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Abstract

In previous linkage and genome-wide association studies we identified 17 susceptibility loci for 

generalized vitiligo. By a second genome-wide association study, meta-analysis, and independent 

replication study, we have now identified 13 additional vitiligo-associated loci, including OCA2-

HERC2, a region of 16q24.3 containing MC1R, a region of chromosome 11q21 near TYR, several 

immunoregulatory loci including IFIH1, CD80, CLNK, BACH2, SLA, CASP7, CD44, IKZF4, 

SH2B3, and a region of 22q13.2 where the causal gene remains uncertain. Functional pathway 

analysis shows that most vitiligo susceptibility loci encode immunoregulatory proteins or 

melanocyte components that likely mediate immune targeting and genetic relationships among 

vitiligo, malignant melanoma, and normal variation of eye, skin, and hair color.

In generalized vitiligo patches of depigmented skin and hair result from autoimmune 

destruction of epidermal melanocytes1, epidemiologically associated with other autoimmune 

diseases2. In previous linkage analyses and a genome-wide association study (GWAS1; 

Supplementary Table 1), we identified 14 confirmed and 3 suggestive vitiligo susceptibility 

loci3–5 in persons of non-Hispanic European (EUR) ancestry. Most encode 

immunoregulatory proteins, and several are associated with other autoimmune diseases. 

However, one, TYR, encodes tyrosinase, a key enzyme of melanin biosynthesis that likely 

mediates immune targeting of melanocytes. Causal variation at TYR is inversely associated 

with vitiligo and malignant melanoma6, suggesting vitiligo may be related to immune 

surveillance of melanoma7.

To identify additional vitiligo susceptibility loci, we performed a second GWAS (GWAS2; 

Supplementary Table 1), with meta-analysis of GWAS1 and GWAS2 (GWAS-MA) to 

enhance statistical power. GWAS2 included 450 EUR generalized vitiligo cases and 

genotype data from 3,182 EUR controls from the database of Genotypes and Phenotypes 

(dbGaP). The GWAS-MA demonstrated improved significance of almost all significant loci 

from GWAS1 (Supplementary Table 2) and suggestive association (P < 10−4 for multiple 

SNPs across a region) of 24 novel loci (Supplementary Figure 1 and Supplementary Table 

3), of which six achieved genome-wide significance (P < 5 × 10−8) (Table 1). At all 24 

novel loci, we imputed genotypes using 1000 Genomes Project data, performed logistic 

regression to identify independent association signals, and genotyped the most significant 

SNPs at each locus (Supplementary Table 3) in an independent replication cohort of 1440 

EUR cases and 1316 EUR controls. We then performed overall meta-analysis of GWAS1, 

GWAS2, and the replication study, using conservative criteria for confirming association: (i) 

nominal association in the replication study (P < 0.05), (ii) consistent high-risk alleles in 

GWAS1, GWAS2, and the replication study, (iii) non-significant heterogeneity across all 

three studies (P > 1.09 × 10−3), and (iv) overall combined genome-wide significance (P < 5 

× 10−8).
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As shown in Table 1, we confirmed association of vitiligo with 13 novel loci. Among the 

most interesting, at chromosome 15q12–q13.1 the GWAS-MA showed suggestive 

association of SNPs (nt 27886016–28392261) spanning OCA2 upstream to within HERC2 

(Fig. 1), especially rs12913832 (P = 3.29 × 10−7) and imputed SNP rs1129038 (P = 3.23 × 

10−7) (r2 = 0.99). OCA2 is causal for oculocutaneous albinism type 2, encodes a 

melanosomal membrane transporter8, and plays a major role in determining skin, hair, and 

eye color. The replication study and overall meta-analysis confirmed association of both 

rs1129038 (P = 3.91 × 10−8, OR 1.22) and rs12913832 (P = 3.81 × 10−8, OR 1.22) (Table 

1). Furthermore, the SNP alleles that are low-risk for vitiligo are strongly associated with 

gray/blue eye color9–11 and with elevated risk of malignant melanoma12,13, tagging a 

founder variant within HERC2 that down-regulates transcription of the OCA2 allele in 

cis11,14. OCA2 is thus analogous to TYR: both encode melanocyte antigens presented by 

