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A B S T R A C T

Craft beer brewers need to learn process control strategies from traditional industrial production to ensure the
consistent quality of the finished product. In this study, FT-IR combined with deep learning was used for the first
time to model and analyze the Plato degree and total flavonoid content of Qingke beer during the mashing and
boiling stages and to compare the effectiveness with traditional chemometrics methods. Two deep learning
neural networks were designed, the effect of variable input methods on the effectiveness of the models was
discussed. The experimental results showed that the CARS-LSTM model had the best predictive performance, not
only as the best quantitative model for Plato in the mashing (R2p = 0.9368) and boiling (R2p = 0.9398) phases
but also as the best model for TFC in the boiling phase (R2p = 0.9154). This study demonstrates the great po-
tential of deep learning and provides a new approach to quality control analysis in beer brewing.

1. Introduction

Beer is now the most consumed alcoholic beverage in the world, and
its brewing origins can be traced back thousands of years before Christ
(Tirado-Kulieva, Hernandez-Martinez, Minchan-Velayarce, Pasapera-
Campos, & Luque-Vilca, 2023). Traditionally, beer is brewed with
malt, hops, water, and yeast, but traditional industrialized mass pro-
duction can lead to monotonous flavors and homogenization of the
market. To avoid this problem, as interest in craft beer has grown over
the past few decades, brewers have begun to develop better quality and
more diverse styles of craft beer, and consumption has grown faster than
traditional mass-produced beers. (Coulibaly, Tohoyessou, Konan,& Dje,
2023). Different brewing ingredients can give beer different flavors;
Qingke is a kind of hull-less dryland barley widely cultivated in China's
high-altitude areas (Y. Zhao et al., 2024). Studies have shown that
brewing Qingke as an adjunct can reduce the turbidity and color of beer,

enhance the antioxidant capacity of beer, and effectively improve the
foam and mouthfeel of beer (Zong et al., 2023). However, the excellent
quality of the finished beer is not enough to be the key to its popularity
in the market, and craft beer producers need to learn process control
strategies from the large-scale brewing industry in order to maintain
consistent production quality and safety standards (França, Grassi,
Pimentel, & Amigo, 2021).

One of the challenges facing beer brewing over the last 50 years has
been to control the quality of the malt and wort so as to obtain a high-
quality finished beer, the quality of the wort has a direct impact on
the quality of the finished beer, and they are pretty closely intertwined
(Yin Tan, Li, Devkota, Attenborough, & Dhital, 2023). The first test for
wort quality is the total dissolved malt constituents, usually expressed as
Plato (◦P). Adjustment of the mash by measuring real-time wort content,
which facilitates future mashing control (Fox, 2020). In addition to this,
antioxidant power has always been a critical parameter to be measured
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during the beer brewing process in order to slow down the aging of the
beer (Nardini & Garaguso, 2020). Flavonoids, due to their potent anti-
oxidant capacity and ability to scavenge some oxidizing free radicals,
also greatly influence the antioxidant power of the wort, and studies
have shown that beers with more antioxidant activity are becoming
increasingly popular with consumers and brewers alike (Aquilani, Lau-
reti, Poponi, & Secondi, 2015). Monitoring the quality of the beer
brewing process has always been a challenge for the industry, as it re-
quires a range of costs, such as expensive instruments and experienced
technicians (Anderson, Santos, Hildenbrand, & Schug, 2019). Another
problem is the limitations of the existing monitoring techniques. In
addition to conventional parameters such as temperature and pH, other
indicators such as yeast vigor and antioxidant power are difficult to
measure directly, as these parameters, which are derived from several
related variables, interact with each other to influence the complex
biological process of brewing (Kourti, 2006). As a result, some craft
brewers who produce small batches can hardly afford these high costs,
and the industry needs a reliable, fast, and low-cost quality assessment
method to meet production needs.

Spectroscopy, as an analytical technique, is characterized by high
efficiency, low cost, and non-destructive testing, which, to a certain
extent, meets the inspection needs of manufacturers. Near-infrared
spectroscopy (NIR) uses radiation spectra in the range of 800–2500
nm (12,500–4000 cm− 1) corresponding to overtones and combinatorial
bands derived mainly from vibrational leaps of -OH, -CH, and -NH
groups (Tian et al., 2023). It is capable of detecting different types of
absorption by emitting multiple wavelengths to determine the nature of
the sample (Helfer et al., 2022). Methods based on infrared spectroscopy
have been widely used to develop reliable analytical-qualitative (pattern
recognition) and quantitative (multivariate calibration) analyses of food
products. Therefore, multivariate statistical analysis was used to extract
useful information from NIR spectra. This helps to resolve the complex
interactions between the components of the brewing process (Nobari
Moghaddam, Tamiji, Akbari Lakeh, Khoshayand, & Haji Mahmoodi,
2022). Chemometrics combined with NIR plays a vital role in deter-
mining food quality. Commonly used methods for chemical composition
prediction include PLSR (Partial Least Squares Regression), SVMR
(Support Vector Machine Regression), ANN (Artificial Neural Network),
etc. (Yan, Liu, Li, & Wang, 2023). Deep learning algorithms have made
great progress in different research areas in recent years, and some re-
searchers have proposed spectral analysis methods based on deep
learning because deep learning can capture more local spectral features
hidden in the original spectra (Rong, Wang, Ying, Zhang, & Zhang,
2020). For example, Convolutional Neural Networks (CNNs) can reduce
the noise in the dataset during training, enabling training on smaller
weights and thus reducing data complexity (Nallan Chakravartula,
Moscetti, Bedini, Nardella, & Massantini, 2022). LSTM (Long Short-
Term Memory) is a variant model of recurrent neural networks. The
memory cells in the LSTM model are able to store the valid information
from the previous wave, pass it on to the next wave, and finally syn-
thesize all the valid information to build an analytical model of NIRS
(Fu, Yang,&Wang, 2021). Valentina Giovenzana, Ana Carolina da Costa
Fulĝencio (machine learning), Fujia Dong, and Shui Yu (deep learning)
used NIR in combination with chemometrics or deep learning to quan-
titatively analyze beer-related metrics with good results (Giovenzana,
Beghi,&Guidetti, 2014) (Fulgêncio, Resende, Teixeira, Botelho,& Sena,
2023) (Dong et al., 2024) (Yu, Huan, Liu, Wang,& Cao, 2023). However,
the application of the methodological strategy of spectroscopy combined
with chemometrics in the field of beer is mostly focused on the testing of
raw materials (malt) and finished beer, and the analytical research for
the brewing process is still limited.

