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To solve the problem of low accuracy and high false-alarm rate of existing intrusion detectionmodels for multiple classifications of
intrusion behaviors, a network intrusion detection model incorporating convolutional neural network and bidirectional gated
recurrent unit is proposed. To solve the problems of many dimensions of features and imbalance of positive and negative samples
in the original traffic data, sampling processing is performed with the help of a hybrid sampling algorithm combining ADASYN
and RENN, and feature selection is performed by combining random forest algorithm and Pearson correlation analysis; after that,
spatial features are extracted by the convolutional neural network, and further features are extracted by incorporating average
pooling and max pooling, and then BiGRU is used to extracts long-distance dependent information features to achieve
comprehensive and effective feature learning. Finally, the Softmax function is used for classification. In this paper, the proposed
model is evaluated on the UNSW_NB15, NSL-KDD, and CIC-IDS2017 data sets with an accuracy of 85.55%, 99.81%, and 99.70%,
which is 1.25%, 0.59%, and 0.27% better than the same type model of CNN-GRU.

1. Introduction

Network intrusion detection is a security mechanism that
has been developed in recent years to dynamically
monitor, prevent, and defend against system intrusions.
It mainly means that to find out whether the network
system is attacked or violates the security policy by
analyzing the information from several nodes of the
network. Research on intrusion detection technologies at
home and abroad has started since the 1980s and has now
developed into an integral part of the network security
architecture [1].

Traditional machine learning methods have been widely
used in network intrusion detection systems, such as
Bayesian [2–4], support vector machines [5–10], decision
tree [11–13], logistic regression [14–16], and so on. ,ey all
have achieved good results. However, these methods are not
suitable for massive and high-dimensional data, and they
cannot improve their own sensitivity to outliers and noise,
resulting in the degradation of classification performance. At
the same time, due to the continuous development of digital

technology, network attack methods are becoming more and
more diversified, and the traditional machine learning
methods have been difficult to meet the needs of users.

In recent years, deep learning techniques have been
widely used in natural language processing [17], image
recognition [18], and so on. It forms more abstract non-
linear high-level representations by combining low-level
features and then mines the input-output relationships
between data, which has also achieved better results in the
field of intrusion detection. Deep learning techniques
commonly used in the field of intrusion detection include
convolutional neural network (CNN), recurrent neural
network (RNN), deep belief network, and so on. ,e lit-
erature converts the data traffic into individual pixel points
in bytes to obtain the images generated by the traffic; then
inputs the images into the convolutional neural network for
convolution, pooling, and other operations; and finally
obtains the classification results. ,e method achieves high
accuracy in binary classification and multiclassification
problems [19]. ,e literature uses the recognized KDD99
data set to conduct experiments, in which the long short-
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term memory (LSTM) network is used to complete the
selection of parameters and achieve more satisfactory ex-
perimental results. However, the method leads to a high
false-alarm rate due to the improper selection of training
parameters [20]. A hierarchical intrusion detection system
based on spatial and temporal features is proposed in the
literature. It first learns low-level spatial features of network
traffic by deep convolutional neural networks and then
acquires high-level temporal features by LSTM, but the
method does not consider the problems of feature fusion and
data imbalance [21]. ,e paper combines the features of
WaveNet and bidirectional gated recurrent unit (BiGRU) for
feature extraction and proposes an intrusion detection
method that fuses WaveNet and BiGRU. ,e model of the
paper can achieve better detection accuracy but does not
consider the problem of sample imbalance [22].

Now the intrusion detection techniques have made great
progress, but there are also the following problems. First, it
faces the problem of feature redundancy; more feature di-
mensions will not only increase the training time of the
model but also reduce the detection effect of the model. An
intrusion detection method based on principal component
analysis (PCA) and recurrent neural network is proposed in
the literature. ,e principal component analysis method is
used to reduce the dimension and noise of the data to find
out the principal component feature subset with the max-
imum information. Finally, the processed data is trained for
classification using a recurrent neural network and achieves
high accuracy [23]. ,e literature proposes an intrusion
detection method by combining the advantages of an
autoencoder and residual network. ,e feature extraction is
performed by reconstructing the network with an autoen-
coder, and then the designed residual network is trained
with the extracted features. ,e experimental results are
better in terms of accuracy, true rate, and false-alarm rate
[24]. Secondly, it faces the problem of unbalanced samples of
positive and negative classes in the data set used to evaluate
the effects of themodel.,e literature uses an improved local
adaptive synthetic minority oversampling technique for
unbalanced traffic data to achieve abnormal traffic detection
using RNN that has high detection accuracy for different
types [25].

In response to the above-mentioned problems, this
paper designs an intrusion detection model incorporating
CNN and BiGRU. Its main contributions are as follows:

(1) For the problem of feature redundancy, this paper
proposes a feature selection algorithm (RFP algo-
rithm). It introduces the random forest algorithm to
calculate feature importance and combines Pearson
correlation analysis for feature selection.

(2) For the problem of sample imbalance, this paper
proposes a hybrid sampling algorithm (ADRDB
algorithm) by combining the adaptive synthetic
sampling (ADASYN) [26] and repeated edited
nearest neighbors (RENN) [27] for sampling. At the
same time, the density-based spatial clustering of
applications with noise (DBSCAN) [28] is adopted to
eliminate noise and finally obtain a balanced data set.

(3) Spatial features are extracted by split-residual-fuse
convolutional neural network (SRFCNN), and fea-
tures with long-distance dependent information are
extracted by BiGRU to fully consider the influence
between the before and after attribute information to
learn the data features comprehensively and
effectively.

