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Abstract

Background: Sphingosine kinase (SphK) 2 has been implicated in the development of a range of cancers and
inhibitors of this enzyme are currently in clinical trial. We have previously demonstrated a role for SphK2 in the

development of acute lymphoblastic leukemia (ALL).

Methods: In this and our previous study we use mouse models: in the previous study the disease was driven by the
proto-oncogene BCR/ABL1, while in this study cancer risk was elevated by deletion of the tumor suppressor ARF.

Results: Mice lacking ARF and SphK2 had a significantly reduced incidence of ALL compared mice with wild type SphK2.

Conclusions: These results show that the role of SphK2 in ALL development is not limited to BCR/ABL1 driven
disease extending the potential use of inhibitors of this enzyme to ALL patients whose disease have driver mutations

other than BCR/ABL1.
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Background

There are two forms of sphingosine kinase (SphK),
SphK1 and SphK2. SphK1 has an established role in ma-
lignant biology with overexpression being associated
with poor survival in patients with solid tumors [1-10]
and resistance to therapy [11-14]. Furthermore, inhibi-
tors of SphK1 have demonstrated preclinical activity in
acute myeloid leukemia (AML) [15, 16]. The role of
SphK2 has been more controversial but it is increasingly
being shown to play a role in malignant disease and has
been associated with poor patient outcome [17]. Knock-
down of SphK2 expression increases the sensitivity of
cancer cells to chemotherapy [18-20], while chemical
inhibition can reduce cancer cell growth in vitro [21-28]
and in pre-clinical animal models [21, 24, 26]. SphK2
inhibitors are now in phase II clinical trials for a number
of cancers including B cell malignancies, following suc-
cessful completion of phase I studies [29]. We have
recently shown that chemical inhibition of SphK2 can
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reduce acute lymphoblastic leukemia (ALL) cell growth,
induce cell death in vitro and extend the survival of mice
bearing human ALL xenografts. Furthermore, cells lack-
ing SphK2 had a reduced capacity to induce ALL driven
by the BCR/ABL1 fusion gene in WT mice, while SphK2
inhibition synergized with imatinib treatment of BCR/
ABL1+ ALL in vitro and in vivo [30].

Mice deficient in the tumor suppressor gene ARF are
prone to malignancies, with undifferentiated sarcomas
predominating (~ 38%), followed by lymphomas (~ 23%),
carcinomas (~15%) and neurological tumors (~ 10%),
with a latency of around 266 days [31]. Genetic loss of
material at the 9p21 locus, which includes AREF, is
common in ALL, being reported in up to 45% of B
lineage disease [32—34], making this a biologically rele-
vant model. The development of tumors in these mice
appears to be dependent on the aquisition of additional
genetic changes as treatment with radiation or the muta-
gen DMBA significantly reduces latency. Here we show
that blockade of T and B cell maturation by crossing
ARF deficient mice onto a Ragl’/ ~ background [35] re-
sulted in an incidence of ALL of over 60%. Further
crossing of these mice onto SphK2 deficient animals [36]
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permitted the examination of the role of SphK2 in the
development of ALL, demonstrating a significant reduc-
tion in disease incidence.

Methods

Development of mouse model

Mice lacking the pl9ARF product of the INK4a/ARF
locus (ARF”") develop malignancies at a high
penetrance with 80% of animals dying within the first
year of life [31]. To facilitate breeding we used mice
where the ARF gene had been floxed (ARFY?) (B6.129-
Cdkn2atm4Cjs/Nci, [37]) obtained from Graham Walker
(QIMR, Queensland Australia). In order to produce an
ALL model we crossed these mice with those lacking
Rag1"™™°™ from The Jackson Laboratory (Bar Harbour,
ME, USA) [35]. The resulting Mx1.Cre. ARF"" Ragl ™/~
(MAR) mice were then crossed onto animals lacking
SphK2 (Richard Proia (Bethesda, USA) [36]) to produce
Mx1.Cre ARF? Ragl”~.SphK2~/~  animals (MARS2
mice). The deletion of the ARF gene was undertaken at
6 weeks of age by intraperitoneal injection of 15 mg/kg
of Polyl:polyC every second day for a total of 3 doses
and confirmed by PCR (Additional file 1: Figure S1). All
mice were obtained or were backcrossed onto on a
C57Bl6 background. Experimental mice were monitored
for up to 400 days. Mice were defined as having ALL
when at the time of death the bone marrow and spleen
primarily consisted of B220*CD19"Grl™ cells. Survival
was analysed using the Kaplan-Meier method and SPSS
Statistics software.

