishes containing 30 R. hylae larvae in 2 ml of water. A further
20 cane toad and 20 C. australis metamorphs were placed in Petri
dishes containing 30 R. pseudosphaerocephala larvae in 2 ml of water.
Eight additional cane toad metamorphs were placed in Petri dishes
containing only 2 ml of water for 24 h to act as controls (we had
too few C. australis metamorphs available to form a control group
for that species). All anurans were kept under these conditions for
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24 h, then removed from the Petri dishes and thereafter housed in-
dividually in tilted plastic containers (7.5 × 17 × 12 cm) half-filled
with untreated bore water. The young anurans were fed termites
every two days. To eliminate cross-contamination between Rhabdias
species, collections of each lungworm species were kept in sepa-
rate rooms on trays lined with disinfectant-soaked paper towel.
Individuals of each species and treatment were randomly selected
for euthanasia each at 2, 5, 10 and 20 DPT. Anurans were euthanised
by overdose in an anaesthetic bath of tricaine methanesulfonate (MS-
222; 5 mg/ml, buffered with sodium bicarbonate). All anurans were
then fixed in 10% neutral buffered formalin for histological
examination.

2.5. Methods for producing histological slides of infected anurans

For histological examination, 5–6 approx. 1–2 mm wide serial
transverse sections were made encompassing the tissue from the
head to the pelvis of each anuran. These sections were placed into
a single cassette for each anuran, processed in standard histologi-
cal fashion, and 5 μm sections stained with haematoxylin and eosin
(Fig. 1; see Pizzatto et al., 2010 for detailed methods) and exam-
ined by a single observer (CS) blind to the treatment, species and
DPT. Adult worms in the lungs were determined by their large size
and presence of eggs, and each lungworm that was visible on a slide
was counted individually (because it was impossible to determine
the exact number of lungworms per slide due to their size and
coiling). This method of counting may have overestimated the
numbers of lungworms in the lung, but provided a standardised way
to compare lungworm loads among individual anurans. Larvae mi-
grating through the anuran’s body were also counted. Multiple
sections of larvae in close proximity, surrounded by the same in-
flammatory foci, were assumed to be the same nematode and were
counted only once. Larvae encapsulated in an egg (either in the lung
or intestine) were not counted, because they represent a subse-
quent generation, produced by adults in the lungs and en route to
the external environment. A few larvae/adults undoubtedly were
missed because they did not happen to fall in the histological section
examined. However, the effort made to detect larvae/lungworms was
the same for each individual anuran; equal numbers of transverse
slides were made through the anuran body at approximately the
same locations, and a recut was made if there were no lung

sections in the slides. In most of the anurans, it was possible to see
both lungs in at least one of the transverse sections. The location
of each larva within the anuran was assigned to one of five cat-
egories based on the part of the body and type of tissue it was in.
The categories were: (1) skin or muscle (skeletal muscle, fascia or
subcutaneous tissue of the thorax, abdomen, pelvis or proximal
limbs, but excluding the head); (2) head (any tissue in the head,
except the eye); (3) eye (the eye or periocular tissue); (4) coelom
(larvae free in the coelomic lining, mesenteries, or serosae of viscera
other than the lung); and (5) lung (within the lung lumen).

The condition of each larva was scored as ‘intact’ if it retained
structural integrity, or ‘degenerate’ if it was disintegrating and
invaded by immune cells. The extent of inflammation surround-
ing invading larvae was categorised based on how many layers of
reactive cells surrounded the larvae: (1) none (no inflammation ob-
served); (2) mild (1–2 layers of inflammatory cells); (3) moderate
(3–4 layers of inflammatory cells); or (4) severe (more than 4 layers
of inflammatory cells).

Areas of inflammation that did not contain visible traces of larva
were recorded as ‘foci’ of inflammation and the extent of inflam-
mation scored as above, with ‘severity’ of inflammation being a
measure of the size of the inflammatory focus. Where inflamma-
tion was present (either in association with larvae or foci), the
constituency of recruited immune cells was estimated as the pro-
portion of: (1) neutrophils (cells with segmented nuclei and light-
coloured eosinophilic non-granulated cytoplasm); (2) eosinophils
(the same size as neutrophils with a round or slightly segmented
nucleus and orange-stained granules); (3) lymphocytes (small cells
with little cytoplasm and chromatin clumped in dark nuclei); (4)
macrophages (larger than granulocytes containing light-coloured
eosinophilic cytoplasm and a round to oval or bean-shaped nucleus);
or (5) multinucleated giant cells (macrophages merged together to
form a large cell) (Pizzatto et al., 2010).

