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Introduction
Neisseria meningitidis or meningococci (MC) is a 
Gram-negative, aerobic, immobile, and non-
sporulating bacteria that can colonize the oro-
pharynx of healthy individuals or provoke invasive 
meningococcal disease (IMD), causing meningi-
tis and/or meningococcemia. Its virulence has 
been attributed to several factors, as the polysac-
charide capsule, outer membrane proteins, such 
as pili, the lipopolysaccharide (LPS), mecha-
nisms of horizontal gene transfer and antigenic 
variation.1–3

Serological typing of N. meningitidis strains by 
Dot-ELISA and a panel of monoclonal antibodies 
is well established.4 The characterization of 
meningococci antigens by monoclonal antibodies 
uses the capsule, Porin B, Porin A and LPS to 
characterize the strains, respectively, in sero-
group, serotype, subtype and immunotype.5,6

IMD is considered a public health problem, espe-
cially in developing countries. It is estimated that 
every year, there are 1,2 million new cases and 
135 thousand deaths.7 The distribution of sero-
groups and the impact of diseases caused by MC 
in the world are heterogeneous; however, the 
impact of IMD is greater in developing countries. 
Adequate surveillance has great importance in 
estimating the impact of IMD, outlining strate-
gies of prevention, which is the better strategy for 
control, and evaluating the available diagnostic 
and monitoring systems.8,9 Although there are 
molecular tools to classify the pathogen,10 sero-
logical techniques present lower costs, are easy to 
perform and reproducible, being suitable espe-
cially in low-income countries.4–6

We performed this study to verify the expression 
of L3,7,9 immunotype and type IV pili (T4P) 
among circulating strains of N. meningitidis in 
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Brazil in recent years, because, even though they 
are important for IMD, being related to high 
pathogenic levels, they are not routinely tested.11,12 
This was an important step for the study of the 
pathogenic potential of most prevalent Brazilian 
strains, serogroups B and C,13 as well as emerging 
serogroups W and Y, which have recently 
increased in the Americas and, because of that, 
got our focus in this study.7,8

Materials and methods

Whole cell suspensions
Whole cell suspensions and its phenotypic charac-
terization were performed at the Bacteriology 
Center of Adolfo Lutz Institute (São Paulo, 
Brazil). We used 113 Brazilian strains (19 of sero-
group B, 21 of serogroup C, 45 of serogroup W 
and 28 of serogroup Y), isolated from cases of 
IMD, between 2011 and 2017. During this period, 
12,677 cases of IMD were reported and 6354 of 
them were caused by the serogroups studied (the 
difference being caused by ‘ignored serogroups’), 
according to the Brazilian National Notifiable 
Disease Surveillance System (SINAN).14

Strains were isolated in chocolate blood agar (5% 
sheep blood), followed by cultivation in Müeller–
Hinton agar containing horse serum, incubated at 
37°C ± 2°C, in 5% CO2 atmosphere, during 
24 hours. Whole cell suspensions were prepared 
in PBS/azide solution, with an OD ~2.0, at 
620 nm. Following that, the suspensions were 
inactivated in a water bath 56°C for 30 minutes 
and maintained under refrigerator temperature. 
Serogrouping was performed by slide agglutina-
tion with polyclonal sera and serosubtyping was 
performed by Dot-blotting with monoclonal anti-
bodies, serological techniques routinely per-
formed at the Bacteriology Center.15 Table 1 
shows the phenotypic characterization of the 
strains used.

Monoclonal antibodies (mAbs)
We characterized LPS using 4BE12-C10 mAb 
(L3,7,9 immunotype),16 disposable at the Neisseria.
org database,17 and pili using 7BE211-E12 mAb 
(T4P), both obtained by the hybridoma tech-
nique,18 produced in mice as ascitic fluids. They 
were kindly given to Dr De Gaspari during her 
post-doctoral fellowship at the Walter Reed Army 

Institute of Research, where they were routinely 
used. Back in Brazil, the mAbs were lyophilized 
and kept in aliquots at 4°C. For use, they were 
resuspended, titled and maintained at –20°C.19

