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Abstract
Background: Dyslipidaemia contributes to the progression of coronary artery
disease (CAD) toward adverse outcomes. Plasma lipidomic measure may
improve the prognostic performances of clinical endpoints of CAD. Our research
is designed to identify the correlations between plasma lipid species and the risks
of death, major adverse cardiovascular event (MACE) and left ventricular (LV)
remodeling in patients with CAD.
Methods: A total of 1569 Chinese patients with CAD, 1011 single-centre
patients as internal training cohort, and 558 multicentre patients as exter-
nal validation cohort, were enrolled. The concentration of plasma lipids in
both cohorts was determined through widely targeted lipidomic profiling.
Least absolute shrinkage and selection operator Cox and multivariate Cox
regressions were used to develop prognostic models for death and MACE,
respectively.
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ScienceFoundationofChina,
Grant/AwardNumbers: 81872934, 81673514 Results: Ten (Cer(d18:1/20:1), Cer(d18:1/24:1), PE(30:2), PE(32:0), PE(32:2),

PC(O-38:2), PC(O-36:4), PC(16:1/22:2), LPC(18:2/0:0) and LPE(0:0/24:6)) and
two (Cer(d18:1/20:1) and LPC(20:0/0:0)) lipid species were independently
related to death and MACE, respectively. Cer(d18:1/20:1) and Cer(d18:1/24:1)
were correlated with LV remodeling (P < .05). The lipidic panel incorporating
10 lipid species and two traditional biomarkers for predicting 5-year death
risk represented a remarkable higher discrimination than traditional model
with increased area under the curve from 76.56 to 83.65%, continuous NRI
of 0.634 and IDI of 0.131. Furthermore, the panel was successfully used in
differentiating multicentre patients with low, middle, or high risks (P < .0001).
Further analysis indicated that the number of double bonds of phosphatidyl
choline and the content of carbon atoms of phosphatidyl ethanolamines were
negatively associated with death risk.
Conclusions: Improvement in the prediction of death confirms the effective-
ness of plasma lipids as predictors to risk classification in patients with CAD.
The association between the structural characteristics of long-chain polyunsatu-
rated fatty acids and death risk highlights the need for mechanistic research that
characterizes the role of individual lipid species in disease pathogenesis.

KEYWORDS
coronary artery disease, death, left ventricular remodeling, long-chain polyunsaturated fatty
acids, risk stratification, widely targeted lipidomic profiling

1 BACKGROUND

Coronary artery disease (CAD) imposes a major burden
on modern society with annual morbidity and mortality
comparable to those of cancer.1–3 Despite the remarkable
amelioration of pharmaceutical and operative treatments,
estimating and managing the prognostic risk for patients
with CAD remain challenging as event risk may vary con-
siderably at the individual level. For the effective allocation
of limited health resources to patients with the highest
risk, new approaches for assessing risk in poor prognosis
populations are required. Currently, multiple panels
based on the different combinations of clinically available
biomarkers exhibit limited prognostic performance and do
not provide additional information on molecular targets
for therapeutic intervention.4,5 Hence, identifying effective
biomarkers for improved risk stratification and discov-
ering novel molecular targets involved in the underlying
pathological mechanism of CAD should be prioritize.
Death or major adverse cardiovascular event (MACE)

is a heterogeneous endpoint associated with a range of
lipid metabolic abnormalities. Although traditional clini-
cal lipids are reportedly associated with mortality and left
ventricular (LV) dysfunction,6–9 each measure indicates
the complex mixture of molecular species which are not

sensitive enough to reflect the abundance and complexity
of altered lipid metabolism associated with clinical end-
points of CAD.10 The widely targeted lipidomic profiling
colligates the high throughput of untargeted lipidomics
and stability and accuracy of targeted lipidomics, which
helps to identify the lipid biomarkers of main outcomes
and to clarify the relationship between the key lipids and
CAD.
Lipidic biomarkers for predicting clinical endpoints of

CAD are few.11,12 Ceramides and its different ratios are
effective biomarkers for predicting the risk of cardiovas-
cular death in stable CAD.13–17 Higher circulating plasma
ceramide ratio (C16:0/C24:0) also has an adverse effect
on cardiac remodelling.18 Sphingolipids, phospholipids,
and glycerolipids are significantly related to the risks of
cardiovascular events and death in patients with type 2
diabetes.19 However, the spectrum of lipid metabolites for
predicting death andMACE risks in Chinese patients with
CAD is a major concern.
Therefore, we hypothesized that specific lipid metabo-

lites in plasma have a crucial impact on the occurrence
of clinical endpoints and LV remodeling in patients with
CAD, and that the combination of plasma lipids with tra-
ditional factors may improve the predictive power of death
and MACE compared with traditional biomarkers only.
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F IGURE 1 Workflow chart of data generation and analysis

Herein, we performed a high-throughput widely targeted
lipidomic profiling on 1011 patients with CAD to access the
relationships between lipid species and main outcomes as
well as LV function. Our results were subsequently vali-
dated on 558 patients with CAD enrolled from three hos-
pitals. In brief, we established a powerful predictive model
based onnovel lipidmetabolites and traditional risk factors
for estimating future risk of death for patients with CAD.

2 MATERIALS ANDMETHODS

2.1 Study populations

The workflow of this trial is depicted in Figure 1. A total
of 1569 patients with CAD from three clinical centers
were enrolled and divided into two cohorts. The internal
training cohort included 1011 patients who received
percutaneous coronary intervention (PCI) treatment from
Guangdong Provincial People’s Hospital from 2010 to 2013
and were followed up for all-cause death and MACE up
to 5 years. The external validation cohort consisted of
558 patients from three centers (Guangdong Provincial
People’s Hospital, Xiangya Hospital of Centre-South
University, and First Affiliated Hospital of Sun Yat-sen
University) from September 2017 and followed up until
December 2019. The Synergy between PCI with TAXUS
and Cardiac Surgery (SYNTAX) score was calculated to

assess the severity, and echocardiography was used in
determining LV function and structure.
In general, patients with an indication for diagnostic

coronary angiography or PCI on account of CAD were
enrolled into our study. Individuals with obstruction of
≥50% of the luminal diameter in at least one main coro-
nary artery were diagnosed with CAD. Patients with CAD
were further classified into two subgroups of stable CAD
and acute coronary syndrome (ACS). Specifically, ACSwas
diagnosed according to the ACC/AHA guidelines includ-
ing unstable angina, ST-elevation myocardial infraction
(MI), and Non-ST elevation MI. Individuals within one of
the following criteria were excluded: (1) aged < 18 years
or aged > 80 years, (2) the concentration of serum crea-
tinine is more than two times the upper limit of normal
(230 μmol/L) or with the history of renal transplantation
or dialysis, (3) the concentration of serum transaminase is
more than two times the upper limit of normal (80 U/L)
or with cirrhosis, (4) during pregnancy or breastfeeding,
(5) during the advanced stage of cancer or with the history
of haemodialysis; (6) history of thyroid problems, taking
antithyroid drugs or thyroid hormone medication in the
past week, and (7) lost to follow-up.
To minimize the impact of food and nutrition on the

level of lipid species in plasma, all patients underwent fast-
ing blood sampling in the morning during hospitalization.
Thewhole blood sample was collected in EDTA anticoagu-
lant tube and separated into plasma and hemocyte within
2 h with centrifugation at 1000 g about 10 min at 4◦C.
The plasmawas then aliquoted into three cryopreservation
tubes and stored at −80◦C for future analysis.