Because samples sizes were small and data distributions uncer-
tain, we used nonparametric tests to assess relationships between
variables. We used Spearman correlations to compare pairs of con-
tinuous variables (e.g. number of larvae vs time) and χ2

approximations of Wilcoxon tests to compare continuous vari-
ables between categories (e.g. number of inflammatory cells vs
exposure to Rhabdias spp.). We used nominal logistic regression to
assess whether three categories of infection level (larvae present/
foci only/not infected) were affected by anuran species (cane toad
vs C. australis), lungworm species (R. pseudosphaerocephala vs R.
hylae), or the interaction between anuran and lungworm species.
Data for this logistic analysis were pooled across all time periods
for both species. All analyses were carried out using JMP 9.0 (SAS
Institute, Cary, NC).

3. Results

3.1. Experiment 1: Infecting cane toads with Rhabdias hylae
(sustained exposure to infective larvae)

3.1.1. Intensity of infection
R. hylae larvae located and penetrated 18 out of 21 cane toad

metamorphs. The number of larvae per toad ranged from 0 to 11.
As is common in parasite infections, the distribution of intensity
followed a Poisson rather than normal distribution (3 toads had 0
larva, 9 had 1 larvae, 6 had 2 larvae, 2 had 3 larvae and 1 individ-
ual had 11 larvae).

3.1.2. Location of larvae within the host’s body
The location of larvae within the toads changed with time since

exposure (logistic regression: χ2 = 10.43, P = 0.02; Fig. 2). Two days
after exposure began, most infecting larvae were located subcuta-
neously. Over time, larvae were found deeper in the body and, by

Fig. 1. Histological image depicting a transverse section of (a) R. hylae larva in the
connective tissue of the head of a cane toad and (b) the inflammatory response com-
posed primarily of macrophages and multinucleated giant cells surrounding the
parasite. Haematoxylin and eosin stain, 400× magnification, scale bar equals 30 μm.
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Day 15, all larvae were found within the coelom. Importantly, no
R. hylae were found to have reached the lungs of any of the 21 cane
toads within 15 days.

3.1.3. Severity and type of inflammation response
Larvae were less intact or visible with increasing DPT; that is,

records of larval presence shifted from intact larva through to de-
generating ones, through to inflammatory foci with no clear evidence
of larval presence (χ2 = 21.66, n = 64, P < 0.001; Fig. 3). Although the
number of visible larvae found in toads decreased through time since
exposure, high variation meant that the change was not statisti-
cally significant (Spearman’s r = −0.15, P = 0.53; Fig. 4a). However,

the number of foci (areas of inflammation with no visible larvae)
increased over time (Spearman’s r = 0.74, P < 0.0001; Fig. 4b). The
severity of inflammation around larvae also increased over the 15-
day period (Spearman’s r = 0.60, n = 38, P < 0.0001; Fig. 5), whereas
severity (size) of inflammatory foci did not (Spearman’s r = 0.22,
n = 25, P = 0.30; Fig. 5).

Changes in the average severity of the inflammatory foci or re-
sponse around the larvae were associated with changes in the relative
proportions of neutrophils and lymphocytes. As the inflammation
severity score increased, the proportion of neutrophils decreased
(Spearman’s r = −0.46, n = 20, P = 0.043) and the proportion of lym-
phocytes increased (Spearman’s r = 0.49, n = 20, P = 0.032). The
proportions of macrophages and eosinophils remained relatively con-
stant (48% and 18% respectively) through all levels of inflammation.
Temporal changes in neutrophils and lymphocytes reflected a trend
for inflammation severity to increase through time, especially around
visible larvae (see above). Hence, the proportion of neutrophils
around inflammation sites decreased over time (Spearman’s r = −0.59,
n = 20, P = 0.007; Fig. 6a) whereas the proportion of lymphocytes in-
creased (non-significantly) (Spearman’s r = 0.39, n = 20, P = 0.092;
Fig. 6b). Multinucleated giant cells were observed in three toads (two
at 10 DPT and one at 15 DPT).

