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Abstract: Dysregulation of receptor tyrosine kinase-induced pathways is a critical step driving the
oncogenic potential of brain cancer. In this study, we investigated the role of two members of the
Sprouty (Spry) family in brain cancer-derived cell lines. Using immunoblot analyses we found
essential differences in the pattern of endogenous Spry3 and Spry4 expression. While Spry4 expression
was mitogen-dependent and repressed in a number of cells from higher malignant brain cancers,
Spry3 levels neither fluctuated in response to serum withdrawal nor were repressed in glioblastoma
(GBM)-derived cell lines. In accordance to the well-known inhibitory role of Spry proteins in fibroblast
growth factor (FGF)-mediated signaling, both Spry proteins were able to interfere with FGF-induced
activation of the MAPK pathway although to a different extent. In response to serum solely, Spry4
exerts its role as a negative regulator of MAPK activation. Ectopic expression of Spry4 inhibited
proliferation and migration of GBM-originated cells, positioning it as a tumor suppressor in brain
cancer. In contrast, elevated Spry3 levels accelerated both proliferation and migration of these cell
lines, while repression of Spry3 levels using shRNA caused a significant diminished growth and
migration velocity rate of a GBM-derived cell line. This argues for a tumor-promoting function of
Spry3 in GBMs. Based on these data we conclude that Spry3 and Spry4 fulfill different if not opposing
roles within the cancerogenesis of brain malignancies.

Keywords: Sprouty proteins; brain cancer; FGF-mediated signaling; tumor suppressor;
tumor promoter

1. Introduction

The term brain cancer summarizes multiple subtypes of tumors originating from different tissues
of the central nervous system [1]. The most prevalent type of brain tumors are gliomas which
arise from glial or precursor cells. They include, among others, lower graded astrocytoma (AC) and
oligodendroglioma (ODG), as well as the WHO Grade IV classified glioblastoma multiforme (GBM)
and its variant gliosarcoma (GS). GBM are the most common brain tumors and patients have a poor
prognosis with a five-year survival rate of only 5.6% [2]. A group of neuronal tumors arising in the
central but also in the autonomic nervous system are the rare neuroblastoma (NB) which are the
second most common tumors in children [3]. Like in all human cancer cells, malignant transformation
in gliomas is driven by typical chromosomal changes. The Cancer Genome Atlas project identified
alterations in the network regulated by receptor-tyrosine kinases (RTK) as a frequent molecular cause of
these cancers. Important molecules responsible for transducing the signals like the epidermal growth
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factor receptor (EGFR), the phosphatidylinositol 3-kinases (PI3K), NRAS and BRAF are frequently
altered to a more efficient state, while inhibitors of their activities like neurofibromin (NF1) and the
Phosphatase and TENsin homolog (PTEN) are often deleted or less effective [4].

Sprouty (Spry) proteins which represent modulators of RTK-driven signaling pathways were
first identified as inhibitors of fibroblast growth factor (FGF)-induced signaling in Drosophila [5].
In humans, four homologues were described [6]. In contrast to the other Spry family members which
are ubiquitously expressed in all tissues [6], the Spry3 encoding gene localizes to the pseudoautosomal
region 2 and its expression is rarely documented. Only in brain and glia, Spry3 expression is doubtless
detected [7]. Spry proteins fulfill important functions in many RTK-mediated signal transduction
cascades. Primarily, they are known to interfere specifically with MAPK-ERK activation [8–10], but
in other systems they were shown to influence the PI3K pathway as well [11]. Additionally, Spry
proteins are able to interfere with phospholipase C-induced pathways [12]. In contrast to their
manifold inhibitory function on RTK-mediated pathways, Spry proteins are able to interact with
the E3-ubiquitin ligase c-Cbl and thereby constrict the degradation of some RTKs as shown for
the EGFR [13]. Considering their functions in fine tuning of the cellular response to RTK-inducing
signals, members of the Spry family are good candidates for an important role in the tumorigenesis
of different cells. Accordingly, Spry2 and/or Spry4 are shown to act as tumor-suppressors in cancer
originated from, e.g., lung [14–16], liver [17], breast [18,19], prostate [20] and bone [21]. In other types
of tumors, members of the Spry protein family fulfill a tumor-promoting task as it was demonstrated
for Spry2 in colon carcinoma [22,23] and for Spry1 in rhabdomyosarcoma [24]. In brain tumors,
repression of Spry2 has been shown to interfere with proliferation of GBM-derived cell lines and tumor
formation [25,26]. Compatible with the tumor-promoting function of Spry2 in brain, the Spry proteins
are important for other neuronal processes. Spry2 as well as Spry4 downregulation is associated with
promoted axon outgrowth [27,28], and Spry1, Spry2 and Spry4 inhibit FGF-induced processes in the
cerebellum [29]. Data generated in Xenopus document that Spry3 is important in regulating axon
branching of motoneurons [30], and the finding that Spry3 is associated with autism susceptibility
indicates a further role in the human brain [7].