HLA-A*0215,16, for both vitiligo protection is associated with reduced functional protein, 

and for both susceptibility to vitiligo and melanoma constitute genetic opposites7, perhaps 

modulating immune surveillance for melanoma (Supplementary Fig. 2). Furthermore, we 

predict that gray/blue eye color should be under-represented, and tan/brown eye color over-

represented, among vitiligo patients. To test this, we surveyed 1206 EUR vitiligo patients, 

confirming both predictions: among vitiligo patients the prevalence of gray/blue eye color 

(26.8%) was greatly reduced and tan/brown eye color (43.2%) greatly elevated compared to 

both USA17 (P < 0.0001) and Australian18 (P < 0.0001) EUR individuals; Table 2). 

Compared to persons with gray/blue eye color, the OR for vitiligo was 2.98 in persons with 

tan/brown eye color and 2.25 in persons with green/hazel eye color, indicating additional 

eye color genes besides OCA2 constitute risk loci for vitiligo, and indeed TYR is associated 

both with vitiligo3 and with green/hazel eye color19.

At chromosome 16q24.3, the GWAS-MA showed complex association of SNPs spanning nt 

89647951–90078022, particularly rs8049897 (P = 2.03 × 10−7) and imputed SNPs 

rs9926296 (P = 4.34 × 10−11) and rs4785587 (P = 1.08 × 10−8) (Supplementary Fig. 3a), 

confirmed by the replication study and overall meta-analysis (rs9926296 P = 1.82 × 10−13, 

OR 0.79). The associated region contains 20 genes, notably including MC1R, encoding the 

melanocortin receptor, a regulator of melanogenesis and minor vitiligo autoantigen, 

associated with malignant melanoma and with skin and hair color20.

At 11q21, the GWAS-MA showed association with rs4409785 (nt 95311422) (P = 2.26 × 

10−10) and imputed SNP rs11021232 (P = 9.20 × 10−10) (Supplementary Fig. 3b), confirmed 

by the replication study and overall meta-analysis (rs4409785 P = 1.57 × 10−13, OR 1.34). 

These SNPs are located in a 559 kb region containing no known genes, approximately 6.28 

Mb distal to TYR. These SNPs are not in linkage disequilibrium with TYR SNPs (r2=0), and 

remain highly significant when conditioned on common causal TYR SNPs rs1042602 and 

rs1126809. We speculate this region might harbor a regulatory element affecting TYR 

transcription in cis.

Besides OCA2, MC1R, and the chromosome 11q21 locus, most vitiligo-associated loci 

encode immunoregulatory proteins. At chromosome 2q24.2, the GWAS-MA showed 

association with SNPs spanning nt 163076146–163154363, between IFIH1 and FAP, 

particularly rs2111485 (P = 1.67 × 10−10) (Supplementary Fig. 3c), confirmed by the 
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replication study and overall meta-analysis (rs2111485 P = 4.91 × 10−15, OR 0.77). IFIH1 

encodes an interferon-induced RNA helicase involved in antiviral innate immune 

responses21, associated with type 1 diabetes22, Graves' disease23, multiple sclerosis24, 

psoriasis25, and perhaps lupus26.

At 3q13.33, the GWAS-MA showed suggestive association of SNPs (nt 119276377–

119197379) spanning and upstream of CD80, particularly rs4330287 and imputed SNP 

rs59374417 (both P = 3.97 × 10−7; r2 = 1.0) (Supplementary Fig. 3d), confirmed by the 

replication study and overall meta-analysis (rs59374417 P = 3.78 × 10−10, OR 1.34). CD80 

is a surface protein on activated B-cells, monocytes, and dendritic cells that co-stimulates T 

cell priming27,28.