Therefore, in this study, the methodological strategy of FT-IR
(Fourier transform near-infrared) combined with chemometrics and
deep learning was used to quantitatively analyze the changes in Plato
and total flavonoids content (TFC) of the wort during the Qingke beer
brewing process. In order to obtain a sufficiently large number of

representative samples and to expand the sample range, the experiment
was designed with three different mashing processes and the changes in
Plato and TFC during the brewing process were analyzed. Each step of
the modelling process is elaborated in detail, and the quantitative
modelling effects of machine learning methods and deep learning
methods are compared and discussed with a view to achieving accurate
prediction of their contents so as to regulate the brewing process in a
timely and relevant manner. This study can provide guidelines for
quality control in the brewing process of craft beer.

2. Materials and methods

2.1. Materials

The Qingke malt for beer brewing was purchased from Ganzi Agri-
cultural Science Institute, and the hops were purchased from East China
Brewing Materials Co. Chemical analysis using ethanol, aluminum ni-
trate, sodium hydroxide were purchased from Kelong Chemical Co.,
Ltd., Chengdu, CN; Rutin standard reagent and sodium nitrite were
purchased from Aladdin Biochemical Technology Co., Ltd., Shanghai,
CN. All of the above are analytical grade test drugs.

2.2. Brewing process

For the preparation of wort, choose a 1:5 material water ratio, that is,
2 kg of Qingke malt add 10 L 35 ◦C hot water, 2 kg of Qingke malt and
10 L of 35 ◦C hot water mixing to start mashing. In order to widen the
distribution of the samples and to improve the robustness of the model,
this experiment used three crushing processes for Qingke malt: (a)
Milling of malt to the extent of hull separation and then mashing, all
using traditional processes. (b) 1 kg of Qingke malt is powdered, and the
remaining 1 kg of malt is milled using traditional techniques until the
hulls are separated and the two parts are mixed for mashing. (c) Use an
electric grinder to powder all the Qingke malt for mashing. The tem-
perature of the protein resting phase was set at 50 ◦C for 50 min; the
temperature of the sugar resting phase was set at 65 ◦C for 90min, which
was nearly 30 min more than the conventional time, in order to explore
the changes of the relevant indexes of over mashing and to facilitate the
prediction of mashing endpoints through the model. At the end of
mashing, the clarified wort was obtained by filtration, and the temper-
ature was raised until the wort boiled. Hops were added in the amount of
2 g/L and boiled for 70 min. In order to obtain a sufficient number of
samples, four batches of each of the three pulverization processes were
repeated, and a total of 12 batches of data were obtained. The sampling
time points and the number of samples are shown in Table 1, the
experiment yielded a total of 228 samples in the mashing stage and 96
samples in the boiling stage, and the experimental flow of this study is
shown in Fig. 1.

2.3. Chemical analysis methods

Plato was measured using a refractometer to take the average of
three measurements of the Plato of wort samples at the same moment in
time. The method of Zong et al. was used for the determination of TFC, i.
e., 2.4 mL of the sample solution to be tested was mixed with 0.3 mL of
0.05 g/mL sodium nitrite solution and left to stand for 6min; after 6min,
0.3 mL of 0.10 g/mL aluminum nitrate solution was added, and then
mixed and left to stand for 5 min; after 5 min, 4 mL of 0.04 g/mL sodium
hydroxide solution was added, and then, after the reaction solution was
well mixed for 15 min, the absorbance was measured at the wavelength
of 510 nm. The absorbance was measured at 510 nm. The total flavonoid
content was calculated from the rutin standard curve (Zong et al., 2023).

2.4. FT-IR spectrometer parameter settings

Near-infrared spectra of wort were collected using a Fourier
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transform near-infrared spectrometer (Insa Optics, Shanghai, China),
model master 10. In order to collect the spectra of the samples in real-
time, it is necessary to put the spectral collector directly into the sam-
ples to collect the spectral information and then take into account the
high-temperature environmental characteristics of the experiment so
the immersion-type fiber optic probe is used for the spectral collection of

the wort. When analyzing liquid samples, spectrometers often use the
transmission-reflection mode; when the liquid under test enters the
cavity at the front end of the probe, the light shines into the liquid from
the incident light path, reflects off the reflector and returns to the liquid
and then enters the reflected light path, and finally enters the spec-
trometer for spectral determination. Therefore, the measurement

Table 1
Results of wort Plato changes based on three mashing processes.

Step Sampling temperature and time Process (a) Process (b) Process (c)

Mean (◦P) SD (◦P) Mean (◦P) SD (◦P) Mean (◦P) SD (◦P)
Mashing 50 ◦C-0 min 2.41 0.2861 3.1425 0.4913 3.3 0.7765