In the presented study, we investigated the expression of Spry3 and Spry4 in brain cancer-derived
cells and analyzed how a modulation of their expression influences the behavior of glioblastoma-derived
cell lines.

2. Material and Methods

2.1. Cell Lines

The astrocytoma-derived cells (SW1088) and both neuroblastoma-derived cell lines (SK-N-DZ
and SK-N-FI), as well as the glioblastoma-derived cell lines DBTRG-05MG, T98G and U373 and the
oligodendroglioma-derived cell line Hs683 were purchased from the American Type Culture Collection
(ATCC). NMC-G1, a cell line established from an astrocytoma, and AM-38, a glioblastoma originated
cell line, were obtained from the JCRB cell bank. Cell lines LN40 and LN140 were kindly provided by
Dr. Tribolet (Lausanne). Cell lines BTL1529, BTL2177 and BTL53 were established from glioblastoma
diagnosed patients and BTL1376 and BTL2175 from gliosarcoma patients at the Neuromed Campus in
Linz (NML) as described [31]. The cell line VBT72 was established from a glioblastoma at the Institute
for Cancer Research [31]. These cell lines were kindly provided by Walter Berger (Medical University
of Vienna). All cells were cultured in the recommended medium containing 10% fetal calf serum (FCS)
and supplemented with penicillin (100 U/mL) and streptomycin (100 µg/mL) at 37 ◦C in 7.5% CO2.

2.2. Adenoviral Infection of Cells

The coding sequence of human Spry3 was amplified by PCR using Pfx Polymerase (Invitrogen) with
upstream primer 5-AGCTCTGGATCCATGGATGCTGCGGTGACAGAT-3 (Spry3-s) and downstream
primer 5-TAGCGAATTCCTCGAGTCATACAGACTTT-3 (Spry2-as) to add appropriate cloning
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sites. The amplified DNA fragments were subsequently cloned via BamHI/EcoRI into a pADlox plasmid
to generate pADlox-Spry3. To construct an adenovirus expressing shRNA directed against Spry3, the
CMV promoter of pADlox was exchanged by the human U6 promoter of the pSilencer Vector. Two
oligonucleotides harboring an shRNA directed against Spry3 were annealed: sh-Spry3 sense 5′-TCG
AGC GCA GCT GTT CAA TAG GCA GAA TTT GTT GAA GCT TGA ACA AAT TCT GCC TAT TGA
ACA GCT GCG CTC TTT TTT-3′ and shSpry3 as 5′-AAT TAA AAA AGA GCG CAG CTG TTC AAT
AGG CAG AAT TTG TTC AAG CTT CAA CAA ATT CTG CCT ATT GAA CAG CTG CGC-3′. The double
stranded DNA with overlapping XhoI and EcoRI sites was then inserted in the digested pAdloxU6
vector to obtain pADlox-shSpry3. To obtain a virus directed against Spry4, two oligonucleotides
(5′-TCGAGCTCAGCTCGCTACCTCCGCGGCGATGTTGAAGCTTGAACATCGCCGCGGAGGTAGC
GAGCTGAGCTGTTTTTT-3′ and 5′-AATTAAAAAACAGCTCAGCTCGCTACCTCCGCGGCGATGTT
CAAGCTTCAACATCGCCGCGGAGGTAGCGAGCTGAGC-3′) were annealed and subcloned the
same way to construct pADlox-shSpry4. The correct cloning was confirmed by sequencing analysis.
Recombinant viruses were produced as described [32]. Adenoviruses expressing Spry4 or control
proteins (luciferase, lacZ or CFP) were already generated [21,33].

The optimal concentrations of the viruses for each cell line was determined by infecting the
cells with different dilution of adenoviruses expressing Cyan Fluorescence Protein (CFP). The viral
concentration of the adenoviruses expressing different proteins were calculated according to their
OD260. For infection, viruses were diluted in serum-free medium.