3.2. Experiment 2: Infecting cane toads and native frogs with
Rhabdias hylae and R. pseudosphaerocephala (short-term exposure
to infective larvae)

3.2.1. Intensity of infection
Of the 64 anurans exposed to Rhabdias larvae for 24-h and ex-

amined histologically, 15 (24%) were infected with larvae and/or
adults, eight (13%) contained only inflammatory foci (i.e. areas of
inflammation similar to those associated with larva (see above) but
where no actual larval traces were seen in the section), and 41 (64%)
showed no signs of infection.

Nominal logistic regression on the factors affecting level of in-
fection indicated a significant interaction between anuran species
and Rhabdias spp. (χ2 = 11.97, n = 71, P = 0.002; Fig. 7). Toads were
less likely than C. australis to show evidence of infection by either
Rhabdias type. Although C. australis was commonly infected by both
types of Rhabdias, the incidence was higher after exposure to R. hylae
(75%) than R. pseudosphaerocephala (50%; Fig. 7).
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3.2.2. Location of larvae within the host’s body
Six larvae were detected histologically from the 64 exposed

anurans. These six larvae were contained in four C. australis, three
of which had been exposed to R. hylae and one to R. pseudos-
phaerocephala. Three R. hylae larvae were located in the head, one
R. hylae larva was located in the skin/muscle and one R. hylae larva
and one R. pseudosphaerocephala larva were located in the coelom.
None of these six larvae were surrounded by discernable inflam-
mation. Six adult R. hylae and four adult R. pseudosphaerocephala
were detected in the lungs of C. australis.

Reflecting their greater vulnerability to penetration by lung-
worm larvae, nine of 15 C. australis exposed to R. hylae were found
to contain larvae or lungworms. After Day 10, five of eight frogs
infected with R. hylae had lungworms in their lungs. R.
pseudosphaerocephala also managed to penetrate C. australis and after
Day 10, six out of eight native frogs had lungworms in their lungs.
For toads, however, no larvae of either Rhabdias spp. were ob-
served migrating through the body, and R. hylae larvae were never

recorded in the body, or adult lungworms in the lungs, of toads.
However, two of 10 toads had R. pseudosphaerocephala in their lungs
after Day 10 (Fig. 8).

A larger number of inflammatory foci were detected than larvae
(n = 14, distributed among 12 individual anurans; 4 toads, 8 frogs).
Given that, by definition, no larvae were appreciable histologically
in these inflammatory foci, can we conclude that they arise from
the presence of Rhabdias larvae? Three lines of evidence support
this inference. First, a sample of eight toads, which acted as pro-
cedural controls (i.e. were kept in Petri dishes for 24 h in the absence
of Rhabdias larvae), did not contain any foci of infection. Second,
the incidence of foci declined with time since exposure (χ2 = 4.35,
df = 1, P = 0.037; Fig. 9), suggesting that their origin was contem-
poraneous with the start of the experiment. Finally, the foci were
more likely to be located subcutaneously rather than in other tissues
(χ2 = 7.14, df = 1, P = 0.008).

3.2.3. Severity and type of inflammation response
If we assume that inflammatory foci are formed in response to

the presence of Rhabdias larvae, we can assess whether novel para-
sites elicit different immune responses than do ancestral (co-
evolved) ones. Among cane toads, overall levels of inflammation at
foci did not differ between individuals exposed to R. hylae and those
exposed to R. pseudosphaerocephala (χ2 = 0.33, P = 0.56). Although
toads produced inflammatory foci with somewhat higher levels of
neutrophils and lower levels of lymphocytes when exposed to R.
pseudosphaerocephala than when exposed to R. hylae (Fig. 10a), the
differences were not significant (both χ2 = 2.0, P = 0.16). The levels
of macrophages and eosinophils at foci in cane toads were also
similar between individuals exposed to the two types of Rhabdias
spp. (both χ2 < 1.0, P > 0.32; Fig. 10a).