50 ◦C-10 min 2.6825 0.3584 3.46 0.6367 3.515 0.8272
50 ◦C-20 min 3.0925 0.2206 4.0825 0.7214 3.85 0.8083
50 ◦C-30 min 3.5675 0.4250 4.6075 0.5511 4.4075 0.7610
50 ◦C-40 min 3.915 0.3335 4.7575 0.5431 4.5825 0.9738
50 ◦C-50 min 4.235 0.3496 5.0225 0.6043 4.7325 1.0612
65 ◦C-0 min 5.785 0.3539 8.5075 0.4179 11.365 1.0371
65 ◦C-5 min 6.285 0.3718 8.9675 0.3010 12.1175 0.9914
65 ◦C-10 min 6.5475 0.3285 9.365 0.3601 12.625 0.9748
65 ◦C-15 min 6.7975 0.3357 9.5425 0.2948 12.935 0.9809
65 ◦C-20 min 7 0.2376 9.7575 0.3097 13.15 1.0756
65 ◦C-25 min 7.2475 0.2010 9.965 0.1680 13.4675 1.1688
65 ◦C-30 min 7.3675 0.3060 10.1675 0.3326 13.4675 1.1001
65 ◦C-40 min 7.6325 0.3408 10.4075 0.3882 13.8025 1.2032
65 ◦C-50 min 7.8925 0.2648 10.6225 0.2986 13.985 1.1791
65 ◦C-60 min 8.1825 0.1842 10.885 0.2413 14.1 1.1545
65 ◦C-70 min 8.4175 0.2189 10.9175 0.1429 14.0325 1.1594
65 ◦C-80 min 8.5675 0.2421 10.9825 0.0968 14.235 1.1512
65 ◦C-90 min 8.785 0.3093 11.0675 0.0817 14.1975 1.1818

Boiling 0 min 7.715 0.5072 10.565 0.9065 11.15 0.3405
10 min 8.1175 0.7348 10.9925 1.1288 11.6675 0.2714
20 min 8.605 0.6139 11.55 0.9571 12.3175 0.1699
30 min 9.215 0.8026 11.885 0.7428 12.835 0.3290
40 min 9.7175 0.7327 12.2425 0.8840 13.2725 0.3646
50 min 10.05 0.5723 12.6325 1.0189 14.25 0.4785
60 min 10.4 0.5224 13.1075 1.1807 14.7 0.3673
70 min 11.0975 0.6717 13.6 0.9957 15.3 0.4504

Fig. 1. Experimental procedure overview.
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method was selected to be transreflective, the wavelength range was
from 12,000 cm− 1 to 4000 cm− 1, the resolution was set to 8 cm− 1, and
the detector was DLATGS.

2.5. Chemometrics methods

2.5.1. Outlier rejection
The appearance of outliers will increase the error of the experimental

data, thus affecting the regression, which ultimately leads to poor
training of the whole model. The elimination of outlier samples can
effectively improve the model's robustness, generalization, and predic-
tion ability. In this experiment, the predetermined number of cycles is
set to 1000. The sample set is divided into training and validation sets in
the ratio of 8:2. Then, MCCV (Monte Carlo Cross Validation) is used to
calculate the outliers in the sample dataset (Xuan et al., 2023).

2.5.2. Preprocessing
Preprocessing the raw spectra removes unwanted or negatively

impacted signals from the spectral data, and appropriate preprocessing
methods are beneficial to modelling (Jiao, Li, Chen, & Fei, 2020).
Smoothing correction can reduce the noise of the spectrum and improve
the signal-to-noise ratio; scattering correction methods such as SNV and
MSC can eliminate the scattering effect due to the uneven size and dis-
tribution of the sample particles; operations such as DE1 and DE2
derivation can remove unimportant baseline signals, smooth the impact
of the background interference, and improve the higher resolution. All
these methods can improve the data quality to a certain extent. In this
experiment, preprocessing methods such as SM (Smoothing), DE1 (First-
order Derivative), DE2 (Second-order Derivative), MSC (Multiplicative
Scatter Correction), SNV (Standard Normal Variate), and a two-by-two
combination of derivation and scattering correction algorithms (DE1
+MSC, DE2+MSC, DE1+ SNV, DE2+ SNV) are used to preprocess the
FT-IR spectra. The optimal preprocessing method was finally deter-
mined by R2 and RMSECV (Root Mean Square Error of Cross Validation).
They are calculated as shown below:

R2 = 1 −

∑n
i=1

(
yi,actual − yi,predicted

)2

∑n
i=1

(
yi,actual − yactual

)2 (1)

RMSECV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
yi,actual − yi,predicted

)2

n − 1

√
√
√
√ (2)

where yi,actual is the actual value of the ith sample; yi,predicted is the pre-
dicted value of the ith sample; yactual is the mean of all true values, and n
is the number of samples.

2.5.3. Variable selection
Full-spectrum variational models contain a large amount of redun-

dant information, which can negatively affect model predictions. Many
experiments and theories have shown that the performance of calibrated
models can be improved by using selected wavelengths of information
instead of the full spectrum. The CARS algorithm is currently a more
widely used spectral variable selection technique in the field of spectral
modelling. It draws on the genetic mechanism of nature's organisms and
gradually evaluates and analyzes, screens, and eliminates each wave-
length point in the spectrum, which helps to establish a robust analytical
model against external factors and reduce the information redundancy
and multicollinearity problems of the spectral matrix. The selection of
the optimal combination of wavelengths present in the full spectrum
combined with partial least squares regression can be effectively used
for wavelength selection to build high-performance calibration models
(H. Li, Liang, Xu, & Cao, 2009). Therefore, the CARS algorithm is used
for feature wavelength selection in this experiment.

2.5.4. Selection of calibration and prediction set
Commonly used sample partitioning methods include RS (Random

Selection), KS (Kennard-Stone) algorithm and SPXY (Sample set parti-
tioning based on joint x-y distance) algorithm. The KS algorithm is a
classical ensemble partitioning method that selects samples that are
uniformly distributed over the prediction space. KS can select samples
based on spectral features and is sensitive to spectral changes after
preprocessing (Liu et al., 2019). The KS algorithm is suitable for
analytical chemistry applications because it allows the training model to
cover most of the sources of variation in the dataset, ensuring that the
training model is more representative of the entire dataset. Therefore,
the KS algorithm was chosen for this experiment to partition the dataset
(C. Li et al., 2022).