2.3. Cell Signaling Assay

For analyzing ERK phosphorylation, 105 cells were seeded into Ø6 cm tissue culture plates
in DMEM medium containing 10% FCS. Twenty-four hours later, the cells were washed with and
incubated in serum-free medium. Next day cells were infected with adenoviruses and incubated for
another 2 days before 20% FCS or 10ng/mL FGF2 were added.

2.4. Scratch Assay

For the scratch assay, 6 × 105 cells were infected with adenoviruses expressing the control proteins,
Spry3 or Spry4, respectively. A total of 24 h post infection, cells were transferred into a 6-well plate.
The next day, three straight scratches per well were introduced into the monolayer using a sterile
yellow pipette tip. To remove debris, cells were washed twice with 1 x PBS. Finally, 3 mL of DMEM
supplemented with 10% FCS were added. The closing of the scratch was pictured by the VISITRON
Live Cell Imaging System (Visitron, Puchheim, Germany) at 10x magnification using VisiView Software.
The running time was set to 40 h and for monitoring a time interval of 30 min was chosen. Using ImageJ
software, gap width of three scratches were calculated every two hours. Migration velocity was
assessed by applying linear regression using GraphPad Prism software. Migration velocity of three
independent experiments were compared.

2.5. Growth Curve

Growth curves were performed and analyzed as described [21]. Each growth curve was counted
in triplicate and after assessing the continuity of the growth by depicting it in a semi-logarithmical
graph, the doubling time was calculated by applying an exponential growth equation. The calculated
doubling times of at least three independent experiments were compared to each other and differences
between two groups were calculated using an unpaired t-test.

2.6. Immunoblot

Immunoblotting was carried out as described [34]. The antisera against Spry4 and Spry3
were produced and affinity-purified as described [15]. The Spry3 antibodies were raised against
the N-terminal 200 amino acids of the human homolog. As a loading control, antibodies against
GAPDH (sc-365062) and ERK 1/2 (sc-514302) were purchased from Santa Cruz. Antibodies against
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phosphorylated extracellular signal-regulated kinase (pERK) (#9101) were received from Cell Signaling
Technology. The horseradisch peroxidase-coupled secondary antibodies were purchased from
GE Healthcare.

3. Results

3.1. In Brain Cancer-Derived Cell Lines Spry3 Protein is Commonly Expressed Independent of
Mitogen Availability

First, we investigated if Spry3 expression is influenced by the grade of malignancy or the
histological background of brain cancer-derived cells. In order to analyze Spry3 protein levels,
antibodies had to be produced, affinity-purified and their sensitivity as well as their specificity had
to be assessed. To analyze their sensitivity, U373 cells were infected with decreasing amounts of
adenovirus expressing Spry3 protein. As depicted in Figure 1A, the antibodies detected a single band
at 33 kDa and in cells infected with decreasing titers of Spry3-encoding adenoviruses, the intensity of
the detected band corresponded to the amount of introduced viruses while the cellular protein content
was comparable. To control the specificity, all four Spry proteins were ectopically expressed by using
the respective adenoviruses. Two days after infection, sufficient amounts of all Spry proteins were
expressed, but the Spry3 antibody only detected Spry3 (Figure 1B). In the subsequent experiment, we
determined the endogenous levels of Spry3 in different brain cancer-derived cell lines. To analyze
if, like it was shown for Spry2 and Spry4 [35], Spry3 protein expression is dependent on mitogens in
the cellular environment, serum was withdrawn from part of the cells (-), and their Spry3 levels were
compared to those of cells cultivated in the presence of serum (+). In only 1/17 cell lines Spry3 protein
was undetectable. Most of the cell lines express detectable amounts of Spry3 proteins which appear in
a distinguishable pattern of bands. Usually the slower migrating bands were more abundant in the
presence of serum indicating that a serum-dependent modification is applied to Spry3 (Figure 1C).
Concerning the influence of the histopathologic origin, we observed that in the more advanced
GBM-derived cell lines the expression of Spry3 was on average higher than in cells originated from the
lower graded ODG and AC (Figure 1D,E). The highest expression of Spry3 was detected in the two
NB-derived bone morrow metastases. These observations would favor rather an oncogenic than a
tumor-suppressing function of Spry3 in brain cancers. Interestingly, the serum had not the expected
influence on Spry3 expression, as half of the cell lines failed to adapt their Spry3 expression in response
to mitogen availability. In five of the cell lines, its expression even slightly increased (less than 2-fold)
if serum was withdrawn. A more pronounced change of Spry3 in response to serum in form of an
increase or decrease was only observed in one cell line each (Figure 1D,F). Therefore, it is unlikely that
mitogen-induced signals play an important role in regulating the expression of Spry3.
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Figure 1. Expression of Spry3 protein in brain cancer-derived cell lines. (A) U373 cells were infected 
with decreasing amounts of adenoviruses expressing Spry3 protein and an immunoblot using Spry3 
antibodies was performed. Equal loading was verified by Ponceau S staining of the immunoblot. (B) 
Adenoviruses expressing Spry1, Spry2, Spry3 or Spry4 were introduced into U373 cells. A total of 48 
h post-infection cells were harvested and proteins were isolated. An immunoblot sequentially probed 
with all of the indicated antibodies is depicted. (C) Logarithmically growing cell lines derived from 
oligodendroglioma (ODG), astrocytoma (AC), glioblastoma (GBM), gliosarcoma (GS) and 