Mice were genotyped by PCR on genomic DNA ob-
tained from ear punches using DirectPCR Lysis Reagent
(Ear) (Viagen Biotech, Los Angeles CA) with 0.4 mg/mL
proteinase K (Promega, Alexandria, NSW, Australia)
(complete lysis solution). Ear punches from mice were
incubated in complete lysis solution for 2 h at 56 °C and
proteinase K was inactivated for 30 min at 85 °C prior to
PCR. Deletion of ARF was detected in genomic DNA
obtained from spleen cells recovered from culled mice.
PCR reactions were performed using MyTaq DNA poly-
merase (Bioline, Eveleigh NSW Australia) and specific
primers as indicated in Additional file 1: Table S1. The
IL-2 PCR was used as a positive DNA control for the
Mx1.Cre reaction. The PCR conditions were 95 °C for
1", then 95 °C for 15", 58 °C for 15", 72 °C for 20" for
35 cycles, 72 °C for 5°. Amplified products were sepa-
rated on a 2% agarose (Sigma-Aldrich) gel stained with
Midori Green Nucleic Acid solution (Bulldog Bio Inc.,
Portsmouth NH) and visualised using ChemiDoc MP
Imaging System (Bio-Rad, Hercules, CA).

Flow cytometry
Flow cytometry was performed using a FACSCanto
6-colour flow cytometer (BD Biosciences, San Jose CA).
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The following antibodies were purchased: Sca-1-PE-Cy7,
c-Kit-APC, CD43-APC, IgM-PCP.Cy5.5, IgM-Biotin
(Australian Biosearch, WangarraWA, Australia); B220-
APC.Cy7, B220 PE-Cy5, CDI11b-PE, CDI11b-FITC,
CD19-PE, CD19-APC.Cy7, Grl1-FITC, Streptavidin APC
and Lineage Cocktail of biotinylated CD3, Gr-1, Ter119,
B220 and CD11b (BD Biosciences, San Jose CA), and
Streptavidin Pacific Blue (Thermofisher Scientific, North
Ryde, NSW, Australia). Cells were labelled with anti-
bodies as previously described [30].

Histology and image acquisition

Blood films were prepared and stained with a
Romanowsky stain. Tissues were fixed in 10% formalin,
embedded, sectioned and stained as previously described
[38]. Femurs were decalcified prior to embedding as pre-
viously described [38]. Images were obtained using a
NanoZoomer Slide Scanner (SDR Scientific, Sydney
Australia) or an Olympus BX51 microscope with images
captured using a Spot RT slider camera (Diagnostic
Instruments, Sterling Heights, MI) and SPOT Advanced
software. Composite figures prepared using Adobe
Photoshop software.

Results

Deletion of ARF in Rag1 deficient mice predisposes to ALL
Mice lacking ARF are known to develop malignancies with
an increased incidence [31]. To generate an ALL model we
bred Mx1.Cre. ARF”® mice with Ragl™~ mice to generate
Mx1.Cre. ARF" Ragl ™~ mice. At 6 weeks of age mice
received 3 injections of polyl:polyC to delete the ARF gene
producing Mx1.Cre. ARF™/ ~Ragl™™ (MAR) mice.

Ragl™~ mice with deleted ARF (MAR mice) survived
for up to 304 days (median 193 days) (Fig. 1a). The most
common cause of death was B lineage ALL, which
occurred in 61% of mice between 119 and 243 days with
a median of 192 days. The remaining animals suc-
cumbed to a number of causes including other haemato-
logical malignancies, with the most common feature of
non-ALL deaths being massively enlarged pale livers that
sometimes contained defined tumors (Fig. 1b). However
the origin of the tumors could not be determined with
certainty. Many appeared to be haematological in origin
based on morphology but the bone marrows mostly
appeared normal (Additional file 1: Figure S2). Flow
cytometric analysis of cells recovered from the bone
marrow and spleens of these animals was generally
uninformative.