At 4p16.1, the GWAS-MA showed suggestive association of SNPs (nt 10702156–

10729386) upstream of CLNK, including rs16872571 (P = 2.50 × 10−7) and several imputed 

SNPs, particularly rs11940117 (P = 9.00 × 10−8) (Supplementary Fig. 3e), confirmed by the 

replication study and overall meta-analysis (rs16872572 P = 1.56 × 10−8, OR 1.21). CLNK 

encodes mast cell immunoreceptor signal transducer, a positive regulator of immunoreceptor 

signaling29.

At 6q15, the GWAS-MA showed suggestive association of SNPs (nt 90941239-91915693) 

spanning BACH2, particularly rs3757247 (P = 2.14 × 10−5) (Supplementary Fig. 3f), 

confirmed by the replication study and overall meta-analysis (P = 2.53 × 10−8, OR 1.20). 

BACH2 encodes a transcriptional repressor of B cells30, and is associated with type 1 

diabetes31,32, celiac disease33, and Crohn's disease34.

At 8q24.22, the GWAS-MA showed suggestive association of SNPs (nt 

133929917-133979872) spanning the TG/SLA locus, at which the two genes are 

interdigitated and encoded on the opposite strands. Most significant were rs853308 (P = 

1.14 × 10−6) and several imputed SNPs (Supplementary Fig. 3g), confirmed by the 

replication study and overall meta-analysis (rs853308 P = 1.58 × 10−8, OR 1.20). TG 

encodes thyroglobulin, while SLA encodes Src-like adaptor protein, a regulator of antigen 

receptor signaling35. TG is associated with autoimmune thyroid disease36, which affects 

approximately 17 percent of vitiligo patients2, suggesting association of rs853308 with 

vitiligo might derive from patients with concomitant autoimmune thyroid disease. However, 

stratification showed association of rs853308 with vitiligo derives both from patients with 

(P = 2.43 × 10−3) and without (P = 3.98 × 10−7) autoimmune thyroid disease, with virtually 

identical ORs in the two subgroups (1.20 and 1.19, respectively). Moreover, directly 

comparing rs853308 in vitiligo patients with (N = 608) versus without (N = 2579) 

autoimmune thyroid disease showed no difference (P = 0.94, OR 1.01). It is not apparent 

what role thyroglobulin might play in vitiligo pathogenesis, suggesting association of 

vitiligo with the TG/SLA locus may derive from SLA, rather than TG. SLA might likewise 

account for reported association of TG with autoimmune thyroid disease36.

At 10q25.3, the GWAS-MA showed suggestive association of SNPs (nt 

115439530-115492092) spanning CASP7, particularly rs3814231 (P = 1.20 × 10−5) 

(Supplementary Fig. 3h), confirmed by the replication study and overall meta-analysis (P = 
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3.56 × 10−8, OR 0.81). CASP7 encodes caspase 7, an executioner protein of apoptosis and 

inflammation37, associated with rheumatoid arthritis38, and suggested as a candidate gene 

for IDDM17 in type 1 diabetes39.

At 11p13, the GWAS-MA showed association of SNPs (nt 35242907-35375280) spanning 

portions of CD44 and SLC1A2, particularly rs736374 (P = 3.06 × 10−8) and rs10768122 (P 

= 6.13 × 10−8) (Supplementary Fig. 3i), confirmed by the replication study and overall meta-

analysis (rs10768122 P = 1.78 × 10−9, OR 1.21). CD44 encodes a cell surface glycoprotein 

with various functions, including a role in T cell development40, and is associated with 

lupus41.

At 12q13.2, the GWAS-MA showed association with SNPs (nt 56369506-56535251) in a 

region including IKZF4 (Supplementary Fig. 3j), particularly rs1701704 (P = 1.53 × 10−9) 

and imputed SNP rs2456973 (P = 1.22 × 10−9), confirmed by the replication study and 

overall meta-analysis (rs2456983 P = 2.75 × 10−14, OR 1.29). IKZF4 encodes a regulator of 

T cell activation42, and is associated with type 1 diabetes43 and alopecia areata44.

At 12q24.12, the GWAS-MA showed association with SNPs (nt 111708458-112906415) 

within and near SH2B3, particularly rs3184504 (P = 1.32 × 10−11) and imputed SNP 

rs4766578 (P = 9.10 × 10−12), located downstream, within ATXN2 (Supplementary Fig. 3k). 