Among C. australis, there was no overall difference in the sever-
ity of inflammatory foci between individuals exposed to R.
pseudosphaerocephala and those exposed to R. hylae (χ2 = 0.30,
P = 0.58). However, exposure to R. pseudosphaerocephala produced
foci with higher levels of lymphocytes and lower levels of mac-
rophages than was the case after exposure to R. hylae (both χ2 = 4.2,
P = 0.040). Relative numbers of all other cell types in C. australis were
similar after exposure to the different Rhabdias species (both χ2 < 0.76,
P > 0.38; Fig. 10b).

There were two instances of inflammation associated with lung-
worms in the lungs of C. australis; one with R. pseudosphaerocephala
and one with R. hylae.
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4. Discussion

Interactions between hosts and parasites change over time due
to co-evolution. The relationship can become an ‘arms race’ where
the host must increase its defences against an increasingly aggres-
sive parasite (the Red Queen hypothesis: Dawkins and Krebs, 1979;
Soler and Møller, 1990; Blanford et al., 2003); or the host may evolve
to tolerate a parasite of ever-decreasing virulence (Lenski and May,
1994; Miller et al., 2006). Sometimes these two evolutionary forces
reach a ‘stalemate’ situation where the virulence of the parasite
stabilises at a level that optimises both the reproduction of the par-
asite and the host (Combes, 1997; Bull and Ebert, 2008) or fluctuates
between periods of high and low virulence over time (Anderson and
May, 1982). Biological invasions offer an opportunity to observe host–
parasite interactions before natural selection stabilises, dulls or
amplifies the effect of the parasite on the host. Here we address the
initial contact between cane toads and the native frog parasite,

Rhabdias hylae, and investigate how this differs with the relation-
ship between Rhabdias pseudosphaerocephala and its ancestral host,
the cane toad, as well as the opposite scenario (native frog exposed
to R. hylae and native frog exposed to R. pseudosphaerocephala).

In our first experiment, cane toads were penetrated by the novel
parasite (R. hylae) but the parasite was apparently unable to reach
the lungs (larvae were not observed inside toads in the second ex-
periment). Histology revealed two possible reasons for this failure:
(1) an immune response of increasing severity prevented the larvae
from proceeding to the lungs, and (2) larvae did not locate the lungs
successfully and became lodged in other tissues. Larvae were ob-
served migrating through subcutaneous tissue and skeletal muscle
through to the coelom, and after 15 days larvae were found lodged
in numerous tissues in different parts of the body (skin/muscle body,
head, eye, coelom). Larvae came under increasing attack by the
immune system over time and were less likely to be intact or visible
after 15 days. The severity of inflammation around larvae and the
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number of inflammatory foci increased over time. Cane toads suc-
cessfully repelled the invading non-co-evolved parasite, which was
unsuccessful at navigating the new host’s body.

These results mirror those of Pizzatto et al. (2010), who found that
R. pseudosphaerocephala (the toad lungworm) became ‘lost’ inside the
bodies of most but not all native frog species and migrated to the lungs

successfully in the co-evolved host (the cane toad) (Fig. 2b). This
contrasts with our first experiment, which showed R. hylae
becoming ‘lost’ in numerous body tissues inside the cane toad and never
finding the lungs. The host specificity of parasites relies on evolution-
ary exposure to a range of host species and the taxonomic relatedness
of new hosts to ancestral hosts (Poulin, 2007), so the disparity between
the infection success of the Australian frog parasite and the cane toad
parasite (originally from South America) in non-co-evolved hosts is
unsurprising, given that both parasites evolved in entirely separate
contexts.

In the second experiment, C. australis metamorphs were more
susceptible to infection by both R. hylae and R. pseudosphaerocephala
than were cane toads. Some native frog species, Litoria caerulea,
Cyclorana longipes, Litoria splendida (Pizzatto and Shine, 2011b) and
Litoria dahlii (Pizzatto et al., 2010) are vulnerable to infection by the
cane toad parasite, although others, Litoria nasuta, Opisthodon ornatus,
Litoria rothii and Limnodynastes convexiusculus, are not (Pizzatto et al.,
2010; Pizzatto and Shine, 2011a). This result suggests asymmetry
in the resistance of cane toads and native frogs to non-co-evolved
rhabdiasid lungworms. Cane toads successfully resist native frog
parasites, whereas at least some native frog species cannot resist
toad parasites.