SDS-Polyacrylamide Gel Electrophoresis 
(SDS-PAGE)
To verify specificity against pili, we performed an 
immunoblotting assay. For that, whole cells of 
meningococci strain B:4:nt were characterized by 
electrophoresis in a 10% polyacrylamide gel, in 
the presence of sodium dodecyl sulfate (SDS), fol-
lowing the protocol described by Laemmli20 and 
using a molecular weight marker ranging from 11 
to 245 kDa (Color Protein Standard Broad Range, 
New England BioLabs). After the electrophoresis, 
the gel was stained with Coomassie Blue (PhastGel 
Blue R; Pharmacia Biotech). Immunotype mAbs 
were previously tested in our laboratory.21

Immunoblotting
A new gel was prepared following the same steps 
described earlier. After electrophoresis, proteins 
were transferred to a 0.45 µm nitrocellulose mem-
brane (BioRad Laboratories) at 100 V for 18 hours 
at 4°C. After that, the membrane was stained 
with Ponceau-S and discolored with PBS. The 
membrane was blocked with skimmed milk (La 
Sereníssima) 5% for 2 hours, at room tempera-
ture. mAb was diluted at 1:2000 in skimmed milk 
2.5% and incubated overnight at 4°C. Then, the 
membrane was washed five times with PBS pH 
7.2 and incubated with goat anti-mouse IgG 
(whole-molecule)-alkaline phosphatase (Sigma 
Aldrich) diluted at 1:5000 in skimmed milk 2.5%, 
for 2 hours, at room temperature. The membrane 
was washed again and the substrate 5-bromo-4-
chloro-3-indolyl phosphate/nitro blue tetrazolium 
(BCIP/NBT-plus) (Mabtech) was incubated for 
20 minutes, at room temperature and protected 
from light. The reaction was stopped by adding 
distilled water and was considered positive by the 
appearance of color in the membrane.22

Dot-ELISA
Dot-ELISA was conducted pipetting 1 µL of whole 
cell suspension in nitrocellulose membrane 0.45 μm 
(BioRad Laboratories). After that, Ponceau-S stain-
ing was proceeded. Membranes were blocked with 
skimmed milk (La Sereníssima) 5% for 2 hours at 
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Table 1.  Serogrouping, serotyping and subtyping characterization of N. meningitidis strains used in this study.

Strain identification Year Serogroup Serotype Subtype

N.30/11 2011 C 2a P1.5

N.36/11 2011 C 2b P1.14-6

N.41/11 2011 B 19,7 P1.14

N.56/11 2011 B 4,7 P1.19

N.60/11 2011 B 4,7 P1.7,1

N.61/11 2011 B 4,7 P1.7,1

N.74/11 2011 W 2a P1.5,2

N.101/11 2011 W 2b P1.5,2

N.149/11 2011 C 4,6 P1.19,14

N.180/11 2011 Y 22 P1.3

N.186/11 2011 B 4,7 P1.19,15

N.205/11 2011 Y 17,7 P1.5

N.210/11 2011 W 2b P1.5,2

N.225/11 2011 W 2a P1.5

N.267/11 2011 Y 22 P1.3

N.357/11 2011 Y 19 P1.5

N.458/11 2011 W 2b P1.2

N.554/11 2011 C 2b P1.14-6

N.601/11 2011 C 23 P1.14-6

N.15/12 2012 W 2a P1.5,2

N.23/12 2012 C 23 P1.14-6

N.26/12 2012 B 4,7 P1.19,15

N.30/12 2012 B 4,7 P1.19,15

N.33/12 2012 B 4,1 P1.16

N.34/12 2012 B 4,7 P1.19,15

N.37/12 2012 C 23 P1.14-6

N.42/12 2012 C 23 P1.14-6

N.63/12 2012 W 2a P1.2

N.64/12 2012 W 2a P1.5,2

N.65/12 2012 B 4,7 P1.19,15

N.72/12 2012 C 2a P1.5

(Continued)
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Strain identification Year Serogroup Serotype Subtype