Figure 1. Expression of Spry3 protein in brain cancer-derived cell lines. (A) U373 cells were infected
with decreasing amounts of adenoviruses expressing Spry3 protein and an immunoblot using Spry3
antibodies was performed. Equal loading was verified by Ponceau S staining of the immunoblot. (B)
Adenoviruses expressing Spry1, Spry2, Spry3 or Spry4 were introduced into U373 cells. A total of 48 h
post-infection cells were harvested and proteins were isolated. An immunoblot sequentially probed
with all of the indicated antibodies is depicted. (C) Logarithmically growing cell lines derived from
oligodendroglioma (ODG), astrocytoma (AC), glioblastoma (GBM), gliosarcoma (GS) and neuroblastoma
(NB) were cultured for 24 h without (-) and with (+) serum. Using Western blot, endogenous Spry3
and GAPDH proteins were determined. (D) Amounts of Spry3 proteins were measured as ratio to an
external control (MG63) by Image Quant software and normalized to GAPDH. Quantification results
of 2–3 Western blots depicted as mean ± SEM are shown in a column graph. Cell lines were sorted
according to their histopathological origin. (E) A scatterplot presenting the Spry3 expression across the
histopathological subgroups of brain cancer is shown. (F) Calculated Spry3 levels from cells grown in
serum-deprived (open circle) and –supplemented (closed circle) mediums are compared.
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3.2. Spry4 Protein Expression is Repressed in Cell Lines Derived from More Malignant Brain Tumors, but
Usually Still Serum-Dependent

In order to investigate that growth factor-induced signaling in the analyzed cell lines is able to
sufficiently influence the negative feedback loop responsible for controlling Spry protein expression,
Spry4 protein levels were determined in comparison. In some cell lines, Spry4 expression was very
prominent, but in five of them, we were not able to detect Spry4 proteins. Like in the case of Spry3,
Spry4 frequently appeared in more than one migrating form (Figure 2A). Compared to the levels
detected in cells derived from lower graded patients’ tissues, usually Spry4 expression in GBM and
GS is strongly repressed, although in few of these cell lines Spry4 protein was definitively abundant
(Figure 2B,C). Only in five of the cells lines the expression of Spry4 in serum-free conditions was
insignificantly changed when compared to the parallel in serum cultivated cell counterparts. Seven of
the brain-derived cell lines displayed a more than twofold decrease of Spry4 protein as a consequence of
serum starvation. Moreover, in three of them the detected difference between the serum and non-serum
condition exceeded a fivefold dimension (Figure 2B,D). When Spry3 and Spry4 expression in the
different brain-derived cell lines were compared (Figure 2E), we found that there was no correlation
indicating that Spry3 and Spry4 expression are regulated by independent mechanisms.
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levels in 17 brain cancer-derived cell lines which were cultured devoid of (−) and with (+) serum. 
GAPDH served as loading control. (B) Quantification of Spry4 was performed using Image Quant 
5.0. An external control was arbitrarily set as 1 and loading differences were adjusted to GAPDH 
expression. A column graph summarizes the results of 2–3 independent experiments. (C) Spry4 
expression in serum-supplemented growth condition was compared. A scattered dot-plot grouping 
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Figure 2. Expression analysis of endogenous Spry4 protein in brain cancer cells. (A) Spry4 protein
levels in 17 brain cancer-derived cell lines which were cultured devoid of (−) and with (+) serum.
GAPDH served as loading control. (B) Quantification of Spry4 was performed using Image Quant
5.0. An external control was arbitrarily set as 1 and loading differences were adjusted to GAPDH
expression. A column graph summarizes the results of 2–3 independent experiments. (C) Spry4
expression in serum-supplemented growth condition was compared. A scattered dot-plot grouping
the cells according to the histological origin is depicted. (D) A comparison of Spry4 levels detected
in starved (open circle) and stimulated (closed circle) cells is presented. (E) Correlation of Spry3 and
Spry4 expression was calculated using GraphPad Prism.
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3.3. MAPK Activation in Response to FGF and Serum is Effectively Inhibited by Spry4 While Spry3 Failed to
Fulfill This Function in the Presence of Serum