Mice that developed ALL were easily identified, dem-
onstrating weight loss, reduced activity and/or impaired
use of hind limbs and tail. One displayed hydrocephaly,
with fitting. Necropsy findings were consistent with B
lineage ALL with enlarged spleens and often enlarged
livers, without evidence of tumors and a normal dark
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Fig. 1 MAR mice develop malignancies with B lineage ALL predominating. a Kalpan-Meyer analysis showing the survival of MAR mice. b Mouse culled
due to disease other than ALL showing tumors in the liver (white arrows) and an enlarged spleen (black arrow). € Mouse culled due to ALL showing
enlarged spleen (black arrow). d Blood film from a mouse with ALL showing circulating lymphobilasts. Image acquired using a slide scanner and size
bar represents 100 pm. Lower imaged taken on a Spot camera, original magnification 600x. e Flow cytometric analysis of bone marrow and spleen
cells from mice culled due to ALL. Upper panels are from the same mouse. Central panels show the lowest and highest CD11b expression detected.
Lower panels show typical expression of maturation markers B220, CD19, CD43 and surface IgM. Quadrants were set based on control stained cells
from the same animal. f Section of liver from a mouse culled due to ALL showing both perivascular (thin arrow) and diffuse (thick arrow) infiltration by

ALL cells. The degree of infiltration in this animal was typical. Image acquired using slide scanner and size bar indicates 250 um

red colour (Fig. 1c). Mice with ALL also had elevated
WBC for immune-compromised mice (median 15.2,
range 2.1-286.5 cells/mL) with significant numbers of
lymphoblasts present in blood smears (Fig. 1d). Lymph
nodes were rarely involved with only 2 mice having vis-
ible nodes on cull and only 1 of those having significant
lymphadenopathy (Additional file 1: Figure S3). Cells in
the spleen and bone marrow were mostly B220 and
CD19 positive (average of 73%, range 56-87 and 86%,

range 73-97 respectively), lacking staining for the mye-
loid marker Grl and the T cell marker CD3, however
CD11b was detected on cells from some animals
(Fig. 1e). Cells from all mice with ALL were positive for
immature marker CD43 and most expressed IgM on at
least a proportion of the cells (Fig. le). The lack of
lymph node involvement in the vast majority of animals,
near complete replacement of the bone marrow by lym-
phoblasts as well as the expression of the immature
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marker CD43 and low expression of IgM indicate a pro-
to pre-B classification of these leukemias. Other organs,
primarily the liver, were infiltrated with lymphoblasts
(Fig. 1f). ALL induced death tended to be earlier com-
pared to non-ALL deaths, with the latter occurring
between 68 and 304 days with a median of 229 days, al-
though this was not statistically significant, p =0.06)
(Additional file 1: Figure S4). Animals that did not de-
velop ALL mostly presented with solid tumors at a
slightly later time point.

Deletion of SphK2 reduced the incidence of B ALL
A cohort of mice lacking ARF and Ragl was also gener-
ated using the same methodology on an SphK2~/~ back-
ground (MARS2 mice). ARF was similarly deleted at
6 weeks of age by 3 injections of polyl:polyC. These mice
also largely succumbed to conditions consistent with
malignant diseases but compared to MAR mice had sig-
nificantly increased overall survival with deaths occur-
ring between 120 and >400 days (one mouse was
electively culled disease free at 400 days) with a median
of 234 days (p < 0.05) (Fig. 2a). Notably there were fewer
deaths resulting from ALL in MARS2 animals with only
43% of deaths being due to ALL, resulting in a signifi-
cant increase in leukemia free survival in MARS2 mice
(p =0.044) (Fig. 2b).

The absence of SphK2 did not alter the nature of the
ALL that developed, with latency, phenotype and disease
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dissemination being similar. Death due to ALL was
slightly delayed in MARS2 mice (range 169 — 253, me-
dian 219.5 days), however this was not significantly
different from that of MAR mice (Fig. 2c). Interestingly
the WBC in the leukemic MARS2 mice was significantly
lower than in the MAR mice, as was the number of cir-
culating blasts (Fig. 2d), however the blast percentage
was similar between the two groups. Otherwise the dis-
ease was identical in MARS2 and MAR mice, with simi-
lar enlargement of spleen and liver and infiltration of
other organs (Fig. 2e—g).