2.2 Widely targeted lipidomic profiling

In the internal training and external validation sets,
the widely targeted lipidomic profiling was performed
using Ultra-Performance Liquid Chromatography Mass
Spectrometry (UPLC-MS/MS) system (UPLC, Shim-pack
UFLC SHIMADZU CBM30A; MS, Applied Biosystems
SCIEX 6500+ QTRAP) at Wuhan Metware Biotechnology.
Totally, 667 plasma endogenous lipid species consisting of
14 lipid classes/subclasses and 687 lipid species containing
20 lipid classes/subclasses were annotated in the internal
training and external validation cohorts, respectively.
Totally, 309 identical lipid species were detected in
both cohorts. These lipid species mainly include mono-
glyceride (MG), cholesteryl esters (CE), diacylglycerol
(DG), triacylglycerol (TG), phosphatidic acids (PA),
phosphatidylcholines (PC), phosphatidylglycerol (PG),
phosphatidylserines (PS), phosphatidylethanolamines
(PE), lysophosphatidic acids (LPA), lysophosphatidyl-
choline (LPC), lysophosphatidylethanolamine (LPE),
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hemolytic serine (LPS), and ceramides (Cer). The ESI
full scan mass spectra ion pairs and conditions for tan-
dem mass spectrometry analysis of the lipid species are
shown in Supporting information Figure S1 and Table S1,
respectively.
The detailed methodology of the lipidomics was consis-

tent with a previous reported study20 and supplemented
in the Supporting Information, Methods. Briefly, lipid
species were extracted from the plasma of CAD patients.
First, the sample was thawed on ice. Second, 50 μL
of plasma and 1 mL of lipid extraction reagent were
pooled into the corresponding numbered centrifuge
tube. The mixture was vortexed for 2 min, added with
500 μL of deionized water, vortexed about 1 min, and
centrifuged at 12,000 r/min around 10 min. Third, 500
μL of supernatant was absorbed into the numbered cen-
trifuge tube and concentrated after centrifugation. Last,
the powder was dissolved with 100 μL of mobile phase
B (comprising 10% acetonitrile, 90% isopropanol, 0.04%
acetic acid, and 5 mmol/L ammonium formate), and
the dissolving solution was then used for UPLC-MS/MS
analysis.
The calibration and quality control (QC) samples were

prepared with the mixed plasma of subjects prior to sam-
ple analysis. Every 10 samples to be analyzed were sep-
arated by one QC sample for the duration of the detec-
tion to monitor repeatability during the analysis. The high
overlaps of the total ion flow between different QC sam-
ples, that is, the retention time and peak strength are
consistent, indicates that the signal stability of the mass
spectrum is good at different times. Qualitative analysis
of the MS and MS/MS mass spectrometric data was per-
formed on the basis of the homemade database Metware
database (MWDB) and the public database of metabo-
lite information. The lipid metabolite structural analy-
sis mainly referred to MassBank, KNAPSAcK, HMDB,
Lipidmaps, and METLIN database. Analyst 1.6.3 software
(AB Sciex) was used to process the raw mass spectrometry
data.

2.3 Statistical analysis

For the baseline characteristics of both cohorts, the cate-
gorical variables are expressed as counts (percentages), and
continuous variables are expressed as means and standard
deviation (mean ± SD). Prior to association analyses, the
raw data were corrected with the quality control-robust
LOESS signal correction algorithm for the minimization
of the batch effect. Pareto scaling was used in interpreting
hazard ratio (HR).
Univariate Cox regression analysis was used to rec-

ognize clinical characteristics and lipids associated with

clinical endpoints and estimate HRs and 95% confidence
intervals (CIs). The relationships between baseline char-
acteristics and lipid species against ACS versus stable CAD
were accessed by logistic regression analysis with results
presented as odds ratio (OR) and 95% CI. Linear regression
analysis was used in identifying baseline characteristics
and lipids related to LV function. The significant char-
acteristics were used as covariates in adjusted analysis.
Potential characteristics included age, sex, comorbidities,
drugs, SYNTAX scores, and renal and hepatic dysfunction.
A two-tailed P value of .05 was used to indicate statistical
significance, and false discovery rate (FDR) was used
in correcting the number of lipid species for multiple
hypothesis testing. Backward stepwise process based
on the Akaike information criterion (AIC) was used in
multivariate Cox regression analysis for feature subset
selection.
To identify conditional correlations between prog-

nostic lipid species and traditional CAD factors, partial
correlation coefficients were calculated for each lipid
species and conventional lipids with visualization in
Cytoscape. Linear regression analysis was employed to
calculate the correlation between the HR of death and
structural characteristics of individual lipid species. Path-
way enrichment analysis was conducted on prognostic
lipid species (adjusted P < .05) with Fisher’s exact test by
MetaboAnalyst 4.0.
The prognostic model of death was constructed by

least absolute shrinkage and selection operator (lasso)
Cox regression analysis (“glmnet” package). Variableswith
FDR of < 0.05 in univariate and adjusted P of < .05 in
adjusted Cox regression analysis were employed into the
lasso Cox regression to screen the most powerful predic-
tive features. This procedure was executed with a 10-fold
cross-validation framework (200 repeats, Supporting infor-
mation Figure S2), and the lipid independently associ-
ated with death should be selected over 180 times. For
MACE, variables with adjusted P < .05 were included for
the formulation of prognostic models. Variables retained
in the model were considered independent lipid species
(Figure 1).
To evaluate the prediction efficiency of the mul-

tivariable models, we calculated the risk estimate of
individuals for clinical endpoints on the basis of regres-
sion coefficients according to the following formula:
h(t,X) = h0(t)exp(β1 × 1 + β2 × 2 +⋯+ βiXi), where h0(t)
is the baseline hazard rate at specific time t (“survival”
package), β is the regression coefficients, and Xi is the
selected marker. Time-dependent receiver-operating
characteristic (ROC) analysis, continuous net reclassifi-
cation improvement (NRI), and integrated discrimination
improvement (IDI) were used in assessing the discrimi-
nation of the predictive model for death and MACE. The
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TABLE 1 Baseline characteristics and effects on clinical endpoints and ACS in the internal training cohort