To analyze if Spry3 and Spry4 are able to interfere with FGF-induced signaling, U373 cells were
serum-deprived for 3 days before FGF2 was added for 5, 10 and 20 min. Within the starvation period
a portion of cells were infected with viruses expressing Spry3, Spry4 or a control protein. In control
treated cells, adding of FGF induced the MAPK pathway after 10 min as measured by determining the
fraction of pERK (Figure 3A). In cells expressing excessive amounts of Spry3, like in the control cells,
activation of the MAPK pathway was also observed after 10 min, but the extent of phosphorylation
was less pronounced (Figure 3A,C). In case of ectopic Spry4 expression we detected that the proportion
of activated ERK in serum-starved conditions was clearly less distinct. The addition of FGF caused an
augmentation of the pERK levels, which was less intense than in the other two groups (Figure 3A,C).
These data evince the inhibitory role of Spry proteins on FGF-mediated signaling, but demonstrated
that Spry4 was more potent concerning interference with MAPK activation than Spry3.

In order to asses if the two Spry forms differ concerning their potential to inhibit MAPK activation
in response to serum, a respective cell signaling assay was applied. In response to serum, ERK was
immediately phosphorylated to a much higher extent (at least 10 times the value observed in starved
cells) than in FGF-treated cells (two- to threefold induction). When Spry3 was expressed, the induction
was slightly delayed but the amplitude was not significantly diminished. In contrast, Spry4 inhibited
ERK phosphorylation significantly. As already observed in case of FGF induction, the basal pERK
levels of cells cultivated in the absence of mitogens was clearly diminished, but also the maximal
levels of pERK phosphorylation were reduced in comparison to the cells expressing a control or Spry3
protein. These data demonstrate that Spry4 can potently interfere with induction of the MAPK and
indicate that Spry4 was more potent concerning interference with MAPK activation than Spry3.
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(C) A summary of calculated mean values ± SEM of the pERK/ERK values from three experiments 
using FGF2 to stimulate the cells is depicted. Significance between the three groups was calculated by 
using a one-way ANOVA test in GraphPad prism. (D) The bands of pERK and ERK in response to 
serum were densitometrically quantified using ImageQuant 5.0, and the highest values of each 
experiment were set as 1. The graph summarizes three experiments. Significance was determined by 
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proteins. Both of these cell lines were easy to infect by adenoviruses as tested by using CFP expressing 
adenoviruses (data not shown). Furthermore, in DBTRG-05MG Spry3 appears mainly in its slower 
migrating form and Spry4 levels are pronounced while in U373 Spry3 mainly appears in its faster 
migrating form and a shift is only detected after serum addition. Spry4 was not detected in this cell 
line (Figures 1C and 2A). To measure cell proliferation, growth curve analyses were performed. In 
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Figure 3. Influence of Spry3 and Spry4 proteins on ERK activation by FGF2 and serum. Glioblastoma
(GBM)-derived cells (U373) were serum-starved for 24 h and then infected with adenoviruses expressing
either a control protein (luciferase), Spry3 or Spry4. Two days later, cells were incubated with FGF2 (A)
or serum (B) for the indicated times. Representative immunoblots of an experiment using antibodies
recognizing pERK1/2 and total ERK1/2 are shown. Expression of Spry3 and Spry4 were verified
by the respective antibodies. Using ImageQuant 5.0, the pERK1/2 bands detected were quantified
and normalized to the corresponding values obtained for the ERK expression. The highest values
were arbitrarily set as 1. The results of the quantification for the presented blots are depicted. (C) A
summary of calculated mean values ± SEM of the pERK/ERK values from three experiments using
FGF2 to stimulate the cells is depicted. Significance between the three groups was calculated by using
a one-way ANOVA test in GraphPad prism. (D) The bands of pERK and ERK in response to serum
were densitometrically quantified using ImageQuant 5.0, and the highest values of each experiment
were set as 1. The graph summarizes three experiments. Significance was determined by a one-way
ANOVA test in using GraphPad prism software. * p < 0.05; ** p < 0.01; *** p < 0.001.