2. Related Work

Network security intrusion detection is a relatively broad
area of research. Existing models used in the field of in-
trusion detection include convolutional neural networks,
recurrent neural networks, machine learning, and hybrid
models. Scholars have used a variety of different approaches
to address the problems of low detection accuracy and
difficulty in detecting a few classes of samples in the field of
intrusion detection. Convolutional neural networks are
mainly used in tasks related to image and video analysis,
such as image classification, face recognition, target rec-
ognition, image processing, and so on. And, in recent years,
it has also been widely used in the field of intrusion de-
tection. A recurrent neural network is mainly used in various
tasks of connected handwriting recognition and speech
recognition. It is also widely used in the field of intrusion
detection due to its effectiveness in processing time-series
data.

In terms of improving detection accuracy, Tama et al.
used a combination of particle swarm optimization algo-
rithms, ant colony algorithms, and genetic algorithms for
feature selection to reduce the feature size of the training
data, followed by a secondary classification method to detect
abnormal behavior in the network [29]. Bu and Cho
combined a traditional learning classifier system with a
convolutional neural network for the detection of anoma-
lous behavior, and the proposed system has adaptive and
learning capabilities [30]. Song et al. applied deep con-
volutional neural networks to intrusion detection systems,
reducing the complexity of the models while also improving
their detection accuracy [31]. Roy and Cheung proposed an
IoTsystem based on a bidirectional long short-termmemory
recurrent neural network that achieves better results in
detecting attacks [32]. Le et al. first performed feature se-
lection via the SFSDT model, followed by classification via
recurrent neural networks, achieving better results on both
the NSL-KDD data set and the ISCX data set [33]. Hassan
et al. proposed an intrusion detection system based on CNN
and weight-dropped long short-term memory network and
achieved more satisfactory results [34]. Tama and Lim used a
parallel architecture to combine random forests, gradient
boosters, and extreme gradient boosters to detect anomalous
behavior with better results [35].

In terms of addressing the class imbalance: Louk et al.
compared existing sampling methods and found that
EasyEnsemble performed better in resolving sample im-
balance [36]. Liu et al. divided the data set into hard and easy
sets by ENN and reduced the imbalance of the original data
set by processing the samples in the hard set through the
K-means algorithm [37]. Yan et al. identified anomalous
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traffic with good accuracy by an improved density peak
clustering algorithm [38]. Mulyanto M et al. introduced the
focal loss function into the model to solve the problem of
sample imbalance, with good results for both dichotomous
and multiclassification problems [39]. Bedi P et al. propose
an algorithm-level intrusion detection method that firstly
fuses binary extreme gradient boosting (b-XGBoost), Sia-
mese neural network (Siamese-NN), and deep neural net-
work (DNN) for hierarchical filtration of input samples to
identify attacks. And then it is classified by multiclass ex-
treme gradient boosting classifier (m-XGBoost) [40].

3. The Network Intrusion Detection Model
Incorporating CNN and BiGRU

Traditional intrusion detection models pay more attention to
the features in time series and ignore spatial features in the
process of detecting attacks. ,e use of a single convolutional
neural network can lead to insufficient ability to extract fea-
tures, which in turn results in low detection accuracy. ,e
SRFCNN structure can extract the spatial features of data traffic
more effectively and avoid the problem of gradient explosion
while deepening the depth of themodel. But its ability to extract
long-distance dependent information is not good. BiGRU has a
strong ability to extract long-distance dependency information;
it can avoid the phenomenon of forgetting in the learning
process, but its number of parameters is larger and the training
time is longer.,is paper integrates the twomodels to improve
the ability to learn features, which can fully extract features
from both spatial and temporal dimensions, and then achieve
higher classification detection accuracy.

,e proposed network intrusion detection model inte-
grating convolutional neural network and BiGRU consists of
three main stages.

First, preprocessing stage. Convert the original traffic
data into numerical features and normalize them, balance
the data set by hybrid sampling method, and finally extract
features by RFP algorithm.

Second, training stage. ,e preprocessed data were
extracted by SRFCNN network and BiGRU and finally
classified by Softmax classifier.

,ird, testing phase. Pass the test set to the trainedmodel
for classification.

,e structure diagram of the proposed model in this
paper is shown in Figure 1.

3.1. Data Preprocessing. In the preprocessing stage, this
paper firstly converts the non-numerical features in the
original traffic data into numerical features and normalizes
the features; secondly, a hybrid sampling algorithm
(ADRDB algorithm) combining ADASYN and RENN is
used for sampling; afterwards, feature selection is performed
by the feature selection algorithm (RFP algorithm); finally,
the obtained data is converted into grayscale maps. ,e
specific process of this stage is shown in Figure 2.

3.1.1. Non-Numerical Feature Transformation and
Normalization. ,e only way the traffic data can be used as

model input is after cleaning, labeling, annotation, and
preparation. In this paper, the LabelEncoder function in scikit-
learn is used to convert the non-numeric features in the raw
data traffic to numeric features to ensure that all data are
numeric, so as to facilitate the model to learn the data features.

After the traffic features are converted to numeric, it is
easy to ensure that the clustering of sample points in the
feature space will be guided by individual feature values and
less influenced by other feature values due to the different
sizes of the taken values. Data normalization can reduce the
variance of the features to a certain range and reduce the
influence of outliers. In this paper, we use min-max nor-
malization to normalize the feature values to between 0 and
1, as shown in the following formula:

hi,j �
hi,j − min hi,j 

max hi,j  − min hi,j 
, (1)

where hi,j represents the feature value of row i and column j
in the data set.

After the values are normalized, the majority class and
minority class samples are balanced by the proposed hybrid
sampling algorithm to obtain the balanced data set. After
that, the useful features are extracted by the feature selection
algorithm.