Value N (%) or Death MACE ACS
Characteristics mean ± SD HR (95% CI) P Value HR (95% CI) P value OR (95% CI) P value
Demographic data
Age 63.01 ± 10.07 1.08 (1.05-1.12) 1.49 × 10-6 1.01 (0.99-1.03) 1.92 × 10-1 0.99 (0.98-1.00) 2.27 × 10-1

SEX (male) 805 (79.62) 1.00 (0.52-1.93) 9.98 × 10-1 1.00 (0.69-1.47) 9.87 × 10-1 1.20 (0.88-1.63) 2.54 × 10-1

BMI, kg/mš 24.27 ± 4.82 0.90 (0.81-1.00) 4.64 × 10-2 0.97 (0.92-1.02) 2.51 × 10-1 0.95 (0.91-0.99) 1.37 × 10-2

Comorbidities
Arrhythmia 88 (8.72) 1.99 (0.98-4.05) 5.84 × 10-2 1.80 (1.16-2.79) 9.06 × 10-3 0.81(0.52-1.26) 3.47 × 10-1

Diabetes 277 (27.45) 2.41 (1.43-4.06) 9.11 × 10-4 1.59 (1.16-2.17) 3.69 × 10-3 1.08(0.82-1.42) 5.91 × 10-1

Heart failure 87 (8.62) 3.60 (1.97-6.58) 3.20 × 10-5 2.65 (1.79-3.91) 9.73 × 10-7 1.31(0.84-2.04) 2.37 × 10-1

Hypertension 605 (59.90) 0.99 (0.58-1.68) 9.70 × 10-1 1.28 (0.93-1.75) 1.31 × 10-1 0.88(0.68-1.13) 3.23 × 10-1

Hyperlipidemia 112 (11.09) 0.33 (0.08-1.34) 1.20 × 10-1 0.96 (0.58-1.59) 8.83 × 10-1 0.81(0.54-1.20) 2.96 × 10-1

Biochemical measurements
ALT, U/L 27.62 ± 15.08 1.01 (0.99-1.03) 1.94 × 10-1 1.01 (0.99-1.02) 3.55 × 10-1 1.02 (1.01-1.03) 3.90 × 10-4

AST, U/L 26.83 ± 12.13 1.03 (1.01-1.05) 4.48 × 10-3 1.02 (1.00-1.03) 1.65 × 10-2 1.03 (1.01-1.04) 3.89 × 10-5

eGFR, mL/min/1.73 mš 95.02 ± 74.57 0.98 (0.97-0.99) 2.83 × 10-3 1.00 (0.99-1.00) 2.49 × 10-1 1.00 (1.00-1.00) 1.02 × 10-1

CK, U/L 112.76 ± 112.54 1.00 (1.00-1.00) 4.72 × 10-1 1.00 (1.00-1.00) 9.36 × 10-1 1.00 (1.00-1.00) 7.61 × 10-1

CKMB, U/L 7.54 ± 5.92 1.01 (0.97-1.06) 6.61 × 10-1 1.02 (0.99-1.04) 1.35 × 10-1 1.02 (1.00-1.05) 6.05 × 10-2

CHOL, mmol/L 4.28 ± 1.12 1.00 (0.79-1.26) 9.91 × 10-1 1.02 (0.90-1.17) 7.27 × 10-1 0.94 (0.83-1.05) 2.44 × 10-1

LDLC, mmol/L 2.58 ± 0.90 0.91 (0.68-1.23) 5.56 × 10-1 0.99 (0.83-1.17) 8.74 × 10-1 1.00 (0.87-1.15) 9.69 × 10-1

HDLC, mmol/L 0.97 ± 0.26 0.49 (0.17-1.41) 1.86 × 10-1 0.76 (0.42-1.38) 3.64 × 10-1 0.43 (0.26-0.70) 8.76 × 10-4

GLUC, mmol/L 6.70 ± 2.69 1.08 (1.01-1.17) 3.64 × 10-2 1.03 (0.98-1.08) 2.94 × 10-1 1.06 (1.02-1.12) 1.04 × 10-2

Lpa, mg/L 304.64 ± 321.15 1.00 (1.00-1.00) 1.26 × 10-1 1.00 (1.00-1.00) 3.71 × 10-1 1.00 (1.00-1.00) 6.52 × 10-1

APOA, g/L 1.05 ± 0.28 0.23 (0.06-0.81) 2.25 × 10-2 0.62 (0.33-1.16) 1.34 × 10-1 0.48 (0.28-0.79) 4.71 × 10-3

BNP, pg/mL 5.45 ± 1.63 1.48 (1.21-1.82) 1.64 × 10-4 1.14 (1.01-1.28) 2.95 × 10-2 2.27 (1.81-2.87) 4.35 × 10-12

TRIG, mmol/L 1.61 ± 1.15 1.07 (0.92-1.26) 3.78 × 10-1 1.08 (0.98-1.18) 1.34 × 10-1 1.00 (0.89-1.11) 9.55 × 10-1

Medication
β-blockers 895 (88.70) 1.06 (0.45-2.46) 8.97 × 10-1 1.81 (0.98-3.33) 5.81 × 10-2 1.23(0.83-1.82) 3.04 × 10-1

ACEIs 622 (61.65) 0.80 (0.47-1.36) 4.07 × 10-1 1.22 (0.88-1.70) 2.22 × 10-1 1.47 (1.14-1.90) 2.86 × 10-3

CCBs 278 (27.55) 2.15 (1.28-3.62) 4.05 × 10-3 1.71 (1.26-2.33) 6.77 × 10-4 0.78 (0.59-1.03) 8.05 × 10-2

PPIs 490 (48.56) 1.73 (1.01-2.96) 4.75 × 10-2 1.81 (1.32-2.47) 2.21 × 10-4 1.12 (0.88-1.44) 3.60 × 10-1

Statin 861 (85.8) 1.54 (0.61-3.86) 3.58 × 10-1 0.97 (0.62-1.53) 9.08 × 10-1 1.02 (0.71-1.45) 9.28 × 10-1