3.4. In Brain Cancer-Derived Cell Lines, Spry3 and Spry4 Expressions Have an Opposing Effect on
Cell Proliferation

To investigate if Spry3 and Spry4 interfere with cell proliferation in brain cancer-derived cells,
we selected DBTRG-05MG and U373 cell lines to apply ectopic overexpression of the respective Spry
proteins. Both of these cell lines were easy to infect by adenoviruses as tested by using CFP expressing
adenoviruses (data not shown). Furthermore, in DBTRG-05MG Spry3 appears mainly in its slower
migrating form and Spry4 levels are pronounced while in U373 Spry3 mainly appears in its faster
migrating form and a shift is only detected after serum addition. Spry4 was not detected in this
cell line (Figures 1C and 2A). To measure cell proliferation, growth curve analyses were performed.
In DBTRG-05MG, Spry3 expressing cells double significantly faster (0.9 ± 0.01 doublings per day) than
control treated cells (0.8 ± 0.02) while Spry4 expression decelerate the proliferation process to only
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0.69 doublings per day (Figure 4A,B). Corroborating in U373, Spry3 accelerate cell proliferation from
0.56 ± 0.01 to 0.63 ± 0.01 doublings per day and Spry4 expression inhibits cell expansion to 0.51 ± 0.01
(Figure 4C,D). In both cell lines, Spry3 and Spry4 proteins are clearly overexpressed if the respective
adenoviruses are applied (Figure 4E).

These data demonstrate that cell proliferation is promoted by Spry3 and suppressed by Spry4
expression arguing for an opposing effect of these Spry members.
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Figure 4. Influence of ectopic Spry3 and Spry4 expression on cell proliferation. Proliferation of cells
overexpressing the indicated proteins was assessed by growth curve analysis. (A) The number of
DBTRG-05MG cells were counted every 24 h for 5 days and are depicted as growth curves using a
semi-logarithmical scale. A representative growth curve of three replicates is depicted. (B) Using
GraphPad Prism, doubling times of at least three independent growth curve analyses performed
with DBTRG-05MG cells were calculated and presented as mean doublings per day ± SEM. (C) A
representative growth curve of U373 cell line is shown. (D) Using exponential growth equations,
doubling times of U373MG cells were calculated and shown as doublings per day. Significance was
assessed using an unpaired t-test in GraphPad Prism and mean ± SEM are shown. * p < 0.05; ** p < 0.01;
*** p < 0.001 (E) Overexpression of Spry3 and Spry4 in the GBM cell lines DBTRG-05MG (left) and U373
(right) were verified by immunoblotting.
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3.5. Spry3 and Spry4 Exert a Contrary Effect on the Migratory Capabilities of Brain Cells

Aberrant cell migration is another RTK-mediated process contributing to the malignancy of cancer
cells. Therefore, we next investigated if the expression of Spry3 and Spry4 proteins modulate the
closure of the gap in a scratch assay. In DBTRG-05MG, ectopic expression of the Spry3 protein has a
prominent influence on cell migration by augmenting their velocity from 26.1 ± 1.4 to 36.1 ± 0.5 µm/h.
In contrast, Spry4 expression slows down these cells to 21.3 ± 0.99 µm/h (Figure 5A,B). Both effects
were significant.Cells 2019, 8, x FOR PEER REVIEW 12 of 18 
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Figure 5. Influence of Spry3 and Spry4 expression on cell migration of GBM-derived cell lines.
(A) Scratch assay was performed in DBTRG-05MG cells infected with adenoviruses expressing the
indicated proteins. Representative curves of distance coverage were obtained by measuring decreasing
gap widths of three replicative scratches at every two-hour time points using ImageJ. (B) Using linear
regression, migration velocities were calculated. Means of at least three experimentations ± SEM are
summarized as column bars. (C) Representative measurements of replicative gap closure in a close
layer of U-373 MG cell expressing the indicated proteins are shown. (D) Velocities of at least three
experiments were calculated using linear regression in GraphPad Prism and summarized in a graph
depicting means ± SEM. An unpaired t-test was used to acquire significance. p < 0.05; ** p < 0.01;
*** p < 0.001.