Cane toads and native frogs (excluding Litoria splendida) expe-
rience no decline in major indicators of viability (survival, feeding
rates, growth rates, speed or endurance) when exposed to (or
hosting) a non-co-evolved rhabdiasid lungworm (Pizzatto and Shine,
2011a, 2011b; Nelson et al., 2015). However, cane toads do suffer
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deleterious effects from their native parasite, R. pseudosphaerocephala
(Kelehear et al., 2009, 2011), whereas native frogs apparently suffer
no ill effects from their co-evolved lungworm, R. hylae (Nelson et al.,
2015). Again, this asymmetry implies a divergence in host–parasite
evolutionary history. Because toad lungworms reduce host fitness,
cane toads appear to invest in high resistance against their ances-
tral rhabdiasid lungworms. This investment may coincidentally
protect them against attack from congeneric foreign lungworms, and
explain their strong resistance to R. hylae. Alternatively, the lack of
co-evolution may explain a more severe reaction by toads towards
a novel threat. Prior infection with R. hylae fails to make toads more
resistant to their own lungworm, R. pseudosphaerocephala (Nelson,
2014), which implies that there is a significant difference between
the immune response towards the two nematode species. Cane toad
lungworms appear to be able to evade detection through co-
evolved mechanisms in cane toads, whereas frog lungworms cannot.
The immune response to native frog stomach nematodes (Order
Spirurida) by frogs and toads showed a similar effect; toads exhib-
ited a severe immune response to the invading nematodes, whereas
native frogs had minimal reaction to the parasites (Kelehear and
Jones, 2010).

Amphibians use both adaptive and innate immune systems to
recognise and react to Rhabdias infections (Rowley, 1988; Richmond
et al., 2009; Rollins-Smith, 2011). We conducted experimental in-
fections on recently metamorphosed amphibians to ensure that they
were immunologically naïve to nematodes, without an arsenal of
specific antibodies against them. In our experiments, the innate
immune system, along with behaviour, was the metamorphs’ chief
defence against penetrating larvae.

Despite the small number of inflammatory foci found in anurans
in the second experiment, we detected significant differences in the
types of immune cells recruited to these foci between anurans
exposed to the two different species of larva. Cane toads had more
neutrophils surrounding R. hylae than R. pseudosphaerocephala,
whereas C. australis had more lymphocytes and fewer macrophages
surrounding R. pseudosphaerocephala than the co-evolved lung-
worm, R. hylae. These proportions were consistent throughout time.
This result differed from those observed during the first experi-
ment, in which the proportion of neutrophils decreased and the

proportion of lymphocytes increased through time (along with the
severity of inflammation) for cane toads infected with R. hylae.

The proportions of macrophages and eosinophils did not change
over time post-infection in both experiments, but recruitment rates
for eosinophils were lower than for macrophages across both species
of anurans and both species of lungworm. Histological observa-
tions cannot identify the functional causes or consequences of
different proportions of immune cells recruited to areas of inflam-
mation. However, a general explanation may be that because the
ability of nematodes to evade the immune systems of their hosts
is partly based on disrupting or confusing several of the chemical
messaging pathways involved in immune surveillance (Maizels et al.,
2004; De Veer et al., 2007), and that this ability is honed and de-
veloped through long co-evolution with the host, then a novel (but
related) parasite may disrupt the host immune system in a subtly
different manner.

The early stages of inflammation around larvae generally contain
a high proportion of granulocytes (mainly neutrophils), character-
istic of an innate immune response. Over time, the proportion of
neutrophils decreases and the proportion of lymphocytes in-
creases (Rollins-Smith, 2011). Lymphocytes are predominantly
associated with adaptive immune responses but are observed in
growing numbers in the initial immune response acting as “natural
killer” cells, which dissolve foreign bodies with cytolytic mol-
ecules, and as “scouting” T-cells and B-cells (Horton et al., 1998;
Richmond et al., 2009; Rollins-Smith, 2011). This typical pattern
of changing immune cell recruitment was seen in the first exper-
iment; lymphocytes increased and neutrophils decreased
significantly over time. In the second experiment, changes over time
were difficult to see due to low numbers of larvae/ inflammatory
foci.