SYNTAX score 16.35 ± 10.67 1.03 (1.00-1.05) 2.51 × 10-2 1.02 (1.01-1.03) 5.24 × 10-3 1.02 (1.01-1.03) 2.76 × 10-3

HRs (95% CI) were calculated by applying a Cox regression analysis and ORs (95% CI) were calculated by applying a logistic regression analysis. Variables with
P < .05 were included into the multivariable models as covariates.
ACEIs, angiotensin converting enzyme inhibitors; ALT, alanine aminotransferase; APOA, apolipoprotein a; AST, aspartate aminotransferase; BMI, body mass
index; BNP, B-type natriuretic peptide; CCBs, calcium channel blockers; CK, creatine kinase; CKMB, creatine kinase MB; CHOL, cholesterol; eGFR, estimated
glomerular filtration rate; GLUC, glucose; HDLC, high-density lipoprotein cholesterol; HR, hazard ratio; Lpa, lipoprotein (a); LDLC, low-density lipoprotein
cholesterol; PPIs, proton pump inhibitors; SD, standard deviation; SYNTAX score, Synergy between PCIwith TAXUS andCardiac Surgery score; TRIG, triglyceride.

external validation of prognostic models was performed
in the multicentre cohort based on the individually
calculated hazard estimates, and hazard stratification
was presented by Kaplan-Meier curves between low
(<Q1), middle (≥Ql and ≤Q3), and high (>Q3) hazard
estimates.
Statistical analyses were executed by GraphPad Prism 8

and R. The detailed methods are presented in Supporting
Information, Methods.

3 RESULTS

3.1 Baseline characteristics

Demographic characteristics and their impact on clinical
endpoints and ACS are summarized in Tables 1 and 2.
Totally, patients with ACS accounted for 50.1% in the inter-
nal training cohort and 38.7% in the external validation
cohort. Individuals who died during the follow-up tended
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TABLE 2 Baseline characteristics and the effects on clinical endpoints and ACS in the external validation cohort

Value N (%) or Death MACE ACS
Characteristics mean ± SD HR (95% CI) P value HR (95% CI) P value OR (95% CI) P value
Demographic data
Age 62.15 ± 10.24 1.06 (1.01-1.12) 1.10 × 10-2 1.04 (1.01-1.07) 2.11 × 10-2 1.01 (0.99-1.02) 4.08 × 10-1

SEX (male) 426 (74.21) 1.12 (0.41-3.05) 8.29 × 10-1 0.73 (0.38-1.37) 3.22 × 10-1 0.68 (0.46-1.00) 5.14 × 10-2

BMI, kg/mš 24.04 ± 3.35 0.80 (0.24-1.40) 6.80 × 10-2 0.98 (0.87-1.12) 7.94 × 10-1 1.00 (0.93-1.07) 9.98 × 10-1

Comorbidities
Arrhythmia 52 (9.15) 2.34 (0.78-7.00) 1.29 × 10-1 1.93 (0.86-4.34) 1.12 × 10-1 0.85 (0.46-1.53) 5.90 × 10-1

Diabetes 164 (28.87) 1.21 (0.49-2.99) 6.87 × 10-1 1.23 (0.66-2.29) 5.06 × 10-1 1.08 (0.74-1.57) 6.76 × 10-1

Heart failure 257 (45.25) 1.88 (0.78-4.53) 1.61 × 10-1 1.13 (0.63-2.03) 6.80 × 10-1 1.99 (1.41-2.82) 1.03 × 10-4

Hypertension 344 (60.67) 2.09 (0.76-5.70) 1.51 × 10-1 2.06 (1.04-4.06) 3.76 × 10-2 1.19 (0.83-1.69) 3.45 × 10-1

Hyperlipidemia 76 (13.38) 0.62 (0.14-2.65) 5.17 × 10-1 0.75 (0.30-1.91) 5.52 × 10-1 1.35 (0.82-2.21) 2.29 × 10-1

Biochemical
Measurements
ALT, U/L 27.84 ± 24.74 1.01 (0.99-1.02) 2.97 × 10-1 1.00 (0.99-1.01) 9.49 × 10-1 1.01 (1.00-1.02) 3.53 × 10-3

AST, U/L 32.18 ± 55.09 1.00 (1.00-1.01) 9.92 × 10-4 1.00 (1.00-1.01) 1.54 × 10-2 1.02 (1.01-1.03) 4.41 × 10-4

eGFR, ml/min/1.73 mš 93.29 ± 119.07 0.97 (0.95-0.98) 9.18 × 10-5 0.98 (0.97-0.99) 5.17 × 10-4 0.99 (0.99-1.00) 1.09 × 10-1

CK, U/L 162.54 ± 449.87 1.00 (1.00-1.00) 1.66 × 10-3 1.00 (1.00-1.00) 8.84 × 10-3 1.00 (1.00-1.00) 1.07 × 10-2

CKMB, U/L 19.15 ± 52.44 0.98 (0.94-1.03) 5.23 × 10-1 1.00 (0.99-1.01) 8.83 × 10-1 1.04 (1.02-1.07) 7.23 × 10-5

CHOL, mmol/L 4.30 ± 1.76 0.79 (0.52-1.20) 2.62 × 10-1 0.99 (0.81-1.21) 9.31 × 10-1 0.96 (0.85-1.07) 5.13 × 10-1

LDLC, mmol/L 2.72 ± 1.01 0.75 (0.43-1.32) 3.19 × 10-1 1.12 (0.86-1.46) 4.18 × 10-1 0.99 (0.83-1.18) 9.37 × 10-1

HDLC, mmol/L 0.99 ± 0.25 0.37 (0.05-2.82) 3.39 × 10-1 1.18 (0.37-3.84) 7.77 × 10-1 0.63 (0.31-1.28) 2.11 × 10-1

GLUC, mmol/L 6.02 ± 2.20 1.13 (0.98-1.31) 8.89 × 10-2 1.07 (0.96-1.21) 2.28 × 10-1 1.10 (1.02-1.20) 1.83 × 10-2

Lpa, mg/L 285.29 ± 324.06 1.00 (1.00-1.00) 9.95 × 10-1 1.00 (1.00-1.00) 6.42 × 10-1 1.00 (1.00-1.00) 2.03 × 10-1

APOA, g/L 1.15 ± 0.25 0.42 (0.05-3.63) 4.28 × 10-1 0.51 (0.11-2.38) 3.91 × 10-1 0.31 (0.10-0.87) 3.30 × 10-2

BNP, pg/mL 2.26 ± 0.75 4.32 (2.63-7.10) 7.26 × 10-9 2.12 (1.49-3.01) 2.90 × 10-5 1.95 (1.53-2.50) 1.06 × 10-7