2.5.5. Modelling regression methods
The most commonly used multivariate correction methods are PCR

(Principal Component Regression) and PLS (Partial Least Squares), both
of which, to some extent, overcome the limitations of MLR (Multiple
Linear Regression). These methods are based on correlating the inde-
pendent X-block of spectral data with the relevant Y-block of the values
to be predicted through inverse calibration and then selecting the
number of PCs (principal components) or LVs (latent variables) through
cross-validation. Based on the principle of parsimony, the analytical
chemist should choose a linear model such as PLS or orthogonal PLS.
However, if the parsimonious linear model does not predict well due to
the wide range of analysis, one can try to use nonlinear models such as
ANN as well as SVM (Augusti et al., 2024). Least Squares Support Vector
Machines are an extension of Support Vector Machines in the form of
quadratic loss functions. This nonlinear modelling method replaces the
complex quadratic optimization problem in Support Vector Machines by
solving a set of linear equations. This method can improve the model
generalization ability through the principle of structural risk minimi-
zation and has a good advantage in solving problems with small sam-
ples, nonlinearities, and high dimensions. ANN is able to simulate the
structure and function of neural feedback of the human brain in a
mathematical model with a high degree of self-learning, adaptation, and
feedback capabilities. It has also long been widely used to deal with
nonlinear problems in complex processes. In this experiment, PLS, LS-
SVM and ANN are used for regression modelling.

2.6. Deep learning methods

2.6.1. CNN
A classical CNN usually consists of several convolutional layers, an

activation function layer, a pooling layer, and some fully connected
layers. The main function of the convolutional layer is to extract local
abstract features, while the activation function layer implements linear
or nonlinear mapping. The pooling layer is usually used to reduce the
dimensionality of the feature vectors in the convolutional layer. The
mapping relationship between the extracted abstract features and the
target output is established through the fully connected layer. Through
iterative parameter tuning, CNNs are able to optimize the performance
of the model by training millions of parameters and extracting relevant
features of the spectral data (Banerjee, Mandal, Jesubalan, Jain, &
Rathore, 2024). This study compares the effect of two input methods on
the accuracy of the final prediction model. Method 1 is to use all the
spectral data without any preprocessing as the input to the CNN, and
method 2 is to use the feature variables screened by the CARS algorithm
after processes such as outlier exclusion and after spectral preprocessing
as the input to the CNN. Based on the fixed model training parameters,
the network architecture of the CNN is debugged, thereby determining
the optimal network structure.

2.6.2. LSTM
LSTM is mainly used to solve the problem of gradient vanishing and

gradient explosion in long sequence training, and its core idea is to
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control the neuron states of memory tuples and nonlinear gate units. The
nonlinear gate unit is used to regulate the flow of information in and out
of the storage tuple at each point in time. It consists of several parts: the
Sigmoid neural network layer, the Tanh activation function, and the
point-by-point multiplier (Lindemann, Maschler, Sahlab, & Weyrich,
2021). Like CNN, this study also compares the effect of the two variable
input methods on the accuracy of the final prediction model. It de-
termines the optimal LSTM network structure through debugging.

2.6.3. Model evaluation indicators
All models were evaluated using RMSEC (Root Mean Square Error of

Calibration), RMSEP (Root Mean Square Error of Prediction), R2c
(Calibration set coefficient of determination), R2p (Prediction set coef-
ficient of determination), and RPD (Relative Percentage Deviation)
values were used for the evaluation of the effect. The closer the R2 is to 1,
the better the predictions. Similarly, the smaller the RMSEC and RMSEP,
the better the modelled regression. The RPD value was used as a crite-
rion to judge the robustness of the model, and when the RPD value was
lower than 1.5, the model was considered to be insufficiently con-
structed, and the samples could only be roughly analyzed quantitatively.
An RPD in the range of 1.5–2.0 is considered to have the potential for the
model to distinguish between high and low values, while an RPD value
between 2.0 and 2.5 indicates that the model can make approximate
quantitative predictions; an RPD of 2.5–3.0 and greater than 3.0 in-
dicates that the model has good and excellent prediction results (Huang,
Fan, Li, Meng, & Liu, 2022). They are calculated as shown below:

R2c = 1 −

∑n
i=1

(
yi,actual − yi,predicted

)2

∑n
i=1

(
yi,actual − yactual

)2 (6)

RMSEC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
yi,actual − yi,predicted

)2

n − 1

√
√
√
√ (7)

where yi,actual is the actual value of the ith sample of the calibration set;
yi,predicted is the predicted value of the ith sample of the calibration set;
yactual is the mean of all true values, and n is the number of samples in the
calibration set.

R2p = 1 −

∑m
k=1

(
yk,actual − yk,predicted

)2

∑m
k=1

(
yk,actual − yactual

)2 (8)

RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

k=1

(
yk,actual − yk,predicted

)2

m − 1

√
√
√
√ (9)

where yi,actual is the actual value of the kth sample of the prediction set;
yi,predicted is the predicted value of the ith sample of the prediction set;
yactual is the mean of all true values, and m is the number of samples in
the prediction set.

RPD =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(
R2p

)2
√ (10)

2.7. Software and hardware

FT-IR data acquisition software: FTIRDasAnalyzer (Insa Optics,
Shanghai, China); Data preprocessing, feature variable selection, and
model building were performed in MATLAB R2015a (MathWorks,
Natick, MA, USA). The plots of the experimental results were also
plotted using MATLAB. The calibration was performed on a personal
computer equipped with an Intel (R) core (TM) i5-8300H CPU at 2.3
GHz clock frequency, 16GB RAM and GPU Nvidia Geforce GTX 1050 Ti.

3. Results and discussion

3.1. NIR spectral analysis

The raw FT-IR spectra of wort at the mashing and boiling stages are
shown in Fig. 2. The wavelength range of the NIR spectra of this
experiment is 833–2500 nm, with very distinct absorption peaks at
around 1450 nm and 1900 nm, and these characteristic absorption peaks
all contain different levels of sample information. Based on previous
studies on Qingke wort, the absorption peak around 1450 nm originates
from the combined frequency vibration of the C–H (CH3, CH2) groups.
The absorption peaks around 1900 nm may originate from the 1st fre-
quency of CH2, CH3 and other groups. Some inconspicuous absorption
peaks, such as those at 1150 nm and 2350 nm, originate from the 2nd
frequency and combinatorial frequency vibrations of the C–H (CH3,
CH2), respectively (Zhou et al., 2024). As the mashing temperature
increased, the absorbance increased gradually. When the wort is at the
boiling stage, the absorbance decreases. Still, the spectral curve becomes
smoother because the wort system is more clarified after filtration, and
the light scattering effect due to the roughness of the malt surface is
reduced.