Many SNPs in this region achieved genome-wide significance, but logistic regression 

analysis indicated all reflect a single association signal. The replication study and overall 

meta-analysis confirmed association of both rs3184504 (P = 2.46 × 10−17, OR 0.76) and 

rs4766578 (P = 3.54 × 10−18, OR 0.76). ATXN encodes Ataxin-2, and is causal for 

spinocerebellar ataxia type 2. SH2B3 encodes adaptor protein LNK, regulating development 

of both B and T cells45, and associated with type 1 diabetes46, celiac disease47, rheumatoid 

arthritis48, multiple sclerosis49, and perhaps lupus25. SH2B3 thus seems more likely relevant 

to vitiligo susceptibility than ATXN2.

At 22q13.2, the GWAS-MA showed suggestive association with SNPs in a broad region (nt 

41707054-42062822), particularly rs79008 (P = 1.44 × 10−6), upstream of TOB2, and 

several imputed SNPs, including rs4822024 (P = 1.02 × 10−7), between ZC3H7B and TEF 

(Supplementary Fig. 3l). The replication study and overall meta-analysis confirmed 

association of both SNPs, greatest with rs4822024 (P = 6.81 × 10−10, OR 0.78). TOB2 

encodes a regulator of cell cycle progression involved in T cell tolerance50. However, the 

locus contains 12 genes, and assignment of TOB2 as causal remains uncertain.

Besides these 13 confirmed vitiligo-associated loci, an additional locus at 19p13.3 did not 

quite achieve genome-wide significance. The GWAS-MA showed suggestive association of 

SNPs (nt 4830628-4837557) spanning TICAM1, particularly rs6510827 (P = 6.98 × 10−6) 

and imputed SNP rs811383825 (P = 1.49 × 10−5) (Supplementary Fig. 3m), with association 

with rs6510827 confirmed by the replication study and near-significance in the overall meta-

analysis (P = 8.80 × 10−8, OR 1.19). TICAM1 encodes toll-like receptor adaptor molecule 1, 

which mediates innate immune responses to viral pathogens51. SNPs at ten additional loci 

that appeared suggestive in the GWAS-MA were not confirmed by the replication study 

(Supplementary Table 3).
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Altogether, the vitiligo susceptibility loci we identified account for approximately 10% of 

vitiligo risk in EUR individuals, and about 18% of vitiligo heritability (h2 ~ 0.75). Most 

encode immunoregulatory proteins or melanocyte proteins that likely mediate antigenic 

triggering and immune targeting of melanocytes, and bioinformatic network analysis 

indicated at least 26 comprise a functional network spanning from the melanocyte to the 

immune system (Supplementary Fig. 4). Many vitiligo susceptibility loci are shared with 

other autoimmune diseases, most sharing the same high-risk alleles, consistent with 

epidemiological associations among these diseases (Supplementary Fig. 5). Functional 

prediction of all genotyped and imputed missense and splice junction variants in all 

confirmed non-MHC vitiligo loci (Supplementary Table 4) identified predicted deleterious 

variants at PTPN22, IFIH1, SLA, CD44, TYR, OCA2, MC1R, UBASH3A, and C1QTNF6, 

and for TYR two common variants, S192Y and R402Q, confer protection from vitiligo, 

whereas HLA-A *02:01 confers risk6. Additional vitiligo susceptibility loci undoubtedly 

remain undiscovered; nevertheless, the genes and pathways already identified provide 

insights into vitiligo pathobiology, optimal use of existing treatments, and even novel 

therapeutics.