TRIG, mmol/L 1.85 ± 1.84 0.69 (0.37-1.29) 2.46 × 10-1 0.95 (0.74-1.22) 6.89 × 10-1 1.20 (1.04-1.40) 1.91 × 10-2

Medication
β-blockers 483 (84.29) 0.60 (0.22-1.63) 3.16 × 10-1 1.02 (0.43-2.44) 9.66 × 10-1 1.44 (0.89-2.39) 1.43 × 10-1

ACEIs 287 (50.00) 0.47 (0.19-1.17) 1.05 × 10-1 1.1 0(0.59-2.06) 9.58 × 10-1 1.74 (1.23-2.46) 1.69 × 10-3

CCBs 168 (30.11) 1.47 (0.61-3.56) 3.87 × 10-1 1.18 (0.61-2.32) 6.85 × 10-1 0.59 (0.40-0.88) 1.03 × 10-2

PPIs 388 (67.60) 0.84 (0.35-2.03) 6.95 × 10-1 0.99 (0.50-1.95) 5.17 × 10-1 0.62 (0.43-0.89) 8.85 × 10-3

Statin 499 (91.2) 0.48 (0.14-1.64) 2.41 × 10-1 0.87 (0.31-2.44) 7.92 × 10-1 1.77 (0.94-3.55) 9.03 × 10-2

SYNTAX score 16.59 ± 13.18 1.04 (1.00-1.08) 4.27 × 10-2 1.04 (1.01-1.06) 9.87 × 10-4 1.03 (1.01-1.04) 3.47 × 10-4

HRs (95% CI) were calculated by applying a Cox regression analysis and ORs (95%CI) were calculated by applying a logistic regression analysis. Variables with
P < .05 were entered into the multivariable models as covariates. Abbreviations as in Table 1.

to be older, accompanied with higher levels of aspartate
aminotransferase (AST), brain natriuretic peptide (BNP),
and SYNTAX score but lower estimated glomerular
filtration rate. Individuals who experienced MACE had
higher levels of AST, BNP, and SYNTAX score. In addition,
patients with ACS tended to have higher levels of alanine
aminotransferase, AST, glucose, BNP, and SYNTAX score
but lower level of apolipoprotein A. They had a history of
angiotensin-converting enzyme inhibitor medication as
well. Taking statin showed no effect on clinical outcomes
and ACS in both cohorts. The associations between
baseline characteristics with LV ejection fraction (LVEF)

and LV mass index (LVMI) are summarized in Supporting
information Table S2.
Notably, we used the SYNTAX score to indicate the

severity of patients with CAD. SYNTAX score indepen-
dently predicts MACE and long-term prognosis in patients
with stable CAD who received revascularisation.21,22 Tak-
ing the internal training cohort with a large number of
patients for a detailed illustration (Table 1), we found
that SYNTAX score was positively related to death (HR
(95% CI): 1.03 (1.00–1.05); P = .0251) and MACE (HR (95%
CI):1.02 (1.01–1.03); P = .0052) risks. Patients with plaque
rapture tended to have higher SYNTAX score against those
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with stable CAD. Furthermore, patients with relatively
poor cardiac function who presented reduced LVEF (esti-
mate± SE:−0.24± 0.04; P= 7.23E-11) and increased LVMI
(estimate± SE: 0.32± 0.13; P= .0125) had higher SYNTAX
score (Supporting information Table S2). Thus, the SYN-
TAX scorewas used to correct the influences of CAD sever-
ity on prognosis.

3.2 Relationships between lipid species
and clinical outcomes

Among the 667 targeted lipid species detected in the
internal training cohort, 85 different lipid species were
significantly related to all-cause death (FDR < 0.05),
of which 78 lipid species were still associated with
the incident death after adjustment for potential con-
founders (P < .05, Supporting information Table S3).
These lipid species mainly belonged to sphingolipids,
glycerolphospholipid, monoglyceride, diglyceride, and
triglyceride. Pathway analysis revealed that sphingolipids
metabolism, glycerolphospholipid metabolism, and
glycosylphosphatidylinositol-anchor biosynthesis were
the top three disturbed metabolic pathways in patients
with death risk (Supporting information Figure S3A
and Table S6). In addition, five differential lipid species
were significantly correlated with MACE after potential
confounders were adjusted (Supporting information Table
S4). Specifically, LPC(18:2/0:0) was inversely associated
with death and MACE risks, and Cer(d18:1/20:1), Hex-
Cer(d18:1/18:1), and HexCer(d18:1/20:1) were positively
associated with death and MACE risks.
In the external validation cohort, only 34 of the 78 lipid

species associatedwith death riskwere repeatedly detected
owing to the improvement in detection platform. Finally,
12 lipid metabolites showed statistical difference with
death in univariate Cox analysis, and three lipid species
(LPC(16:0/0:0), LPS(16:0/0:0), and LPC(20:3/0:0)) showed
statistical difference in adjusted Cox analysis (Figure 2 and
Supporting information Table S5). None of the five lipid
species were repeatedly correlated with the MACE risk in
the external validation cohort.
Linear regression analyses showed that the HR of death

was inversely related to the number of double bonds (esti-
mate [SE], −0.09 [0.02]; P = 6.52E-05) and carbon atoms
(estimate [SE], −0.03 [0.01]; P = .098) in the acyl chains
of PC. The number of double bonds (estimate [SE], −0.12
[0.03]; P = 9.28E-04) and carbon atoms (estimate [SE],
−0.04 [0.02]; P = .046) of PE were significantly negatively
correlated with the HR of death. Only the number of dou-
ble bonds (estimate [SE], −0.11 [0.04]; P = .026) was cor-
related with death risk in LPE. LPC, DG, and TG did not
show statistical difference (Figure 3). Similarly, the num-

ber of double bonds of PC was negatively related to death
risk (estimate [SE],–0.12 [0.06]; P = .041) and the num-
ber of carbon atoms of PE was negatively correlated with
HR (estimate [SE], −0.07 [0.03]; P = .022) in the multi-
centre cohort (Supporting information Figure S4). These
results underline the importance for mechanistic research
that characterizes the role of individual lipid species on dis-
ease status.