3.2. Chemical analysis results

The results of changes in Plato and TFC of wort during the mashing
and boiling stages are shown in Table 1 and Table 2. During mashing,
the activity of endogenous enzymes in the malt converts starch into
fermentable sugars, digests proteins into peptides and amino acids, and
releases micronutrients. The α- and β-amylases cleave the α-(1 → 4)
linkages in starch, releasing mainly maltose and glucose. Both crushing
and enzyme treatment significantly affects the Plato of Qingke barley
wort, which is usually used for the initial assessment of wort quality and
characterizes the soluble solids content of Qingke barley wort. Mea-
surement of wort Plato can be a rough judgment of the sugar in the wort
so that industrial production of the relevant process to make timely
adjustments, when the wort is in the 50 ◦C protein rest stage, as the
percentage of Qingke powder in the brewing process rises, Plato has a
significant increase, the average Plato of the three processes is not much
difference, and finally maintained at about 5. Plato rises substantially
when warmed to 65 ◦C. The higher the malt crush, the higher the Plato
and this result is in line with Li et al.'s study on Qingke beer, which
showed that the Plato of the wort at the mashing stage usually stays
around the range of 3–10 (L. Li et al., 2023). When the mashing phase
was over, there was a significant difference in Plato size between the
three brewing processes, with both adjacent processes having an almost
3 difference. When the wort enters the boiling stage, the volume of
filtered wort is controlled to 10 L by washing the leaves and other op-
erations. As the water evaporates, the wort is further thickened, and the
Plato, which has been lowered by lees washing, rises again. When the
boiling phase ended, the average Plato reached a maximum of 15.3
(process (c)).

Phenolics are mainly present in the bran and endosperm of Qingke in
free or bound form, including phenolic acids and their flavonoids. In
order to investigate the possible relationship between phenolics (total
phenols, total tannins, total flavonoids and total anthocyanins) and
antioxidant activity (antiradical activity and iron-reducing antioxidant
capacity). Wahauwou'el'e Hermann Coulibaly et al. created a correlated
Pearson matrix, and the results of the test showed that the anti-free
radical activity was closely and positively correlated with total phe-
nols, total flavonoids and total anthocyanins (Coulibaly et al., 2023).
Thus, controlling the TFC during beer brewing can help enhance the
antioxidant capacity of Qingke wort and its flavour stability. The TFC
increased steadily with time when the wort was in the protein resting
stage at 50 ◦C. The TFC was further elevated up to 240 mg/L when the
elevated temperature brought the wort to the sugar resting stage.
However, the TFC at this stage does not increase linearly. This is because
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mashing is not a single substance changing but a series of reactions
between a series of substances (Martínez et al., 2017). When the wort
was boiled at the completion of boiling, the TFC increased significantly.
The TFC of the process (a) was the largest among the three processes,
with an average TFC of 447.2847, which is in line with the findings that
phenolics are mainly found in Qingke bran and endosperm. And It is also
possible that the flavonoid content rose due to the addition of hops,
which have a high flavonoid content. Similarly, as the water evaporates,
the concentration of the substance increases.

3.3. Outlier rejection results

Fig. 3 is a plot of the results of FT-IR spectroscopy for the rejection of
Plato and TFC outlier at the mashing and boiling stages, with the hori-
zontal coordinate representing the absolute value of the mean and the
vertical coordinate representing the standard deviation of the samples.
Samples near the zero point were defined as normal, and other samples
that deviated from this region were described as having anomalous
spectral and chemical values. The effectiveness of this operation is
judged based on the change in the values of R2 and RMSECV before and

Fig. 2. FT-IR raw spectra of different stages of wort.

Table 2
Results of wort TFC changes based on three mashing processes.

Step Sampling temperature and time Process (a) Process (b) Process (c)

Mean (mg/L) SD (mg/L) Mean (mg/L) SD (mg/L) Mean (mg/L) SD (mg/L)
Mashing 50 ◦C-0 min 150.9306 23.5794 139.0556 8.4827 158.3611 14.8233

50 ◦C-10 min 155.8958 19.2441 142.2847 11.5313 168.5000 12.3124
50 ◦C-20 min 164.8194 23.5479 141.7292 8.1693 167.0069 21.5740
50 ◦C-30 min 182.2153 20.9051 154.9583 5.7977 187.9444 20.9930
50 ◦C-40 min 181.9028 23.4430 159.4028 3.8125 181.4514 9.8500
50 ◦C-50 min 189.2639 23.0258 164.8194 7.6307 183.7083 12.5015
65 ◦C-0 min 214.5417 17.4462 193.0139 9.1070 206.1736 14.8053
65 ◦C-5 min 212.2500 8.3625 206.6597 12.3347 224.9931 7.3999
65 ◦C-10 min 205.9306 16.4708 181.1042 4.0234 196.7639 10.7039
65 ◦C-15 min 232.8750 38.4317 188.4306 4.0505 202.9792 23.4752
65 ◦C-20 min 210.4097 15.9536 193.0139 4.7396 214.8542 10.6063
65 ◦C-25 min 236.9028 34.7673 202.7014 8.9588 209.9931 7.4032
65 ◦C-30 min 220.4097 13.8490 194.1250 6.4145 211.6944 7.2705
65 ◦C-40 min 229.4375 14.5132 215.8958 21.2784 209.2292 14.0114
65 ◦C-50 min 231.7639 17.6878 211.7292 8.5602 210.8611 12.4654
65 ◦C-60 min 239.1944 13.3624 238.5694 13.0393 233.2222 9.2026
65 ◦C-70 min 229.7153 27.2869 193.2917 22.9988 217.8750 19.8166
65 ◦C-80 min 235.5833 10.0790 212.1806 17.6195 221.8681 21.1605
65 ◦C-90 min 242.7014 14.1122 212.9097 14.4078 225.4097 12.6889