3.1.2. Hybrid Sampling Method Combining ADASYN and
RENN. ,e core idea of the hybrid sampling method
combining ADASYN and RENN is mainly divided into the
following sections: firstly, the original data set is divided into
majority and minority sample sets. ,e newmajority sample
set is obtained by undersampling through the RENN al-
gorithm, and the new minority sample set is obtained by
oversampling with the ADASYN algorithm. Afterwards, the
new data set obtained by merging the two is passed through
the DBSCAN clustering algorithm to remove the noise and
obtain the balanced data set. ,e hybrid sampling method
combining ADASYN and RENN is specified as follows.

,e inputs of the algorithm are the original majority
sample set N and minority sample set P and the number of
samples. ,e outputs are the balanced majority sample set
newN and minority sample set newP (Algorithm 1).

(1) Calculate the imbalanced degree of the data set.
(2) If d<dth (where dth is the predetermined value of the

maximum allowed degree of imbalance ratio), perform
the following operations: firstly, calculate the number of
samples that need to be generated for theminority class;
secondly, for each sample in N, find its k1 nearest
neighbors and calculate the ratio ri, where Δi denotes
the number of samplesxi belonging to themajority class
among the k nearest neighbors. |X| represents the
number of samples; after that, normalize ri to ri; finally,
calculate the number of samples that need to be syn-
thesized for each minority class sample.

(3) For each sample in N, gi samples are obtained
according to the steps to obtain a new minority
sample set.
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Figure 1: Network intrusion detection model incorporating SRFCNN and BiGRU.
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(4) For each sample in P, select k2 nearest neighbor from
newN.

(5) Calculate the number of minority samples in the
nearest neighbors of each majority sample and reject
the sample if the number of samples is greater than e.
In this paper, e� 1.

(6) Repeat (4) and (5) to generate a new set of majority
samples.

(7) Eliminate the noise in newP and newN to get the
final newN and newP.

3.1.3. Feature Selection Algorithm. To address the problem of
feature redundancy in data sets, this paper proposes a new
feature selection algorithm. ,e algorithm first calculates the
importance degree of each feature of the sample by the random
forest algorithm and ranks them according to the importance
degree; after that, it calculates the correlation between features
by Pearson correlation coefficient; finally, it combines the two
obtained results to achieve feature selection.

Random forest algorithm (RF) is an ensemble learning
algorithm based on the decision tree. In feature engineering,
the RF algorithm can identify important features from a
large number of sample features; its essence is to analytically
calculate the contribution of each feature of the sample on
the tree and later calculate its average and compare the
magnitude of the contribution between features to identify
the important features [41]. Existing methods are usually
evaluated using the Gini index or the out-of-bag data error
rate as evaluation metrics; the specific steps are as follows:

(1) For each base learner, select the corresponding out-
of-bag data to calculate its error, denoted as error_a.

(2) Randomly add disturbances to all samples of out-of-
bag data and calculate its error, denoted as error_b.

(3) Assuming that the forest contains M trees, the im-
portance value of a feature can be calculated by the
following equation:

Importance �
error b − error a

M
. (2)

(4) Filter out the features with higher importance to
construct a new data set.

Pearson correlation coefficient is used to measure the
correlation between two variables X and Y, which takes
values in the range (–1, 1) [42]. ,e Pearson correlation
coefficient between the two features is obtained by calcu-
lating the covariance and standard deviation between the
two eigenvalues and quotienting them with the following
formula:

ρX,Y �
cov(X, Y)

σXσY

�
E X − μX(  Y − μY(  

σXσY

. (3)

,e Pearson correlation coefficient varies from − 1 to 1. If
the Pearson correlation coefficient of two characteristics is
close to ±1, it indicates a high correlation between them, and
the relationship between them can be well expressed by a

linear equation. If the Pearson correlation coefficient is close
to 0, it means that there is no linear relationship between the
two features. ,e pseudo-code of the feature selection al-
gorithm proposed in this paper is shown in Algorithm 2.

,e raw traffic data are converted into grayscale maps
after feature selection. ,e converted grayscale plots for
different categories are shown in Figure 3.

3.2. Model Structure. One of the main advantages of CNN
over traditional classification methods is that it attempts to
learn the best filters on its own. ,e existing popular CNN
structures mainly include residual network (ResNet) [43]
and inception network [44]. ResNet proposes a concept of
split-transform-merge.

In order to improve the expressiveness of CNN and to
fully learn the diversity of features in the classification
process, a new convolution neural network based on sep-
aration-residual-fusion is proposed in this paper according
to the relevant ideas of the residual neural network, and the
specific structure is shown in Figure 4. After the data is
input, it is split into different paths by the segmented block
convolutional neural network, and then different types of
residual transformation are carried out for each segmented
feature. As shown in the figure, the layers of each residual are
different, so as to ensure that it can learn simple to complex
feature transformation. Finally, the feature maps after the
residual neural network are fused. ,e application of the
residual network can effectively solve the gradient explosion
problem caused by the increased depth of the network. Two-
dimensional convolution has shown excellent performance
in the field of computer vision, so this paper uses 2D
convolution to extract the spatial features of the data.