3.3 Prognostic lipid species correlations
with conventional CAD biomarkers

To investigate the correlation between prognostic lipid
species and traditional markers of CAD risks, the partial
correlation coefficients of 78 prognostic lipids and LDLC,
HDLC, CHOL, and TRIG (Figure 4) were calculated. All
relationships were defined with the existence of other
influencing factors (r ≥ 0.20), indicating direct relations
rather than the influence by other components. Our results
illustrated that these lipids are related to each other in a
single and interconnected network, whereas their correla-
tions with conventional CAD factors were feeble (r< 0.20)
except for TG(14:0/18:0/22:4). The most powerful positive
relationships (red lines) were between PC(18:0/22:6) and
PC(20:1/20:5), Cer(d18:1/16:1) and HexCer(d18:1/16:1) and
MG(14:0) and MG(16:0). As expected, a forceful positive
correlation was found between LDLC and CHOL. Our
results indicated that sphingolipids and glycerophospho-
lipid are mainly independent of conventional CAD lipids
and thus present novel insights into the progression of dis-
ease.

3.4 Generating optimized prognostic
models for clinical endpoints

We developed two prognostic models for predicting
5-year death risk. In the first model (termed tradi-
tional model), we inputted nine significant covariates
for death in Table 1 into multivariate Cox regression
model, and five (age, DM, HF, AST, and SYNTAX score)
variables were retained in the final model with mini-
mal AIC. In the second model (termed lipidic model),
our input included the aforementioned traditional vari-
ables and 78 lipid species significantly associated with
death. The optimal model consisting 10 independent
lipid species and two traditional risk markers (age and
AST) were obtained by lasso Cox regression (200 repeats,
Table 3). Lasso Cox analysis showed that Cer(d18:1/20:1),
Cer(d18:1/24:1), PE(30:2), PE(32:0), and PE(32:2) were
independent risk lipid metabolites for death, whereas
LPC(18:2/0:0), LPE(0:0/24:6), PC(16:1/22:2), PC(O-36:4),
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F IGURE 2 Forest plot of the hazard ratio on lipid species related to death. Forest plot of the hazard ratio of the death of 34 lipid species
in the internal training (left) and external validation cohorts (right). HRs (circles) indicate the risk of change in each lipid species of 1 SD
for ease of comparison. Bars represent 95% confidence intervals. Red-coded circles and bars indicate that the lipid species were replicated in
the external validation cohort. Cer, ceramide; DG, diglyceride; HexCer, monohexosylceramide; LPC, lysophosphatidylcholine; LPE, lysophos-
phatidylethanolamine; LPS, lysophosphatidylserine; PC, phosphatidylcholine; TG, triglyceride

and PC(O-38:2) were independent protective lipid metabo-
lites for death. The incorporation of 10 lipid species to
classical markers for the prognosis of 5-year death risk
yielded a remarkable higher discrimination than the tra-
ditional model with increased area under the curve (AUC)
from 76.56 to 83.65% (Figure 5A), continuous NRI of 0.634
(95% CI, 0.408-0.753) and IDI of 0.131 (95% CI, 0.074–0.281;
Table 4). This model was subsequently used in estimating
two-year survival probabilities from death of each patient
in the multicentre cohort and was successfully used in dif-
ferentiating patients with low, medium, and high risks of
death (P < .0001; Figure 5C).

Two prognostic models for MACEwere developed using
multivariate Cox regression with minimal AIC. The tra-
ditional model consisted of seven significant covariates
for MACE, and the lipidic model contained six traditional
biomarkers (arrhythmia, HF, DM, CCB, PPI, and SYN-
TAX score) and two lipid species, namely, Cer(d18:1/20:1)
and LPC(20:0/0:0). Multivariate Cox regression analysis
revealed that Cer(d18:1/20:1) (HR, 1.14; 95% CI, 1.02–1.28;
P = 2.56E-02) was the risk lipid predictor for MACE,
whereas LPC(20:0/0:0) (HR, 0.65; 95% CI, 0.48–0.88;
P= 4.60E-03)was the protective lipidmetabolite forMACE
(Supporting information Table S7). The ROC curves of
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F IGURE 3 Bubble charts of the association of 266 lipid species with death risk in the internal training cohort. Each filled circle represents
an individual lipid metabolite, and six lipid subclasses are prensented by 2D bubble plots according to the number of total carbon atoms (x axis)
and the number of double bonds (y axis). The shade of the color indicates themagnitude ofHR. The radius of the circle indicates the significance
level (Legend). To increase visibility, lipid species with equal numbers of carbon atoms and double bonds were pulled apart vertically, except
DG. HRs were calculated byCox regression adjusting for age, AST, DM, HF, eGFR, GLUC, CCB, PPI, and SYNTAX score. DG, diglyceride; LPC,
lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; TG, triglyceride

MACE are plotted in Figure 5B. The prognostic efficiency
of lipidic model showed little improvement than tradi-
tional model with AUC from 60.70 to 60.73%, continuous
NRI of 0.152 (95% CI, 0.007–0.273) and IDI of 0.015 (95%
CI, –0.001–0.039; Table 4). Similarly, the lipidic model was

then used in estimating 2-year survival probabilities from
MACE, which couldmerely differentiate patients with low
risk in the multicentre cohort (log-rank test, P = .049; Fig-
ure 5D). Our findings indicated that Cer(d18:1/24:1) con-
tributed to CAD progression towards poor prognosis.
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F IGURE 4 Partial correlations between prognostic lipid species and conventional lipidmarkers in patients with CAD. Conditioned on the
presence of all other analytes (r ≥ 0.20). Analytes are represented by nodes (grey hexagons) and conditional correlations by edges (lines). Pink
lines indicate positive correlations. Blue lines indicate inverse correlations. Line width represents the strength of the conditional correlation.
The lack of a line indicates the absence of a detectable relationship above the threshold. CHOL, cholesterol; HDLC, high density lipoprotein
cholesterol; LDLC, low density lipoprotein cholesterol; TRIG, triglyceride

3.5 Lipid species associated with ACS

In the internal training cohort, univariate logistic regres-
sion analysis identified that 50 individual lipid species
were significantly related to ACS (FDR < 0.05, Supporting
information Table S8), of which 40 lipid species were still
related to ACS (P < .05, Supporting information Table
S8) after adjusting for confounding factors. Of note, eight
lipids (LPC(16:1/0:0), LPC(18:1/0:0), LPC(18:2/0:0),