Boiling 0 min 289.2639 18.0830 270.4444 11.8612 246.7639 31.5975
10 min 309.2292 14.2415 290.9306 24.5509 276.1736 40.1861
20 min 332.4583 24.2135 282.8750 26.6636 279.5069 42.8291
30 min 358.3611 21.7390 312.9444 27.1971 299.7847 45.4894
40 min 372.1111 36.0177 291.1042 42.9431 307.0069 50.7790
50 min 385.0972 35.6262 317.6667 34.1487 326.9722 43.9979
60 min 399.5764 33.8432 309.6806 13.1531 360.0972 44.9452
70 min 447.2847 12.4565 359.7847 12.2366 388.1181 39.4187

X. Zong et al.



Food Chemistry: X 23 (2024) 101673

7

after the outlier rejection operation. Specific values can be seen in
Table S1, and it can be found that after the outlier removal operation,
the R2 of the model has a certain degree of increase. In contrast, the
RMSECV has a certain degree of decrease (which represents the error
between the actual value and the predicted value is reduced), which
proves the validity and necessity of this operation. All these outliers
need to be rejected in advance of the subsequent analysis of the model
because the outliers will not only mislead the selection of spectral var-
iables but also shift the model parameters, which will reduce the pre-
dictive accuracy of the model to some extent.

3.4. Spectral preprocessing results

As shown in Table S1, after processing the raw sample spectra using
different preprocessing methods, the spectral data is processed by
selecting the best preprocessing method for quantitative modelling. The
R2 and RMSECV in CARS-PLS are used to choose the best preprocessing
method and feature wavelength. The closer the R2 is to 1, the higher the
accuracy is, and the smaller the RMSECV is, the better the model pre-
diction is. The results show that for the spectra of Plato in the mashing
stage, the preprocessing method of first-order derivatives combined
with SNV achieved the best results, with an R2 of 0.8424 and an
RMSECV of 1.4338, and 139 feature variables were obtained after the
screening of the CARS algorithm. For the spectra of Plato in the boiling

phase, the same preprocessing method of first-order derivative com-
bined with SNV achieved the best results, with an R2 of 0.8699 and an
RMSECV of 0.7084, and 58 feature variables were obtained by screening
with the CARS algorithm. For the spectra of TFC in the mashing stage,
the best results were achieved by the MSC preprocessing method, which
reached an R2 of 0.7826 and an RMSECV of 14.2941, and 90 feature
variables were obtained after screening by the CARS algorithm. For the
spectra of TFC in the boiling phase, the preprocessing method of second-
order derivatives combined with SNV achieved the best results, with an
R2 of 0.8271 and an RMSECV of 23.2092, and 67 feature variables were
obtained after the screening of the CARS algorithm.

The best preprocessing results are achieved in this part of the deri-
vation and spectral scattering correction algorithm because the deriva-
tion calculation reduces the variability background, corrects the drifting
baseline, and improves the resolution and sensitivity of the spectra
(Shao, Cui, Wang, & Cai, 2019). Whereas the rough surface of the malt
causes light scattering, MSC and SNV are able to eliminate the scattering
effect caused by different particle sizes or uneven distribution.

3.5. Variable selection results

In this study, a total of 1700 wavelengths were incorporated into the
full-spectrum-based prediction model, and the accuracy of the predic-
tion model was improved after spectral preprocessing. However, there

Fig. 3. Outlier rejection results; (a) Plato and spectral outliers in the mashing stage; (b) Plato and spectral outliers in the boiling stage; (c) TFC and spectral outliers in
the mashing stage; (d) TFC and spectral outliers in the boiling stage.
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are still problems, such as long model computation time and full-
wavelength data covariance. Therefore, there is a need to address
these issues by simplifying and feature-extracting the spectral data in
order to increase the computational speed of the model. Fig.S7 illus-
trates the variable screening process for CARS. The number of times the
experiment was sampled using Monte Carlo was 50. The top graph
represents that as the number of samples increases, the wavelength
variable decreases rapidly and then decreases slowly, i.e., the wave-
length variable goes from rough screening to careful screening. The
middle plot represents the process in which the root mean square error
in the cross-validation set shows a slow decrease to a minimum and then
a rapid increase during feature wavelength picking. As the value of
RMSECV decreases gradually, it indicates that the characteristic wave-
lengths associated with Plato are included. When it reduces to the
minimum value and then increases, it predicts that the wavelengths
associated with Plato are being gradually eliminated, and the smallest
RMSECV of 1.4338 is obtained. The bottom plot shows the variation of
the regression coefficients of the wavelength variables, and the sampling
is stopped at position * when the obtained RMSECV is the minimum, at
which point the number of samples is 20. Some of the valuable variables
are eliminated if the sampling is continued. So 139 characteristic

wavelengths are extracted when the sampling number is 20 times, ac-
counting for 8.17% of the total number of wavelengths.

The number of feature wavelengths obtained after screening by the
CARS algorithm is recorded in Table.S1, and the distribution of feature
wavelengths in the full spectrum is shown in Fig. 4. From the distribu-
tion, the feature peaks at about 900 nm, 1100 nm, 1400 nm, 1900 nm,
and 2400 nm wavelengths have more feature variable distributions, and
this result proves the superiority of the CARS algorithm, it is able to
extract the spectral feature information effectively. However, the results
of cross-validation of total flavonoids and spectra at the mashing stage
using CARS were generally poor, with a non-significant change in its
predictive accuracy compared to the full-wavelength prediction model,
which could be attributed to the elimination of wavelengths containing
critical information during the wavelength screening process, resulting
in a decrease in model performance (L. Li et al., 2023).