Compared to DBTRG-05MG, U373 cells are slower migrating and the effect of the Spry proteins
was less developed. Spry3 has no significant effect on the velocity of gap closure although a slightly
faster calculated average velocity points towards a positive effect of its expression on cell migration.
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In accordance with the data obtained in DBTRG-05MG, Spry4 expression in U373 delays the closure
of the gap significantly. The control-treated cells move with a speed of 22.9 ± 1.0 µm/h towards the
opposite front, while in the presence of Spry4 as an average speed only 15.4 ± 0.5 µm/h were calculated
(Figure 5C,D).

These observations indicate that in brain cells, Spry3 and Spry4 exert different effects not only on
cell proliferation but also on cell migration.

3.6. Repressed Expression of Spry3 Inhibits Cell Proliferation and Migration

To further verify our observations, we wanted to investigate if lowered Spry expressions would
influence cell proliferation in the opposite way than their overexpression. Therefore, an adenovirus
expressing a shRNA directed against Spry3 was introduced into DBTRG-05MG and Spry3 levels were
compared to the ones in control-treated and Spry3 overexpressing cells. As depicted in Figure 6A,
expression of shSpry3 failed to modulate Spry3 levels, while the overexpression was successfully
applied. In contrast, in U373 cells, expression of shRNA targeting Spry3 mRNA resulted in clearly
lowered levels of Spry3 protein (Figure 6B). Since Spry4 is not expressed in detectable amounts in U373,
it was just useful to express shSpry4 in DBTRG-05MG, where similar to the application of shSpry3, the
endogenous expression of the protein was unaffected by expressing a shRNA directed against Spry4
(data not shown). Next, we performed a growth curve analysis using shSpry3 in U373 cells. Reduced
Spry3 expression caused an inhibition of cell proliferation while in parallel overexpression accelerated
the doubling of these cells (Figure 6C). Compared to control cells, doubling of shSpry3-treated cells
was reduced from 0.58 to 0.50 doublings per day, substantiating an oncogenic effect of Spry3 in brain
cancer (Figure 6D). To evaluate if a repression of Spry3 in addition to its interference with proliferation
is also influencing cell migration, Spry 3 levels of U373 cells were modulated by treatment with the
respective adenoviruses and a scratch assay was performed. The time to close the gap was significantly
delayed when Spry3 levels were lowered (Figure 6E). On average, cells expressing a shRNA targeting
Spry3 cover a distance of 21 µm in an hour, while control treated cells move about 1.2-fold faster,
while Spry3 overexpression had no significant influence on the velocity of gap closure (Figure 6F).
These data demonstrate that like proliferation, cell migration of GBM-derived cells is hindered if less
Spry3 proteins are present confirming the tumor-promoting function of Spry3.
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Figure 6. Verification of Spry3 impact on cell proliferation and migration by downregulation of the
endogenous protein levels. DBTRG-05MG (A) and U373 (B) cells infected with adenoviruses expressing
Spry3, shSpry3 or a control protein were analyzed concerning their Spry3 protein levels. (C) Three days
after infection with the indicated viruses a growth curve analysis was performed in U373. (D) The
doubling time of three experiments was calculated by performing an exponential growth equation and
the mean doublings per day ± SEM are depicted. (E) U373 cell expressing the indicated proteins were
cultured to form a close layer before a scratch assay was performed. Measurements of three replicative
gaps were performed every two hours and a representative experiment is shown. (F) Velocities of three
experiments were calculated using linear regression in GraphPad Prism and a summary is depicted.
Using an unpaired t-test, significance was determined. ** p < 0.01; *** p < 0.001.

4. Discussion

Deregulated signal transduction is one of the most frequent alterations contributing to malignancy
of brain cancer. In this study we provide data showing that Spry3 and Spry4 expression may be
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altered in brain cancer and affect cell proliferation and migration in opposing ways. Both Spry proteins
are expressed in most of the brain cancer-derived cell lines, and two bands with a slightly different
migration velocity can be detected. In case of Spry3, the faster migrating band is more frequently
detected in the cells cultivated in the absence of serum. Although posttranslational modification
of Spry3 is not reported, it is likely that analog to the other family members [36] the protein is
phosphorylated at serine and/or tyrosine residues and that one of these potential modification is
causing a shift in the gel.