LPC(18:3/0:0), LPC(20:2/0:0), LPC(20:3/0:0),
LPC(22:0/0:0), and PC(18:2/20:4)) showed consistent rela-
tionships with the study by Meikle et al which revealed
the significant plasma lipids associated with unstable
CAD.11 Furthermore, pathway analysis revealed that
glycerophospholipid, linoleic acid, and alpha-linolenic
acid metabolism were the top three disturbed pathways in
patients with ACS (vs. those with stable CAD, Supporting
information Figure S3B and Table S9).
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TABLE 3 Features in the predictive model of death risk
selected by 10-fold cross-validation lasso Cox regression analysis
(200 repeats)

Terms Coefficient (β) HR N
Age .019 1.020 199
AST .005 1.005 184
Cer(d18:1/20:1) .156 1.169 200
Cer(d18:1/24:1) .095 1.099 200
LPC(18:2/0:0) −.205 0.815 193
LPE(0:0/24:6) −.233 0.792 200
PC(16:1/22:2) −.140 0.870 191
PC(O-36:4) −.156 0.855 199
PC(O-38:2) −.352 0.703 200
PE(30:2) .401 1.493 200
PE(32:0) .114 1.121 200
PE(32:2) .131 1.140 200

The regression coefficients of death were calculated by averaging the coeffi-
cients obtained from 200 times lasso Cox analyses, and the HR was calculated
by exp(β). The 12 markers were obtained using a lasso Cox analysis in which
we required selected markers to appear over 180 times out of a total of 200
repetitions.
Cer, ceramide; HR, Hazard Ratio; LPC, lysophosphatidylcholine; LPE,
lysophosphatidylethanolamine; PC, phosphatidylcholine; PC(O), alkylphos-
phatidylcholine; PE, phosphatidylethanolamines;

In the external validation cohort, seven lipid metabo-
lites showed statistical difference in univariate logistic
analysis (P < .05), and four lipid species (LPC(18:3/0:0),
LPE(0:0/24:6), LPC(22:0/0:0), and PC(18:2/18:2)) showed
statistical difference in adjusted logistic analysis (P < .05,
Supporting information Table S10) with ACS. Particularly,
LPE(0:0/24:6) showed not only a negative correlation with
ACS but also an independent protective biomarker for
death risk in patients with CAD. These findings indicated
that higher concentration of LPE(0:0/24:6) may decrease
the risk of death by maintaining the plaque stability in
patients with stable CAD.

3.6 Relationship between lipid species
associated with clinical outcomes and LV
remodeling

In the internal training cohort, among the 79 lipid species
associated with clinical endpoints, 21 lipid species and four
lipid species were correlated with LVEF and LVMI, respec-
tively, after adjustment for covariates was performed (Sup-
porting information Table S11). Four lipid species (Hex-
Cer(d18:1/22:0), HexCer(d18:1/26:0), HexCer(d18:1/26:1),
and PE(34:1)) were significantly associated with LVEF
and LVMI. Regarding the 11 lipid species that inde-
pendently predicted the risks of clinical endpoints,
Cer(d18:1/20:1) (estimate [SE], −1.07 [0.38]; P = 3.25E-03)

and Cer(d18:1/24:1) (estimate [SE], −1.19 [0.45]; P = 8.64E-
03) were negatively correlated with LVEF. In the external
validation cohort, we found that Cer(d18:1/20:1) (estimate
[SE],−0.27 [0.73]; P= 4.77E-03) and CerP(d18:1/18:1) (esti-
mate [SE], −2.06 [0.75]; P = 6.15E-03) were significantly
associated with LVEF (Supporting information Table S12).
These findings suggested that ceramidesmay affect LVdys-
function before the occurrence of clinical endpoints.

4 DISCUSSION

This prospective work described a comprehensive
lipidomic evaluation for the clinical endpoints of 1569
CAD patients’ prognoses and identified differences
between ACS and stable CAD in the plasma lipids of two
independent cohorts. We first illustrated that ceramides
can considerably affect LV dysfunction before the occur-
rence of clinical endpoints. Moreover, the lipidic model
consisting of independent lipid species and traditional risk
factors shows considerably better predictive performance
for 5-year death risk than traditional model consisting
only of traditional markers in the internal training cohort
and yielded a successful 2-year risk stratification in the
external validation cohort. Lastly, the negative rela-
tionship between the structural characteristics and HR
suggests that PC species enriched with polyunsaturated
fatty acids may decrease death risk, whereas PE species
enriched with less carbon atoms can increase death risk.
These lipid species associated with clinical outcomes
and LV malfunction may represent novel information
about molecular targets and disease status independent of
traditional plasma lipids.

4.1 Sphingolipid metabolism associated
with clinical outcomes and LV function

We observed that ceramides were directly related to death
and MACE risks in CAD patients, and our findings
were accordant with those of previous studies.13,15–17,19
Ceramides are involved in plaque formation. The sup-
pression of serine palmitoyltransferase, the rate-limiting
enzyme in denovo ceramides synthesis, prevents plaque
development and enables the regression of preformed
lesions in Apoe–/– mice.23 Sphingosine-1-phosphate (S1P),
the downstream metabolite of ceramides, is involved in
sphingosine kinase-S1P-S1P receptor axis and angiogenesis
regulation, because S1P1R, which is known for its impor-
tant roles in angiogenesis, is present in endothelial cells at
high levels. The knockout of S1P1R alone24 or the knockout
of SK1 and SK2 simultaneously25 lead to embryonic lethal-
ity because of adverse vascular development. Endogenous



12 of 15 QIN et al.

F IGURE 5 Prognostic lipid species of death and MACE independent of traditional risk factors. ROC curves for all-cause mortality (A)
and ROC curves for MACE (B). ROC curve = receiver–operating characteristic curve; SPE = specificity; SEN = sensitivity. The Kaplan–Meier
curves of the predictive model for death (C) and MACE (D) in the external validation cohort

ceramide participates in the transcytosis of oxidized LDL
(oxLDL) through endothelial cells,26 regulation of mono-
cyte adhesion to vessel walls, and succeeding LDL uptake
increase.27 Hence, ceramides may affect the prognosis of
patients with CAD by regulating plaque formation, angio-
genesis, and lipid retention in vascular walls.
Ceramides are biomarkers of clinical outcomes and pos-

sibly cause CAD progression. We are the first to illustrate
that ceramides may gradually lead to clinical endpoints by
causing LV remodeling. Ceramides are significantly asso-
ciated with LV malfunction.18 Very long-chain ceramides
could lead to mitochondrial damage, which in turn results
in oxidative stress and in the death of cardiomyocytes.28
Experimental studies suggested that the cardiac-specific
increase in ceramides leads to cardiac dysfunction in ani-
mal models29–31 and that ceramide-lowering interventions
ameliorate atherosclerosis.32,33 These findings indicate the
potential of new intervention strategies in themodification
of sphingolipidmetabolism and attenuation of disease pro-
gression.