METHODS

Subjects

GWAS1 has been described previously3. GWAS2 included 450 unrelated generalized 

vitiligo patients (cases) of non-Hispanic/Latino European ancestry (EUR) from North 

America and Europe, who met strict clinical criteria for generalized vitiligo52. Controls for 

GWAS2 were 3182 EUR individuals not specifically known to have any autoimmune 

disease or malignant melanoma, for whom genome-wide genotypes were obtained from the 

database of Genotypes and Phenotypes (dbGaP; phs000092v1, phs000125v1, phs000138v2, 

phs000168v1, and phs000206v3), or from the Illumina iControlDB. The replication study 

included 1440 unrelated EUR generalized vitiligo cases and 1316 unrelated EUR controls 

from North America and Europe, principally spouses of vitiligo patients from the GWAS2 

study and the replication study itself. There was no overlap of cases and controls between 

the GWAS1, GWAS2, and replication cohorts. Cases and controls provided clinical history 

regarding vitiligo and other autoimmune diseases as described previously for GWAS13, and 

controls having known relatives with vitiligo or reporting any known autoimmune diseases 

or melanoma were excluded. Eye color was by self-report. Written informed consent was 

obtained from all study subjects. This study was approved by each institutional review board 

and was conducted according to Declaration of Helsinki principles.

Genotyping and quality control

Genomic DNA was prepared from saliva specimens using a DNA self-collection kit per the 

manufacturer's instructions (Oragene, DNA Genotek). For genome-wide genotyping, DNA 

concentrations were assayed by both fluorescence staining (PicoGreen method, Invitrogen) 

and ultraviolet A260 spectrophotometry (Nanodrop, Thermo Scientific). For genotyping 

specific SNPs in the replication study, DNA concentrations were assayed by Nanodrop.
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Genome-wide genotyping for GWAS2 cases was performed for 657,366 SNPs using 

Illumina Human660W-Quad BeadChips per the manufacturer's instructions. GWAS2 

controls obtained from dbGaP and Illumina iControlDB had been genotyped using Illumina 

Human 610-Quad and Human 1Mv1 BeadChips. Genotyping of 46 SNPs in the replication 

study was performed using a custom Illumina GoldenGate assay per the manufacturer's 

instructions.

Quality control filtering of genome-wide genotype data in GWAS2 was carried out as 

described for GWAS13 using Illumina GenomeStudio, version 3 and PLINK53, version 

1.07. Cases were excluded on the basis of SNP call rates < 98.5% (N = 16), discordance 

between reported and observed sex (N = 0), and/or inadvertent subject duplication (N = 0). 

Beyond prior quality control procedures, controls were excluded on the basis of SNP call 

rates < 95% (N = 0). Additional cases (N = 6) and controls (N = 356) were excluded on the 

basis of cryptic relatedness based on pair-wise identity-by-descent estimation (Pi-hat > 0.05) 

of the entire (GWAS1 + GWAS2) summary dataset, in which case the individual with lower 

SNP call rate was excluded. SNPs were excluded on the basis of genotype missing rate ≥ 2% 

overall (N = 97,301) in cases plus controls, observed minor allele frequency < 0.01 (N = 

23,064), significant deviation (P < 10−5) from Hardy-Weinberg equilibrium in the control 

dataset (N = 5,241), and/or significant difference (P < 10−5) in genotype missing rate in 

cases versus controls (N = 35,939). Data for SNPs with P values < 10−15 were reviewed 

with respect to genotype clusters and allele calls in cases, and minor allele frequency in 

controls compared to data in public data sources, and were excluded if there were apparent 

data quality problems (N = 2). To control for population stratification, we performed 

principle components analysis using EIGENSOFT54, version 4.2, and excluded as outliers 

cases (N = 10) and controls (N = 16) whose ancestry was ≥ 6 standard deviations from the 

mean on one of the top ten eigenvectors.

In the replication study we successfully determined genotypes for 46 SNPs that showed 

suggestive (P < 10−4) or significant P values in the genome-wide meta-analysis of GWAS1 

and GWAS2, using a custom Illumina GoldenGate assay. SNP genotypes were subjected to 

quality control filters similar to those in GWAS1 and GWAS2, as appropriate.