,e intrusion detection model proposed in this paper
consists of three main parts: in order to comprehensively
and finitely learn the features of the data, firstly, the spatial
features of the data are extracted by SRFCNN; secondly, the
feature extraction capability is further enhanced by fusing
average pooling and max pooling; afterwards, the temporal
features are extracted by BiGRU, and finally, the classifi-
cation is carried out by Softmax.,e specific structure of the
model is shown in Figure 5:

(1) ,e grayscale map obtained after preprocessing is
input to the SRFCNN network to extract spatial
features and obtain the output F

(2) ,e new feature map F is aggregated with spatial
information by fusing max pooling and average
pooling to obtain the new feature map FC

(3) Pass FC into the BiGRU unit to extract the depen-
dencies between features and obtain the output FG

(4) Pass FG into the fully connected layer that uses
Softmax as the activation function to achieve the
classification of intrusion detection behavior

4. Experimental Results and Analysis

4.1. Experimental Setup. In order to test the performance of
the proposed network intrusion detection method

Computational Intelligence and Neuroscience 5



combining CNN and BiGRU, this paper designs multiple
sets of experiments.

Experiment 1: Feature selection analysis experiment

Experiment 2: Experiment on the number of SRFCNN
modules

Experiment 3: Comparison experiment between single
model and hybrid model
Experiment 4: Comparison experiment of different
feature selection methods
Experiment 5: Comparison experiment of different
sampling methods

Input:
Initial positive set, P;
Initial negative set, N;

Output:
balanced minority class sample set, newP.
balanced majority class sample set, newN.

Procedure:
(1) d � |P|/|N|

(2) If d<dth

G � (|N| − |P|) × β
for each i ∈ [1, |P|] do

neighborsP � getNeighbors(P, N, k1)

ri � Δi/k1
ri � ri/

mP

i�1 ri

gi � ri × G

end for
(3) xzi � choose(xi, k1)

for each i ∈ [1, gi] do
xzi � choose(xi, k1)

si � xi + (xzi − xi) × λ
P � [P, si]

end for
(4) newP � P

(5) C � |N| − |newP

(6) neighborsN � getNeighbors(N, newP, k2)

(7) for each j ∈ [1, |N|] do
numNeg(j) � negNum(neighborsN(i))

If numPos(i)> e (e� 1)
N � remove(i, N)

end for
(8) Repeat (6), (7)
(9) newN � N

(10) DBSCAN algorithm
(11) Return newP, newN

ALGORITHM 1: Hybrid sampling method incorporating ADASYN and RENN (ADRDB).

Input:
Original data set, D

Output:
Processed data set, NewD

Procedure:
(1) Choose corresponding out of bag data and calculate the error, error_a
(2) Randomly add interference to all samples of data outside the bag and calculate its error, error_b
(3) Calculate feature importance
(4) Feature importance ranking
(5) Calculate Pearson correlation coefficient
(6) Selection feature in combination with (4) and (5)
(7) Processed data set NewD

ALGORITHM 2: Feature selection algorithm (RFP).
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Experiment 6: Comparison experiment of different
pooling methods
Experiment 7: Performance analysis and comparison
experiment

,e intrusion detection model experiments and compar-
ison experiments proposed in this paper are conducted on a
64bit Windows Intel® Core™ i7-7700HQ CPU (2.80GHz)
with 16GB RAM and a python-based Nvidia GeForce GTX
1050 GPU (4GB), using Python’s TensorFlow library to write
the SRFCNN and BiGRU models for this paper.

4.2. Data Set and Evaluation Criteria. Over the years, many
data sets related to intrusion detection have been introduced

for research and development, including KDDCup99 [45],
UNSW-NB15 [46], NSL-KDD [47], and CIC-IDS2017 [48].
In this paper, we choose to use the UNSW-NB15, NSL-KDD,
and CIC-IDS2017 data sets to evaluate the proposed model.

,e NSL-KDD data set is an improvement of the KDD99
data set, which removes the redundant and duplicate data from
the training and test sets on the basis of the KDD99 data set so
that the training and test sets are set up in a more reasonable
way. It mainly contains 41-dimensional attribute features and
1-dimensional category features, covering 5 types of Normal,
Probe, Dos, R2L, and U2R.,e number of samples of different
categories in the NSL-KDD data set is shown in Table 1.

,e UNSW-NB15 data set is a new data set generated in
2015 by the Cyber Range Laboratory of the Australian
Centre for Cyber Security (ACCS) using the IXIA
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PerfectStorm tool to simulate realistic cyber environments.
,e data set mainly consists of 47 attribute features and 2
category features and contains 9 types of attacks: Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic, Reconnais-
sance, Shellcode, and Worms. ,is paper directly uses the
partitioned training set and testing set to test the perfor-
mance of the model. ,e number of samples of different
categories in the UNSW_NB15 data set is shown in Table 2.

,e CIC-IDS2017 data set is derived from the July 3–7,
2017 Canadian Institute for Cybersecurity (CIC) collection
for cyber data, which contains benign as well as recent
common attacks in the field of cyber intrusions, filling the
gap of no cyber-based attacks in the UNSW-NB15 data set.
,e data set contains 78-dimensions of attribute features and
1-dimension of category features covering 15 attack types. In
this paper, the anomalous behaviors of similar nature are
merged, and the final data set contains 10 types of attacks:
BENING, Dos, Portscan, Ddos, Patator, Bot, Web attack,
Infiltration, and Heartbleed. ,e number of samples of
different categories in the CIC-IDS2017 data set is shown in
Table 3.

,e evaluation metrics of the network security intru-
sion detection model include four main metrics: precision,
accuracy, recall, and F1-score. In the specific detection
results, T (true) and F (false) represent correctly or in-
correctly classified data, respectively. P (positive) and N
(negative) indicate that the predicted results of the de-
tection system are abnormal or normal data, respectively.
All data in the data set must be classified into four cate-
gories: TP, TN, FP, and FN. Only TP indicates that the
system classification result consists of abnormal attack data
with correct classification result; TN indicates that the
system classification result is positive and correct; FP in-
dicates that the system predicts the data as abnormal attack
data, but the classification result is wrong; and FN indicates
that the system predicts the data as normal data, but the
classification result is incorrect. ,e classification results of
the model for the data are represented by the confusion
matrix, as shown in Table 4.