4.2 Dysregulation of
glycerophospholipid metabolism involved
in CAD progression

In this trial, glycerophospholipid metabolism was the
most significant pathway in patients with higher risks of
death and ACS. Different phosphatidylcholine (PC) and
alkylphosphatidylcholine species showed diverse effects
on death risk, which prompted our exploration of PC’s bio-
logical activities. PC has pro- and anti-inflammatory activ-
ities with a variety of oxidative modifications to polyun-
saturated sn-2 fatty acyl substituents.34 Some of these lipid
species are implicated in the formation of oxLDL35 and
atherosclerotic lesions.36 PCmolecules include a lot of acyl
chains that differ in length and double bond positions. The
higher the content of double bonds in PC species is, the
lower the death risk of CAD patients is, and this research
is accordant with the results by Toledo et al.37 However,
Stegemann et al38 indicated that PC composition and CVD
risk have no clear relationship. Hence, individual lipid
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TABLE 4 Model performance measures (95% CIs) for 5-year
risk in the internal training cohort

Feature AUC IDI Continuous NRI
Prediction of death
Lipidic modela 0.8365
Traditional
modelb

0.7656 0.131 (0.074-0.281) 0.634 (0.408-0.753)

Prediction of MACE
Lipidic modelc 0.6073
Traditional
modeld

0.6070 0.015 (–0.001-0.039) 0.152 (0.007-0.273)

aLipidic model for death based on: Cer(d18:1/20:1), Cer(d18:1/24:1),
LPC(18:2/0:0), LPE(0:0/24:6), PC(16:1/22:2), PC(O-36:4), PC(O-38:2),
PE(30:2), PE(32:0), PE(32:2), age and aspartate aminotransferase.
bTraditionalmodel for death based on: age, diabetesmellitus, and heart failure
status, aspartate aminotransferase and SYNTAX score.
c Lipidic model for MACE based on: Cer(d18:1/20:1), and LPC(20:0/0:0),
arrhythmia, diabetes mellitus, and heart failure status, SYNTAX score, cal-
cium channel blockers, proton pump inhibitors.
dTraditional model for MACE based on: arrhythmia, diabetes mellitus, and
heart failure status, SYNTAX score, calcium channel blockers, proton pump
inhibitors and aspartate aminotransferase.

species and their biological activities in CAD progression
need further research.
LPC was the lipid class with the most prominent dif-

ferences between ACS and stable CAD. Seven of 16 lipid
species showed characteristics consistent with those men-
tioned in the research of Meikle et al, which identified
differences between unstable and stable CAD in terms
of the plasma lipidome.11 These relationships may con-
firm that LPC maintains the stability of atherosclerosis
plaque in patients with CAD, as a previous study sug-
gested that LPC could exert protective effects by inhibiting
macrophage cholesterol biosynthesis, decreasing cellular
cholesterol accumulation, and showing antiatherogenesis
effects.39
Interestingly, a similar association was observed with

LPE(0:0/24:6), which is the independent lipid that protects
against death risk, thereby suggesting that this lipid could
decrease the risk of death by preventing the rupture of
plaque in patients with stable CAD. Different observations
were found with LPE(0:0/24:0) without unsaturated
fatty acid and LPE(0:0/24:1) with monounsaturated fatty
acid, which were positively associated with death risk.
Hence, our results indicated that PE played different
roles in the progression of CAD. Previously biochemical
research revealed that PE is synthesized by the CDP-
ethanolamine and phosphatidylserine decarboxylase
(Psd) pathway, and the latter was specifically located in
the mitochondria.40 The CDP-ethanolamine pathway
generates a series of PEs abundant in high-saturated
fatty acids, whereas PEs with high unsaturation were

produced by the Psd pathway.41 While, the functional
diversity between the PEs generated through the Psd
and CDP-ethanolamine pathways is unclear. Thus, the
functional mechanism of lipid species with different
saturation degrees should be thinning in the CAD
progression.

4.3 Development of the prognostic
models of death andMACE

Our main objective was to develop robust prognostic mod-
els to predict clinical endpoints. Multiple epidemiological
analyses suggested that HDLC and LDLC are the inde-
pendent predictors of CVD.8,42 A recent study on 151 217
patients with CAD indicated that elevated plasma HDLC
concentration does not confer significant benefits to the
alleviation of CVD.43 Our findings also indicated that
LDLCs are not correlated with the risk of clinical end-
points in patients with CAD, as reported by a previous
study.19 Hence, identifying novel lipidmetabolites that can
be applied to the risk prediction and stratification of death
and MACE of CAD is necessary.
Our newly developed lipidic model containing 10

individual lipid spechies and two traditional risk factors
remarkably enhance the predictive value of death risk
compared with the traditional model and was successfully
applied to the differentiation of multicentre patients
with CAD with high-death risk. However, the model
used in predicting the risk of a complex event, such as
MACE, showed a negligible improvement compared
with the traditional model. This result suggested that
individual lipid species are suitable for the risk stratifi-
cation of a well-defined clinical outcome, such as death,
whereas complex events, such as MACE, may require a
comprehensive model. Although the prediction model
of death successfully stratified multicentre patients with
high risk, the effectiveness of this model in populations of
other regions or countries still needs further study.

4.4 Limitations

Our study has three limitations to consider. First, this study
was based on Chinese populations, and the sample size of
themulticentre validation cohort was relatively small. Sec-
ond, the selection of covariates into the adjusted analyses
was challenging because of the incomplete personal char-
acteristics and inconsistency of the relationship between
the demographic characteristics and clinical endpoints in
both cohorts. Last, 667 individual lipid species were mea-
sured in the internal training cohort. Among these, only
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309 lipid species were repeatedly detected in the multicen-
tre cohort, resulting in the lack of five independent predic-
tors in the predictive model of death risk. Nonetheless, the
predictive model of death risk was successfully used to dif-
ferentiate the multicentre patients with CAD.

5 CONCLUSIONS

Multiple lipid species independent of plasma cholesterol
are powerful predictors of death risk in patients with
CAD. Ceramides may indicate novel targets for mortal-
ity prevention and reduction. The possible underlying
mechanism is the reversal of LV remodeling. The newly
developed lipidic model is a powerful panel for death
risk stratification in patients with CAD. The association
between structural characteristics of long-chain unsatu-
rated fatty acids and death risk highlighted the need for
mechanistic research, which would characterize the role
of individual lipid species in disease pathogenesis.
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