Statistical analyses

For GWAS2, after quality control filtering of subjects and SNP data and removal of genetic 

outliers, we compared allele frequencies of the remaining 495,821 SNPs in the final 418 

cases and 2810 controls using the unadjusted Cochran-Armitage trend test implemented in 

PLINK53 and the adjusted Cochran-Armitage trend test implemented in EIGENSOFT54, in 

which both phenotypes and genotypes of subjects were adjusted for ancestry using the top 

ten eigenvectors. The unadjusted Cochran-Armitage trend tests and the adjusted Cochran-

Armitage trend tests yielded genomic inflation factors of 1.054 and 1.050, respectively, 

indicating that residual population stratification was negligible. Odds ratios and 95% 

confidence limits were calculated by logistic regression analysis by use of PLINK53.

To fully assess association at the 24 novel suggestive loci, we imputed genotypes for each 

locus using MaCH55, ver.1.0 based on patterns of haplotype variation in the 1000 Genomes 

Jin et al. Page 7

Nat Genet. Author manuscript; available in PMC 2012 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Project European ancestry samples (Release Aug 4, 2010). We retained imputed SNPs with 

r2 > 0.3 and minor allele frequency > 0.01 for further analyses.

For the replication study, after quality control filtering, we compared allele frequencies for 

genotyped SNPs in the remaining 1377 patients and 1284 controls using the Cochran-

Armitage trend test. Odds ratios and 95% confidence limits were calculated by logistic 

regression analysis.

To obtain combined ORs and P values for GWAS1 and GWAS2, and for the combined 

GWAS1, GWAS2, and replication studies, we performed meta-analysis using a Cochran-

Mantel-Haenszel test. A Breslow-Day test was used to test for heterogeneity of ORs of the 

same SNP in different study cohorts.

Calculation of linkage disequilibrium between SNPs in regions of association was carried 

out using Haploview56, version 4.2. As a test of the independent effect of a given locus 

conditioned on the effect of another locus, we compared the fit of a model containing both 

loci to a model containing only the conditioning locus, assuming a multiplicative genotypic 

effect for the high-risk allele of each locus. Analyses were performed using STATA, version 

10.0.

We estimated the contribution of known vitiligo susceptibility loci to the total variance in 

vitiligo liability as the difference between the variance accounted for by all SNPs genome-

wide and the variance remaining after removing SNPs in known vitiligo susceptibility loci, 

using GCTA57 to estimate the two components of variance. We estimated heritability of 

vitiligo liability58,59 assuming a vitiligo prevalence in the EUR population of 0.003860 and 

sibling risk 0.062.

Functional network analysis

To gain insights into potential functional relationships among proteins encoded by vitiligo 

risk loci, we carried out functional interaction network analysis using the Search Tool for the 

Retrieval of Interacting Genes (STRING) 9.061. Input data were all known vitiligo 

susceptibility loci (including TICAM1, and selecting BTNL2 to represent the MHC class II 

gene region3). In addition, we iteratively tested inclusion of all proteins encoded by genes in 

the 16q24.3 and 22q13.2 association regions as well as FAM76B as potentially representing 

the 11q21 association region as a means of possible gene identification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Association of generalized vitiligo with SNPs in the OCA2-HERC2 region of chromosome 

15q12–q13.1. Results of Cochran-Mantel-Haenszel meta-analysis of GWAS1 and GWAS2 

data (GWAS-MA) for genotyped (black) and imputed (blue) SNPs on the y axis versus 

chromosomal nucleotide position (GRCh37/hg19) on the x axis. Red circles indicate the 

Cochran-Mantel-Haenszel P values from the GWAS1, GWAS2, and replication studies for 

rs12913832 and rs1129038 (see Table 1). Arrows indicate gene positions and transcriptional 

orientation.
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Table 2

Eye color among Non-Hispanic/Latino European-derived vitiligo patients versus normal individuals

Eye color USA/Canada/UK vitiligo patients (%) USA European-derived normals17 (%)
Australian European-derived 
normals18 (%)

Blue/gray 323 (26.8) 1856 (51.6) 1314 (46.1)

Green/hazel 362 (30.0) 788 (21.7) 789 (27.7)

Tan/brown 521 (43.2) 968 (26.7) 749 (26.3)

P-value - <0.0001 <0.0001

P values were obtained by chi-square distribution comparison of the number of individuals with tan/brown, green/hazel, and blue/gray eyes 
between the vitiligo patient and indicated normal groups.
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