3.6. Deep learning parameter tuning results

The structure of CNN and LSTM networks constructed in this study is
shown in Fig. 5. On the basis of determining the training parameters of
the network, the structure of the optimal quantitative network model

Fig. 4. Outlier rejection results based on optimal spectral preprocessing methods; (a) Plato and spectral variable selection results in the mashing stage; (b) Plato and
spectral variable selection results in the boiling stage; (c) TFC and spectral variable selection results in the mashing stage; (d) TFC and spectral variable selection
results in the boiling stage.
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was finally determined by changing the number of convolutional layers,
the size of the convolutional kernel, the size of the pooling window, the
size of the training batch and other structural indicators and then iter-
atively training the network. The experiment was designed with two
different variable inputs, one for the full wavelength of the spectrum and
the other with the characteristic wavelengths screened by the CARS
algorithm as inputs. It should be noted that due to the excessive number
of full-wavelength wavelengths, in order to enhance the regression
prediction effect of the network, the network adds two more fully-
connected layers, with the number of FC1 set to 100 and the number
of FC2 set to 50. In contrast, the number of FCs for the network that takes
a featured-wavelength input is set to only one. In order to enhance the
robustness and generalization of the model, a dropout layer is also
introduced as a fully connected layer of the model training process. In
addition, because the number of samples in the boiling phase (96) was
considerably less than the number of samples in the saccharification
phase (228), a new gradient was set for the training batch size in the
boiling phase in order to train the network adequately. The training
parameters of the network are shown in Table S5 and Tables S2-S4
demonstrate the process of tuning the structural parameters of the
network. A certain network parameter is varied, and successive training
is done to obtain eight models. In contrast, other parameters are kept
unchanged, and finally, the gradient with the largest average value of
R2p is determined to be the optimal structural parameter.

The final number of convolutional layers for CNN is set to 2, the
convolutional kernel size is 3, the pooling window size is set to 2, and the
Batch size is 50; for LSTM, the number of layers is set to 2, the number of

neurons in a single layer is 20, and Batch size is 50. The batch size is set
to 20 for CNN and 30 for LSTM in the boiling stage. The variation of the
Loss function and RMSE values for network training is shown in Fig. S6.
The training of a deep learning network model is actually the process of
minimizing the loss value by continuously adjusting the difference be-
tween the predicted output and the actual output. The smaller the value
of the loss function, the smaller the difference between the expected
output and the actual result (desired output). Taking the Plato data in
the mashing stage as an example, it can be seen that the RMSE of the
CNN model decreases rapidly with the increase in the number of itera-
tions, and after about 100 network training, its RMSE value decreases
substantially. Then, the decrease slows down to convergence. The LSTM
model, on the other hand, went through almost 400 iterations before the
RMSE began to converge. It can be seen that both network models have
better stability and generalization.

3.7. Quantitative prediction model results

The results of all the quantitative prediction models are shown in
Table 3. For the quantitative analysis of Plato in Qingke wort, the CARS-
LSTM model has the best prediction performance both in the mashing
and boiling stages, with its R2p reaching more than 0.93 and its RPD
reaching more than 2.8, which represents that the model has a very good
prediction effect. For the quantitative analysis of TFC, ANN took the best
prediction at the mashing stage (R2p = 0.873, RPD = 2.0504), but this
was only an approximate quantitative analysis of TFC. Similarly, CARS-
LSTM achieved the best quantitative prediction of TFC in the boiling

Fig. 5. Optimal construction of deep learning networks; (a) CNN; (b) LSTM; Conv: convolution2dLayer; BatchNorma: batchNormalizationLayer; Relu: ReluLayer;
Pooling: maxPooling2dLayer; FC: fullyconnectedLayer; Xt: Input data from memory cells; ht: Memory cell hidden layer output; Ct: Storing memory cell information;
Ct-1 and ht-1: Memory cell information from the previous moment and hidden layer outputs; Xt, Ct-1 and ht-1: Input of memory cells; ft: Forgetting part of the input
information; it: Memorize some of the input information; Ot: Control output information; Tanh: activation function; σ: sigmoid activation function.
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stage with an R2p of more than 0.9. Fig. 6 shows the best quantitative
modelling of FT-IR spectra at the mashing and boiling stages, as well as
the correction set and prediction set of predicted values versus true
values. It can be seen that their prediction sets all have a very good
fitting effect; the real and predicted values basically correspond to the
same, and the distribution trend is almost the same; none of them de-
viates from the samples with too large a distance.

Overall, CARS, combined with LSTM, performs best because the
LSTM network can store the data in the internal gating unit, through
which the selective transmission of information is realized. Simulta-
neous quantitative analysis of multiple chemical components by
comprehensively analyzing the correlation between chemical compo-
nents and spectra (Zhu et al., 2022). The variable selection algorithm
can better obtain the relevant characteristic information of Plato and
total flavonoid substances, thus improving the accuracy and stability of
the prediction model. For example, Suleiman A. Haruna et al. explored
the potential of combining near-infrared spectroscopy with an efficient
variable selection algorithm to quantitatively predict the total flavonoid
(TFC) content of raw peanut seeds. The results showed that the Si-CARS-
PLS model provided the best fit for total flavonoids (R2p = 0.9137, RPD
= 2.49) (Haruna et al., 2023). For both variable input methods, it is easy
to see that the full-wavelength input method is not only less accurate but
also time-consuming. The advantage of this approach is that it does not
require any preprocessing of the spectrum, and the disadvantage is that
the design and construction of the network module have some diffi-
culties. The effect of the strategy of CARS combined with LSTM is also
demonstrated in Zhao et al. ‘s study. They combined CARS and LSTM to
explore deep features hidden in sensitive wavelengths. They showed
that the hybrid depth features of CARS-LSTM can capture complex
spectral variations, which can help to improve the relationship between
chemical composition and spectral data (R. Zhao et al., 2023).