A comparison of the Spry3 and Spry4 protein levels in the different cell lines revealed that the
expression of these two Spry family members does not correlate. While Spry3 expression was on
average elevated in cell lines originated from higher malignant tumors, Spry4 tended to be repressed in
GBM and GS compared to cells derived from lower graded cancers. In accordance with our observation,
an earlier report describes that Spry4 is often missing or deleted in gliomas [37]. Indeed, in several
of the GBMs analyzed we were unable to detect this Spry isoform. Similarly, in lung [14,38] and
breast cancer [39], a repression of Spry4 is coinciding with a postulated tumor-suppressive function.
With regard to Spry3, in normal brain tissue its expression is well documented, but due to its low
abundance in other tissues, expression data in cancers are rarely available [6,7]. To our knowledge,
only one report by Sirivatanauksorn et al. investigated the RNA level of Spry3 as well as Spry4 in
hepatocellular cancer, and comparable to our observations in the brain, Spry4 mRNA levels were
downregulated in liver cancer-associated tissue, while Spry3 expression was unaltered [40]. With
respect to Spry2, data generated on RNA level clearly points towards an upregulation of this Spry
member in GBM when compared to non-tumor tissue [25], while a study exploring protein levels in
immunohistochemistry suggests downregulation of Spry2 in higher malignant brain cancers when
compared to lower graded tumors [41]. Another obvious different variable concerning regulation of
Spry3 and Spry4 is their dependency on mitogen availability. Like Spry1 in lung cancer cells [34],
Spry3 protein levels fail to fluctuate in response to serum-withdrawal in brain cancer-derived cells. In
contrast, Spry4 expression is usually manifold augmented when serum-containing factors are supplied.
This is in accordance with observations in lung [35,42], prostate and osteosarcoma [42]. Additionally,
it is reported that in neuronal cells derived from the dorsal root ganglion, Spry4 can be induced as a
consequence of FGF2 as well as NFG supplementation [28]. Differences in Spry3 and Spry4 expression
control are furthermore reported in bovine ovarian granulosa cells where Spry4 was increased in
response to FGF1 and FGF4, while in parallel Spry3 levels were lowered [43].

Concerning their impact on the cellular behavior, we observed that ectopic expression of Spry3
is augmenting the growth and migration rate of different GBM-derived cell lines. Corroborating,
repression of its protein levels as achieved by introducing a specific shRNA resulted in diminished cell
proliferation. This would suggest that this Spry protein member exerts a tumor-promoting role in brain
cancers. Accordingly, two different reports suggest that Spry2 is advantageous for the malignancy
of GBM [25,26]. Knock-down of its expression decelerates cell proliferation of GBM cell lines [25,26]
while astrocytes were unaffected by modulated Spry2 levels [25]. Additionally Spry2 was identified as
prognostic marker for GBM patients survival [25]. Although in most tissues Spry proteins fulfill the
function of tumor-suppressors, individual Spry proteins are promoting tumorigenic potential here
and there [44]. Spry2, for example, is above its function in GBM, shown to promote colon cancer
malignancy by increasing proliferation, migration, tumor growth [23] and invasion [22] of colon cancer
cells. In case of Spry1, an oncogenic function of the protein was demonstrated in the embryonal
subtype of rhabdomyosarcoma [24].

In contrast to Spry3 and Spry2, Spry4 expression is inhibiting cell migration and proliferation
of GBM-derived cell lines and is able to inhibit ERK phosphorylation in FGF2- and serum-induced
as well as in unstimulated GBM-derived cells. An opposing role of Spry4 to other Spry proteins is
already signified in colon carcinomas. Zhou et al. [45] demonstrated that Spry4 expression interferes
with in vitro and in vivo cell proliferation of colon cancer cells. In contrast, Spry2 and Spry1 are
fulfilling oncogenic functions in these tumors [22,23,46]. Additionally, in osteosarcoma [21] and in
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ovarian cancer [47], a tumor-suppressing role for Spry2 but not Spry4 was explicitly highlighted.
Nonetheless, cell migration is specifically inhibited by Spry4 expression in prostate [48], pancreatic [49]
and endothelial cells [50]. A concordant inhibition of proliferation and migration in case of Spry4
expression is reported for breast [18] and lung cancer cells [14]. Additionally, Spry4 can fulfill a
tumor-suppressing role by interfering with angiogenic signals and thereby inhibits neovascularization
and tumor growth [51].

5. Conclusion

In summary, our study describes that Spry3 and Spry4 exert different roles in brain cancer. Spry3
potentiates the tumorigenic potential of glioblastoma cells and Spry4 functions as tumor-suppressing
protein in this entity.
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