,e accuracy describes the ratio of the number of cor-
rectly predicted samples to the total sample number and is
calculated as follows:
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Accuracy �
TP + TN

TP + FP + TN + FN
. (4)

,e precision describes the ratio of the number of classes
predicted to be positive to the number of classes actually
predicted to be positive and is calculated as follows:

precision �
TP

TP + FP
. (5)

,e recall describes the ratio of the number of predicted
positive classes that are actually positive to the number of all
positive classes and is calculated as follows:

recall �
TP

TP + FN
. (6)

,e F1 − score describes the magnitude of the harmonic
mean between precision and recall, calculated as follows:

F1 − score �
2 × recall × precision
recall + precision

. (7)

It can be seen that F1 achieves larger values when both
recall and precision have larger values.

4.3. Experimental Simulation. In order to fully verify the
effectiveness of the model proposed in this paper, multiple
sets of experiments are set up in this paper: Section 4.3.1 sets
up feature selection analysis experiments to introduce the
process and results of feature selection in detail. Section 4.3.2
sets up comparison experiments of SRFCNN module
numbers to dynamically adjust the number of modules
through experiments. Section 4.3.4 compares different
feature selection methods to compare the advantages and
disadvantages of the proposed RFP algorithm compared
with existing algorithms used in intrusion detection. Section
4.3.5 compares different sampling methods to compare the
advantages and disadvantages of the proposed ADRDB al-
gorithm compared with other sampling methods. Section
4.3.6 compares different pooling methods to analyze the
effects of using one pooling method alone and mixed
pooling on the performance of the model. Section 4.3.7 set
up performance analysis and comparison experiments to
analyze the convergence of the model and compare it with
existing models.

4.3.1. Feature Selection Analysis Experiment. In order to
verify the classification performance of the CNN-GRU al-
gorithm proposed in this paper, the public data sets
UNSW_NB15, NSL-KDD, and CIC-IDS2017 were selected.
,is section focuses on the UNSW_NB15 data set for the
detailed introduction. In order to visualize the distribution
of each feature, it was demonstrated by histograms and box
plots. ,e histograms and box line plots of some features are
shown in Figures 6 and 7.

Table 1: Distribution of different attack behaviors in the NSL-KDD data set.

Data set
Attack behavior

Total
Normal Dos Probe R2L U2R

KDDTrain+ 67,343 45,927 11,656 995 52 125,973
KDDTest+ 9,889 7,460 2,707 2,421 67 22,544
Total 77,232 53,387 14,363 3,416 119 148,517

Table 2: Distribution of different attack behaviors in the UNSW-NB15 data set.

Data set
Attack behavior

Total
Normal Fuzzers Analysis Backdoors DoS Exploits Generic Recon. Shellcode Worms

Train 56,000 18,174 2,000 1,746 12,264 33,393 40,000 10,491 1,133 130 175,341
Test 37,000 6,062 677 583 4,089 11,132 18,871 3,496 378 44 82,332
Total 93,000 24,246 2,677 2,329 16,353 44,525 58,871 13,987 1,511 174 257,673

Table 3: Distribution of different attack behaviors in the CIC-IDS2017 data set.

Data set
Attack behavior

Total
Benign Dos PortScan Patator Ddos Bot Web attack Infiltration Heartbleed

Train 1,654,737 176,863 111,251 9,685 89,619 2,752 1,526 25 7 2,046,465
Test 709,173 75,798 47,679 4,150 38,408 1,180 654 11 4 877,057
Total 2,363,910 252,661 158,930 13,835 128,027 3,932 2,180 36 11 2,923,522

Table 4: Confusion matrix.

Classification Predicted positive
category

Prediction negative
category

Actual positive
category TP FN

Actual negative
category FP TN

Computational Intelligence and Neuroscience 9



Since some features do not have outliers, Figure 7 shows
only a few features with outliers. ,e analysis shows that
there are a few outliers in the six types of features: spkts,
dpkts, ct_src_ltm, ct_srv_dst, ct_srv_src, and ct_state_ttl,
which have a small impact on the whole data set. However,
state, dur, sloss, dloss, service, ct_dst_ltm, ct_src_dport_ltm,

st_dst_sport_ltm, tcprtt, synack, and ackdat have more
outliers.

In this paper, the importance of each feature in the data
set UNSW_NB15 is first calculated by the random forest
algorithm and ranked according to the degree of impor-
tance, as shown in Figure 8. It can be seen from the figure
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Figure 6: Histogram of feature distribution of UNSW_NB15 data set.
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that the importance degree of different features varies
widely, such as the importance value of feature sbytes is
0.115, while the importance values of is_ftp_login and
ct_ftp_cmd are 0. ,e importance metrics of all features are
distributed between 0 and 0.12.

Feature selection based only on feature importance is a
single reference criterion, and the results obtained are not
very convincing, so this paper combines feature importance
and Pearson correlation analysis for feature selection. In
order to visualize the correlation between features, a feature
correlation diagram is established as shown in Figure 9. ,e
correlation between these 42 features can be clearly seen
from the figure. And the lighter and darker parts in the
figure clearly show the strong correlation between the two
types of features. To further observe whether features X and
Y present correlation in the plane distribution, a correla-
tion graph with feature X as the x-axis and feature Y as the
y-axis is established. Because of the large number of data
feature dimensions, this paper selects the cases where the
correlation index of the two types of features is greater than
or equal to 0.9 or less than or equal to –0.9 for analysis and
introduction, as shown in Table 5, and the correlation
graph established between features X and Y is shown in
Figure 10.