Discussion

Inhibition of sphingosine kinases has recently become of
interest for the treatment of a number of conditions in-
cluding malignant disease [39]. Clinical trials for the
SphK2 inhibitor ABC294640, are well under way with
phase I studies complete [29] and phase I/II and phase II
trials examining hepatocellular carcinoma, Kaposi sar-
coma as well as the haematological malignancies multiple
myeloma and diffuse large B cell lymphoma ongoing
(NCT02229981, NCT02939807 and NCT02757326).
These trials have been supported by recent preclinical data
from a number of groups [23, 24, 26, 30, 40—44]. The ma-
jority of these studies have focussed on solid tumors, how-
ever there are reports in haematological malignancies
including multiple myeloma [26] and T-ALL [45], and we
have previously reported a role for SphK2 in B lineage
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Fig. 2 Loss of SphK2 reduces the incidence of B lineage ALL. a-c Kaplan-Meier plots showing all (@) and ALL-induced (b) deaths. Deaths due to causes
other than ALL are illustrated in (c). Total WBC (d, left panel) and ALL blast counts (d, right panel) at the time of sacrifice are shown. # indicates p < 0.05. e
Mouse culled due to ALL showing enlarged spleen (black arrow). f Blood film from a mouse with ALL showing circulating lymphoblasts. Image acquired
using a slide scanner and size bar represents 100 um. g Section of liver from a mouse culled due to ALL showing both perivascular (thin arrow) and diffuse
(thick arrow) infiltration by ALL cells. The degree of infiltration in this animal was typical. Image acquired using slide scanner and size bar indicates 250 ym
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ALL [30] using a BCR/ABL1-dependent model. In this
study, we examined the effects of SphK2 gene deletion on
the development of ALL in a model that is not dependent
on forced expression of BCR/ABL1 and demonstrated that
genetic deletion of SphK2 also inhibits the development of
B lineage ALL independent of BCR/ABL1 expression. The
similar latency and features of the disease in MAR and
MARS2 mice suggests that the principal effect of SphK2
loss was on leukemia initiation rather than rate of disease
progression. However, we previously demonstrated that
the SphK2 inhibitor ABC294640 impedes disease progres-
sion in a xenograft model of Ph™ human ALL, suggesting
that SphK2 loss/inhibition has some effect on disease pro-
gression [30].

The reason why loss of SphK2 decreases the incidence
of ALL is not entirely clear. However SphK2 has a well-
established role in promoting malignant cell survival
[46] making it possible that in the absence of SphK2,
cells with newly acquired potentially oncogenic changes
are more susceptible to cell death. While precise mecha-
nisms are yet to be determined, one potential explan-
ation relates to CDKN1A expression. CDKNI1A is an
inhibitor of apoptosis induced in response to DNA dam-
age whose expression is increased by SphK2-mediated
effects on histone acetylation [47]. In the absence of
SphK2, induction of CDKNI1A expression following
DNA damage could be reduced increasing the probabil-
ity of cell death. Another possible mechanism relating
loss of SphK2 to the reduced incidence of ALL concerns
the localization of SphK2 to the endoplasmic reticulum
(ER) membrane and its involvement in sphingolipid me-
tabolism at this site. We have recently demonstrated that
inhibition of SphK2 induces unrecoverable ER stress
leading to apoptosis of multiple myeloma cells and this
ER stress-inducing mechanism is most likely also applic-
able to a range of cell types, including those of ALL,
thus impacting on its development in our model [48].

The lower WBC in leukemic MARS2 was interesting
and although altered trafficking of lymphoid cells in
SphK2™'~ animals might be an explanation for this ob-
servation, previous reports have demonstrated increased
plasma sphingosine-1-phosphate (S1P) and resultant in-
creased lymphocyte mobilization in SphK2™'~ mice [49].
All but one MARS2 mouse that did not develop ALL
went on to develop solid tumors at a time closer to the
previously reported latency (median of 266 days) for
solid tumors in ARF deficient animals [31]. Since the tu-
mors that emerged in this study could not be definitively
classified, it is not possible to comment on the effects of
SphK2 loss on the development of other malignancies.

Conclusions
We have previously demonstrated the role of SphK2
in ALL driven by BCR/ABL1 and the potential
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therapeutic application of SphK2 inhibitors in this
disease. In this study we demonstrate that SphK2 also
plays a role in the development of BCR/ABL1 nega-
tive ALL with genetic deletion of SphK2 reducing dis-
ease incidence. These findings further support and
broaden the potential application of SphK2 inhibitors
in the treatment of ALL.
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