The role of eosinophils in responding to helminth infections
remains unclear (Meeusen and Balic, 2000; Klion and Nutman, 2004)
but they are often implicated in effective clearance of metazoan para-
sites (Mitchell, 1982; Rowley, 1988; Shutler et al., 2009). Eosinophils
made up between 14.5% and 25% of immune cells surrounding larvae
in the first experiment and 16% in inflammatory foci in the second
experiment. Macrophages have diverse roles in nonspecific early re-
sponses to antigens as well as chronic inflammatory reactions
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(Pizzatto et al., 2010), and remained consistently high over all DPT
across all experiments.

Successful helminth parasites are able to evade or modulate their
hosts’ immune system (Maizels et al., 2004; Shutler et al., 2009),
particularly after the parasite has matured and its thickened cuticle
acts as a barrier to detection and attack (Tinsley et al., 2012). Across
both of our experiments, little inflammation was associated with
lungworms in the lung (seen in only two frogs, in the second ex-
periment), suggesting that an acquired immune response is
ineffective at removing parasites once they have matured.

There were large differences between the results of our two ex-
periments, in terms of the number of larvae seen in histological
sections as well as the associated levels of inflammation. Different
conditions of exposure in the two experiments presumably affect-
ed levels of infection and inflammation. Unsurprisingly, cane toads
that were chronically exposed to high concentrations of R. hylae over
15 days showed greater evidence of larval penetration than did toads
exposed to only 30 larvae for 24 hours. The lack of inflammation
associated with any of the larvae seen in toads (and frogs) under
the latter conditions is, however, surprising.

What does a lack of inflammation around larvae mean? It cannot
be due to insufficient time having elapsed to produce an immune
response, because our samples were taken at least two days post-
exposure. A lack of inflammation suggests that the larva is alive and
successfully cloaking itself from the host’s immune system whereas
severe inflammation suggests that the larva has been detected and
recognised by the immune system and is being killed or removed
by effector cells and chemicals.

Why were there more larvae dead and dying in the second ex-
periment than the first? Larvae in the first experiment may have
been in poor condition before they invaded a host and, once inside
the host, they may have been incapable of avoiding the toad’s
immune system in their weakened state. The larvae in the first ex-
periment were in a large enclosure and the prolonged exposure
period may have resulted in larvae being weakened/aged before they
found an appropriate host. Nematodes evade the host’s immune
system through active production of compounds that compro-
mise the activation or deployment of host immune products (Maizels
et al., 2001). Once a larva dies and its production of these ‘cloak-
ing agents’ ceases, it becomes a large helpless foreign body, which
the immune system can easily target for disintegration and clear-
ance (Rollins-Smith, 2011). An inflammatory reaction to dying
nematodes can cause pathologic conditions in humans and other
animals, such as ocular toxocariasis (Holland and Smith, 2005) and
eosinophilic meningitis (Kliks and Palumbo, 1992), and are a po-
tential adverse effect of anti-helmintic treatment (Nielsen et al.,
2013).

Alternatively, the toad’s immune system, being under a con-
stant barrage of larvae for several days in the first experiment, may
have become fully activated (De Veer et al., 2007). If so, many larvae
that did manage to penetrate a host would have been met with up-
regulated immune surveillance and were thus more likely to be
detected and responded to rapidly. In the second experiment, in con-
trast, briefer (24-h) exposure to infective larvae may not have
provoked as much immune activation and larvae penetrating hosts
in the second experiment may have encountered a relatively naïve
response.

In conclusion, the separate lungworm faunas of cane toads and
native Australian frogs induced different inflammatory responses, and
had different levels of success in co-evolved and non-co-evolved hosts.
These patterns accord with the hypothesis that hosts and parasites
become adapted to each other over evolutionary time, and that host
switching can incur fitness costs on parasites. Cane toads were a
hostile environment for the native frog lungworm, whereas C. aus-
tralis tolerated infections by the toad parasite, R. pseudosphaerocephala,
as well as by its native parasite, R. hylae. Nonetheless, toad

lungworms penetrated and reached the lungs of frogs less often than
did the native parasite species. Invasive species offer unique oppor-
tunities to study co-evolution and the costs of host switching; further
research could usefully exploit that potential to ask more detailed
questions of the complex interactions that occur when a parasite and
host first encounter each other.
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