From Figure 10(a), we can see that spkts, sbytes, and
sloss show linear correlation. Figure 10(b) shows that dpkts,
dbytes, and dloss show linear correlation. From Figure 10(c),
we can see that sinpkt and is_sm_ips_ports are not linearly
correlated. Figure 10(d) shows that the two types of features,
swin and dwin, are linearly uncorrelated, and their multiple
values are only 0 and 255. Figure 10(e) shows that there are

some similarities between “tcprtt” and “synack” as well as
“tcprtt” and “actdat.” As the value of x increases, the value of
y also increases, but the values of synack and ackdat are
relatively scattered. From Figure 10(f ), we can see that the
values of ct_dst_src_ltm, ct_srv_dst, and ct_srv_src features
are relatively dispersed, but there are still some linear re-
lationships. Figure 10(g) shows that the values of ct_dst_ltm,
ct_src_dport_ltm, ct_src_ltm, and ct_dst_sport_ltm are
relatively scattered, and there are also some linear rela-
tionships. Figure 10(h) shows that the values of is_ftp_login
and ct_ftp_cmd are linearly unrelated.

Combining Figures 8 and10 for feature selection, for
features with strong linear correlation, the more important
features are retained according to the importance degree; for
features with weak linear correlation, the importance index
of the features is analyzed, and if they are lower than 0.001,
they are eliminated; for features whose correlation index is
not within the analysis interval, their importance index is
also analyzed, and features with importance degree lower
than 0.0001 are eliminated. Finally, the NSL-KDD data set
leaves 28-dimensional features; the UNSW_NB15 data set
leaves 28-dimensional features; and the CIC-IDS2017 data
set leaves 52 features.

4.3.2. Experiment on the Number of SRFCNN Modules.
In order to select the best number of SRFCNNmodules, this
section sets a comparison experiment with different num-
bers of modules: under the same experimental conditions,
the grayscale maps obtained after preprocessing are input to
the SRFCNN with the number of modules 2, 3, 4 and 5 to
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extract features and test them, and the classification accu-
racy, precision, and F1-score values are shown in Table 6.

It is experimentally demonstrated that for the NSL-KDD
data set, the results obtained with five modules are better
with the accuracy, precision, and F1-score of 99.81%,

99.76%, and 99.79%, respectively. For the UNSW_NB15 data
set, the results obtained with three modules are better with
the accuracy, precision, and F1-score of 85.55%, 86.24%, and
85.61%, respectively. For the CIC-IDS2017 data set, the
results obtained with three modules were better, with the

Table 5: Feature correlation index.

Feature Correlation index
Spkts sbytes 0.964
Spkts sloss 0.972
dpkts dbytes 0.973
dpkts dloss 0.980
sbytes sloss 0.996
dbytes dloss 0.997
sinpkt is_sm_ips_ports 0.942
swin dwin 0.980
ct_dst_src_ltm ct_srv_dst 0.960
tcprtt synack 0.943
tcprtt ackdat 0.920
ct_srv_src ct_dst_src_ltm 0.954
ct_srv_src ct_srv_dst 0.949
ct_dst_ltm ct_src_dport_ltm 0.962
ct_dst_ltm ct_src_ltm 0.902
ct_src_dport_ltm ct_dst_sport_ltm 0.908
ct_src_dport_ltm ct_src_ltm 0.909
is_ftp_login ct_ftp_cmd 0.999
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accuracy, precision, and F1-score of 99.70%, 99.68%, and
99.69%, respectively. ,erefore, this paper uses SRFCNN
fused with five residual modules to extract spatial features of
the NSL-KDD data set, SRFCNN fused with three residual
modules to extract spatial features of the UNSW_NB15 data
set, and SRFCNN fused with three residual modules to
extract spatial features of the CIC-IDS2017 data set.

4.3.3. Comparison Experiment between Single Model and
Hybrid Model. To verify the effectiveness of the model

proposed in this paper on intrusion recognition, this section sets
performance analysis experiments on the intrusion detection
model combining SRFCNN and BiGRU: SRFCNN, BIGRU,
and hybrid models are tested by the NSL-KDD, UNSW-NB15,
and CIC-IDS2017 data sets under the same experimental
conditions, and their classification accuracy, precision, recall,
and F1-score values are obtained as shown in Table 7.

It can be seen from Table 7 that compared with using the
single model of SRFCNN and BiGRU, the hybrid model
combining SRFCNN and BIGRU can effectively extract the
features of the raw data traffic and then effectively achieve
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intrusion detection.,e detection accuracy, recall, precision,
and F1 score of data set NSL-KDD reached 99.81%, 99.81%,
99.76%, and 99.79%, respectively; the detection accuracy,
recall, precision, and F1 score of data set UNSW_NB15
reached 85.55%, 85.55%, 86.24%, and 85.61%, respectively;
and the detection accuracy, recall, precision, and F1 score of
data set CIC-IDS2017 reached 99.70%, 99.70%, 99.68%, and
99.69%, respectively. ,e reason is that SRFCNN can learn
spatial features effectively by deepening the depth and width
of the network, while BiGRU can extract temporal features
of the data better. ,e model in this paper combines
SRFCNN and BiGRU to learn both spatial and temporal
features of the data to achieve effective and comprehensive
learning of the features, thus achieving better results.

4.3.4. Comparison Experiments of Different Feature Selection
Methods. In order to verify the effectiveness and applica-
bility of the feature selection method proposed in this paper,
a comparison experiment of different feature selection
methods is set up in this section: the feature selection
method (RFP) proposed in this paper is compared with
existing feature selection methods such as PCA [23] and AE
[24] under the same experimental conditions.,e features of
the NSL-KDD data set are reduced to 28 dimensions; the
features of the UNSW_NB15 data set are reduced to 28
dimensions; and the features of the CIC-IDS2017 data set are
reduced to 52 dimensions by the above 3 methods. ,e
results are shown in Table 8.