N.85/12 2012 Y 22 P1.3

N.99/12 2012 W 2b P1.2

N.119/12 2012 C 23 P1.14-6

N.120 2012 C 23 P1.14-6

N.123/12 2012 W 2b P1.5,2

N.125/12 2012 Y 22 P1.3

N.03/14 2014 C 23 P1.14-6

N.20/14 2014 B 4,7 P1.19,15

N.143/14 2014 B 19,1 P1.14

N.155/14 2014 C 23 P1.14-6

N.233/14 2014 C 23 P1.14-6

N.278/14 2014 B 19 nt

N.365/14 2014 B 19 P1.4

N.375/14 2014 C 23 P1.14-6

N.39/15 2015 C 23 P1.14-6

N.44/15 2015 B 4,7 P1.14

N.110/15 2015 C 23 P1.14-6

N.135/15 2015 B 4,7 P1.19,15

N.194/15 2015 C 23 P1.14-6

N.21/16 2016 B 4,7 P1.19,15

N.28/16 2016 C 23 P1.14-6

N.101/16 2016 C 2a P1.5

N.151/16 2016 B 19 P1.19,15

N.221/16 2016 C 23 P1.14-6

N.227/16 2016 B 4,7 P1.19,15

N.13/14 2014 W 2b P1.5,2

N.111/14 2014 Y NT P1.5,2

N.146/14 2014 W 2a P1.2

N.249/14 2014 Y 22 nt

N.305/14 2014 Y 22 nt

N.327/14 2014 W 2a nt

Table 1.  (Continued)

(Continued)
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Strain identification Year Serogroup Serotype Subtype

N.341/14 2014 W 2a P1.5

N.385/14 2014 Y 19,10 nt

N.51/15 2015 Y 22 nt

N.78/15 2015 W 23 P1.3

N.127/15 2015 W 2b nt

N.170/15 2015 W 2a P1.2

N.262/15 2015 Y 19 P1.10

N.268/15 2015 Y 22 P1.3

N.15/16 2016 W 2a P1.5,2

N.25/16 2016 Y 2b P1.5,2

N.71/16 2016 W 2a P1.5,2

N.226/16 2016 Y 4 nt

N.239/16 2016 W 2a P1.5,2

N.250/16 2016 Y 2b P1.5,2

N.5/17 2017 W 2a P1.5,2

N.21/17 2017 W 2a P1.5,2

N.29/17 2017 Y 4 nt

N.38/17 2017 Y NT nt

N.52/17 2017 Y 4 nt

N.55/17 2017 W 2a nt

N.57/17 2017 W 2a P1.2

N.58/17 2017 W 2a P1.5,2

N.73/17 2017 W 2a P1.5,2

N.85/17 2017 Y 19,10 nt

N.87/17 2017 W 2a P1.5,2

N.100/17 2017 W 2a P1.5,2

N.129/17 2017 Y 19 nt

N.132/17 2017 W 2a P1.2

N.136/17 2017 W NT P1.2

N.140/17 2017 W NT P1.2

N.147/17 2017 W 2b P1.2

Table 1.  (Continued)

(Continued)
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Strain identification Year Serogroup Serotype Subtype

N.149/17 2017 Y 2a nt

N.151/17 2017 Y 2a nt

N.158/17 2017 W 2a P1.2

N.159/17 2017 W 2a P1.2

N.160/17 2017 W 2a P1.2

N.168/17 2017 W 2b P1.2

N.169/17 2017 W 2a P1.2

N.170/17 2017 Y 19,10 P1.3

N.172/17 2017 W 2b P1.2

N.178/17 2017 W 2a P1.2

N.190/17 2017 W 2b nt

N.200/17 2017 Y 4 nt

N.205/17 2017 W 2a P1.2

N.206/17 2017 Y 2c P1.5

N.208/17 2017 W NT P1.3

N.236/17 2017 Y 22 nt

N.243/17 2017 W 2a P1.2

N.250/17 2017 W 2a P1.2

N.262/17 2017 Y 22 nt

N.263/17 2017 W NT P1.2

Table 1.  (Continued)

room temperature. mAbs, diluted at 1:2000 in 
skimmed milk 2.5%, were incubated overnight at 
4°C. Membranes were washed five times with PBS 
pH 7.2 and incubated for 2 hours, at room tempera-
ture, with goat anti-mouse IgG (whole-molecule)-
alkaline phosphatase (Sigma Aldrich) diluted at 
1:5000 in skimmed milk 2.5%. After washing, 
membranes were incubated with the substrate 
BCIP/NBT-plus (Mabtech) for 20 minutes, at 
room temperature and protected from light. We 
added distilled water to stop the reaction, which was 
considered positive by the appearance of color in 
the membrane.4