However, compared to LSTM, CNN did not achieve the desired pre-
diction results. CNN performs moderately well for the quantitative
prediction of Plato and a bit poorly for the quantitative prediction of
TFC. CNNs can reduce the number of parameters by pooling layers to

reduce the data dimensions during network training. However, the
pooling layer may cause a loss of internal information and affect the
accuracy of the training. Considering multi-layer operations and com-
plex non-linear connections, CNNs are often questioned for their poor
interpretability, and neural network-based models have been criticized
as black boxes with too little interpretability (Zhang et al., 2020).
Therefore, it is hypothesized that the CNN structure designed in this
experiment fails to effectively extract the microscopic and macroscopic
features hidden in the spectra. Also, the number of samples in the boiling
phase is too small, which also prevents the CNN from being adequately
and effectively trained (Nallan Chakravartula et al., 2022).

Overall, the accuracy of the best model prediction results still needs
to be improved, probably because the spectra are more likely to be
affected by the external environment during the acquisition process,
such as the light source, the sampling depth, and the position of the fiber
optic probe can also cause sampling errors. The experimentally devel-
oped model is also only applicable to the prediction of the content of the
components of interest using the same brewing process conditions.
Applying the CNN model to NIR can merge multiple input channels of
different dimensions to give higher performance, and it has higher ac-
curacy performance compared to PLS. However, deep learning models
also have their limitations. For example, deep learning requires a large
dataset; otherwise, it is easy to overfit. Secondly, the number of pa-
rameters used in the model is large, and the process of parameter tuning
can be complicated. In addition to this, the hardware requirements are
high, and many parameters need to be trained.

4. Conclusions

In this study, the Plato and TFC of wort during Qingke beer brewing
were analyzed by quantitative modelling using FT-IR, and the best
quantitative model for each stage was obtained (Plato-Mashing-CARS-
LSTM: R2p = 0.9368, RPD = 2.8582; Plato-Boiling-CARS-LSTM: R2p =

0.9398, RPD= 2.9263; TFC-Mashing-ANN: R2p= 0.873, RPD= 2.0504;
TFC-Boiling-CARS-LSTM: R2p= 0.9154, RPD= 2.4842). The changes in

Table 3
Modelling results for quantitative prediction of Plato and TFC in wort.

Analysis
object

Step Preprocessing
method

Characteristic wavelength
number

Modelling
Method

R2c RMSEC R2p RMSEP RPD Time

Plato Mashing DE1-SNV 139 PLS 0.9669 0.6583 0.8898 1.2027 2.1913
LS-SVM 0.9998 0.0503 0.8391 1.5367 1.8383
ANN 0.9957 0.3828 0.842 2.0392 1.8536
CARS-CNN 0.9928 0.3056 0.8419 1.4731 1.8531 54 s
CARS-LSTM 0.9992 0.0962 0.9368 1.0204 2.8582 50s
CNN 0.8667 1.3944 0.7516 1.7199 1.5160 192 s
LSTM 0.9337 0.9771 0.828 1.5309 1.7834 80s

Boiling DE1-SNV 58 PLS 0.975 0.3118 0.8689 0.6956 2.0203
LS-SVM 0.9995 0.0419 0.8667 0.8188 2.0047
ANN 0.9978 0.1691 0.8669 0.869 2.0061
CARS-CNN 0.9862 0.2326 0.8822 0.6217 2.1237 30s
CARS-LSTM 0.9964 0.1178 0.9398 0.4503 2.9263 26 s
CNN 0.7971 0.9608 0.4144 0.9608 1.0988 179 s
LSTM 0.8266 0.8831 0.6395 1.0741 1.3007 42 s

TFC Mashing MSC 90 PLS 0.8824 10.5673 0.6634 16.5451 1.3364
LS-SVM 0.9792 4.3963 0.6871 17.2507 1.3763
ANN 0.9655 8.2394 0.873 17.5415 2.0504
CARS-CNN 0.8793 10.5723 0.7534 15.5734 1.5208 52 s
CARS-LSTM 0.8969 9.5823 0.8385 13.5388 1.8352 48 s
CNN 0.8836 10.6249 0.5855 22.8922 1.2335 212 s
LSTM 0.8333 13.2318 0.4429 23.0711 1.1154 115 s

Boiling DE2-SNV 67 PLS 0.9842 6.7002 0.8842 21.541 2.1408
LS-SVM 0.999 1.7272 0.7276 32.654 1.4577
ANN 0.9963 4.991 0.7972 27.8567 1.6564
CARS-CNN 0.9762 8.376 0.736 31.7678 1.4771 30s
CARS-LSTM 0.9991 1.5835 0.9154 18.2125 2.4842 28 s
CNN 0.8136 24.7113 0.3813 47.0739 1.0817 132 s
LSTM 0.7211 29.8681 0.5562 40.1199 1.2033 44 s
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Fig. 6. Optimal quantitative prediction model; (a) Correction and prediction sets for Plato-M-CARS-LSTM model; (b) Correction and prediction sets for Plato-B-
CARS-LSTM model; (c) Correction and prediction sets for TFC-M-ANN model; (d) Correction and prediction sets for TFC-B-CARS-LSTM model.

X. Zong et al.



Food Chemistry: X 23 (2024) 101673

12

Plato and TFC during the mashing and boiling stages of different pro-
cesses were also analyzed, and the mechanisms and reasons behind them
were discussed. This experiment also explored the influence of the
variable input method on the prediction effect of the deep learning
network model and found that the variable selection algorithm can
better extract the characteristic information of the substance, which in
turn improves the robustness of the prediction accuracy of the model to
adapt to the dynamic change effect, and provides guidance for on-site
monitoring and management. By comparing the impact of deep
learning methods and traditional machine learning modelling methods,
it is demonstrated that deep learning methods have better prediction
performance based on a sufficiently large number of samples. The
application of deep learning methods to spectral analysis is worthy of
recognition. However, there are still some problems and difficulties,
such as the best input method of spectral data, the best optimization
algorithm of the model, the limitation of the spectral dataset to the
functional innovation of the network model structure, and so on, are
worthy of more research and exploration. Subsequently, the model will
be further optimized, the sample data will be expanded, and the
experimental model validation will be carried out, with a view to using
the model in the production line for rapid detection of quality control of
Qingke beer brewing, and to provide theoretical basis and technical
support for the further development of the Deep Learning-Near Infrared
online beer brewing process monitoring system.
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