From Table 8, it can be seen that the data processed by
the RFP algorithm proposed in this paper are used in the
model can achieve better results. It is found that PCA relies
more on variance when performing data dimensionality
reduction, but the non-principal components with small
variance may also contain important information on sample
differences, and the dimensionality reduction process will
have an impact on the subsequent data processing. AE relies
more on the training data when performing feature space
reconstruction. So both methods do not achieve better re-
sults. ,e RFP algorithm proposed in this paper starts from
the data itself and selects features according to their im-
portance degree and relevance to achieve the effect of im-
proving the classification accuracy of the model.

Table 6: Comparison of the results of the number of modules.

Data set Number of modules Accuracy Precision F1

NSL-KDD

2 0.967 0.977 0.971
3 0.985 0.987 0.986
4 0.987 0.987 0.987
5 0.998 0.998 0.998

UNSW_NB15

2 0.843 0.840 0.841
3 0.856 0.862 0.856
4 0.841 0.838 0.839
5 0.823 0.822 0.804

CIC-IDS2017

2 0.984 0.985 0.984
3 0.997 0.997 0.997
4 0.980 0.982 0.980
5 0.981 0.983 0.981

Table 7: Comparison of single model and hybrid model.

Data set Module
Evaluation indicators (%)

Accuracy Precision Recall F1-score

NSL-KDD
SRFCNN 98.65 98.72 98.65 98.67
BiGRU 98.97 99.17 98.97 99.07

SRFCNN-BiGRU 99.81 99.76 99.81 99.79

UNSW_NB15
SRFCNN 84.01 88.62 84.01 85.35
BiGRU 82.58 84.73 82.58 83.64

SRFCNN-BiGRU 85.55 86.24 85.55 85.61

CIC-IDS2017
SRFCNN 93.75 96.07 93.75 94.56
BiGRU 98.40 98.59 98.40 98.41

SRFCNN-BiGRU 99.70 99.68 99.70 99.69

Table 8: Comparison of different feature selection methods.

Data set
Feature
selection
method

Evaluation indicators (%)

Accuracy Precision Recall F1-
score

NSL-KDD
RFP 99.81 99.76 99.81 99.79
PCA 98.74 98.87 98.74 98.79
AE 98.70 98.81 98.70 98.81

UNSW_NB15
RFP 85.55 86.24 85.55 85.61
PCA 82.17 83.36 82.17 82.60
AE 84.91 86.00 84.91 85.4

CIC-IDS2017
RFP 99.70 99.68 99.70 99.69
PCA 97.77 97.94 97.77 97.77
AE 98.54 98.65 98.54 98.56
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4.3.5. Comparison Experiments of Different Sampling
Methods. In order to solve the problem of the unbalanced
data set, this paper adopts the sampling methods of mixed
ADASYN and RENN to process the data set. In order to
verify the effectiveness of the proposed method, this section
sets the comparison experiment of different sampling
methods: under the same experimental conditions, the
model adopts SMOTE, ADASYN, random undersampling,
random oversampling, ENN, RENN, and ADRDB to process
the imbalance data set. ,e detection results are shown in
Table 9.

From Table 9, it can be seen that comparing many
different sampling methods, the ADRDB proposed in this
paper, which integrates ADASYN and RENN, has a better
treatment effect for sample imbalance. ,e reasons are that
the single oversampling methods such as random over-
sampling, SMOTE, and ADASYN cannot effectively dis-
criminate the noisy data and easily generate a large amount
of noisy data in the process of synthesizing new samples,
which leads to the degradation of the model classification
effect; the single undersampling methods such as random
undersampling, ENN, and RENN easily tend to lose the key
information of most classes of samples, resulting in lower
classification results. ,e ADRDB samples the majority and
minority samples separately and rejects the noisy data by the
DBSCAN algorithm, which not only avoids the loss of key
information but also reduces the influence of noisy data on
the classifier model, thus achieving better results.

4.3.6. Comparison Experiments of Different Pooling Methods.
In this paper, we adopt fusion max pooling and average
pooling to solve the problem of insufficient feature ex-
traction ability of the model. To verify the effectiveness of the
proposed method, this section sets comparison experiments

of different pooling methods: under the same experimental
conditions, the model adopts three different methods of
average pooling, max pooling, and fusion pooling to extract
features. ,e detection accuracy is shown in Table 10.

From Table 10, it can be seen that the fusion pooling
method is more effective. ,e reason is that the average
pooling is used to extract features by averaging the global
range of features to achieve feature learning, while the max
pooling is used to extract features by taking the maximum
value of the feature points in the domain, and the fusion of
the two pooling methods can make up for each other and
fully learn the features. ,e experimental results show that
fusion pooling effectively improves the model’s ability to
learn features, and the classification results are greatly
improved.

4.3.7. Performance Analysis and Comparison Experiments.
Figure 11 gives the classification result accuracy and loss
value variation curves with the number of iteration steps for
the intrusion detection model combining SRFCNN and
BiGRU. From Figure 11, it can be seen that the model in this
paper achieves a better convergence effect.

To further verify the effectiveness of the intrusion de-
tection model proposed in this paper, this section sets
performance comparison experiments: under the same ex-
perimental conditions, common machine learning methods
such as random forest, K-means clustering, decision tree,
and the recently proposed intrusion detection model are
applied to the data set. ,e performance comparison is
shown in Table 11.

From Table 11, it can be seen the proposed model
achieves better results in all evaluation indexes. ,e reasons
are that compared with machine learning algorithms, the
model in this paper learns features through neural networks,

Table 9: Comparison of different sampling methods.

Data set Sampling method
Evaluation indicators (%)

Accuracy Precision Recall F1-score

NSL-KDD

Random oversampling 98.21 98.24 98.21 98.16
Random undersampling 87.96 93.97 87.96 89.52

SMOTE 98.77 98.85 98.77 98.81
ADASYN 98.73 98.82 98.73 98.75
ENN 97.62 98.13 97.62 97.87
RENN 98.75 98.80 98.75 98.76
ADRDB 99.81 99.76 99.81 99.79

UNSW_NB15

Random oversampling 73.87 84.94 73.87 77.08
Random undersampling 61.12 73.66 61.12 63.00

SMOTE 79.38 79.61 79.38 79.50
ADASYN 80.74 80.14 80.74 80.14
ENN 78.05 83.72 78.05 80.01
RENN 78.69 83.31 78.69 79.22
ADRDB 85.55 86.24 85.55 85.61

CIC-IDS2017

Random oversampling 92.13 91.87 92.13 89.82
Random undersampling 34.72 90.95 34.72 39.76

SMOTE 94.68 9.85 94.68 94.33
ADASYN 95.58 94.88 95.58 95.02
ENN 96.63 97.01 96.63 96.65
RENN 97.31 97.51 97.31 97.41
ADRDB 99.70 99.68 99.70 99.69
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Table 10: Comparison of different pooling methods.

Data set Pooling method
Evaluation indicators (%)

Accuracy Precision Recall F1-score

NSL-KDD
Average pooling 98.96 98.95 98.96 98.94
Max pooling 98.42 98.38 98.42 98.39

Average pooling +max pooling 99.81 99.76 99.81 99.79

UNSW_NB15
Average pooling 85.21 85.53 85.21 85.30
Max pooling 84.46 85.68 84.46 85.07

Average pooling +max pooling 85.55 86.24 85.55 85.61

CIC-IDS2017
Average pooling 98.55 98.64 98.55
Max pooling 93.85 94.52 93.85 93.89

Average pooling +Max pooling 99.70 99.68 99.70 99.69
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Figure 11: Continued.
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which can form a more abstract and non-linear high-level
representation by combining low-level features and then
exploit the input-output relationship between data, which

effectively improves the accuracy of intrusion detection.
Compared with S-ResNet, CNN, CNN-GRU, CNN-LSTM,
and CNN-BiLSTM models, the intrusion detection model
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Figure 11: Accuracy and loss value with the number of iteration steps curve: (a) accuracy and loss value with the number of iteration steps
curve of the NSL-KDD data set; (b) accuracy and loss value with the number of iteration steps curve of the UNSW_NB15data set; (c)
accuracy and loss value with the number of iteration steps curve of the CIC-IDS2017 data set.

Table 11: Comparison of different models.

Data set Algorithm
Evaluation indicators (%)

Accuracy Precision Recall F1-score

NSL-KDD

Random forest 75.41 84.00 75.41 77.53
K-means clustering 79.34 78.01 79.34 76.28

Decision tree 76.92 71.98 54.52 55.97
S-ResNet [49] 98.33 98.39 98.33 98.34
CNN [50] 97.78 97.74 97.78 97.75

CNN-GRU [51] 99.15 99.15 99.15 99.15
CNN-LSTM [21] 98.64 98.61 98.64 98.56
CNN-BiLSTM [52] 99.22 99.18 99.14 99.15
SRFCNN-BiGRU 99.81 99.76 99.81 99.79

UNSW_NB15

Random forest 75.41 84.00 75.41 77.53
K-means clustering 70.93 82.42 70.91 76.23

Decision tree 73.37 80.94 73.36 76.30
S-ResNet [49] 83.8 85.0 83.8 84.4
CNN [50] 82.9 82.6 82.9 82.7

CNN-GRU [51] 84.3 83.7 84.3 84.0
CNN-LSTM [21] 82.6 81.9 82.6 80.6
CNN-BiLSTM [52] 82.08 82.68 80.00 81.32
SRFCNN-BiGRU 85.55 86.24 85.55 85.61

CIC-IDS2017

Random forest 98.21 98.58 93.40 95.92
K-means clustering 95.03 96.40 95.21 95.80

Decision tree 96.60 97.62 96.66 97.14
S-ResNet [49] 95.94 96.10 95.94 95.41
CNN [50] 89.14 84.18 89.14 85.56

CNN-GRU [51] 99.42 99.34 99.42 99.38
CNN-LSTM [21] 96.64 96.87 96.64 96.45
CNN-BiLSTM [52] 99.43 99.39 99.42 99.40
SRFCNN-BiGRU 99.70 99.68 99.70 99.69
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incorporating SRFCNN and BiGRU extracts and learns both
spatial and temporal features of the data, and the extracted
feature information is more comprehensive, thus achieving
better results.

5. Conclusions

To solve the problems of incomplete feature extraction and
the general multiclassification effect of general intrusion
detection models, this paper proposes an intrusion detection
model fusing convolutional neural network and bidirec-
tional gated recurrent unit.,emodel solves the problems of
the unbalanced data set and feature redundancy by ADRDB
and RFP algorithm and then achieves comprehensive and
sufficient learning of features by fusing SRFCNN and
BiGRU. Finally, feature selection analysis experiments,
hybrid model versus single model comparison experiments,
feature extraction method comparison experiments, pooling
method comparison experiments, and performance analysis
experiments on the data set prove that the model has strong
feature extraction capability, high detection accuracy, and
low false-alarm rate when processing large-scale and high-
dimensional network data, providing some research support
for intrusion detection systems.
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