This project was performed at the Immunology 
Center of Adolfo Lutz Institute and was approved 

by the Technical and Scientific Committee of this 
institution (CTC number 41D-2011).

Results
Accessing 7BE211-E12 specificity, Figure 1 
shows meningococci strain B:4:nt electrophoretic 
profile in SDS-Polyacrylamide Gel Electrophoresis 
(SDS-PAGE) and immunoblotting reaction with 
the referred mAb, recognizing only one band in 
immunoblotting. LPS mAb specificity was previ-
ously tested in our laboratory.21

The results of Dot-ELISA show a high expression 
of the L3,7,9 immunotype and type IV pili. From 
19 MenB strains, all were reactive to L3,7,9 

https://journals.sagepub.com/home/tav
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immunotype and 16 were reactive to T4P. From 
21 MenC strains, L3,7,9 mAb recognized 19 
strains and T4P recognized 14 strains. Of 45 
MenW strains, all presented L3,7,9 immunotype 
and 35 presented T4P. Of 28 MenY strains, L3,7,9 
mAb recognized 26 strains and T4P recognized 23 
strains. Figure 2 shows the results obtained.

Discussion
As expected, mAbs were specific, recognizing 
only one band in immunoblotting. The pili 
epitope was approximately 17 kDa according to 
molecular weight.23 LPS mAb was previously 
tested in our laboratory, also recognizing only one 
band, at 5.9 kDa.24 The Dot-ELISA technique 
proved to be advantageous due to its technical 
simplicity, dispensing with the use of specific 
equipment, using a low volume of monoclonal 
antibodies and requiring little manipulation of 
samples, as proposed by Wedege et al.4 Given 

that low-income areas are still linked to a higher 
burden of IMD, Dot-ELISA characteristics 
strength that even in the molecular biology era, 
serological techniques may still be applicable, 
especially in developing countries.

LPS is considered the main virulence factor of 
Gram-negative bacteria. It induces an inflammatory 
response, contributes to adhesion, invasion and 
inhibits phagocytosis and complement activation, 
playing roles in infection establishment and progres-
sion.2,24 The arrangement of the LPS on the cell sur-
face also influences the exposure of outer membrane 
proteins, which has implications in host–pathogen 
dynamics.25 Studies showed that some immuno-
types, such as L1 and L8, are more often related to 
carrier strains; however, meningococci can switch its 
expression during the disease. The L3,7,9 immuno-
type has already been described between virulent 
strains11,26 and had been associated with a high pro-
inflammatory response.27 Detoxified LPS had 
already been studied as a vaccine compound, given 
its adjuvanticity qualities, activating Toll-like recep-
tor 4 (TLR-4), being relatively conserved among 
strains, inducing bactericidal antibodies and proba-
bly being able to confer protection against a range of 
Gram-negative bacteria.28,29

Pili is responsible for the first interaction between 
the bacteria and host cells, mediates motility, 
DNA exchange by transformation and allows the 
meningococci to cross the blood–brain barrier, 
establishing the infection. T4P is found in several 
Gram-negative pathogens, such as Pseudomonas 
aeruginosa and Vibrio cholerae.30–32 Studies showed 
that pili expression is required for colonization 
and its removal decreased the level of adherence 
between the bacterium and the host’s cells.33,34 A 
recent study proposed the use of T4P as a target 
for therapeutics, which reduced the colonization, 
spread and lethality of the bacterium.35

According to previous studies, antigens of patho-
genic species of Neisseria usually show great vari-
ability among strains.36 However, keeping some 
antigens is important to maintain the virulence, as 
pointed out by Urwin et al.37 Pili and LPS play 
important roles in colonization and spread in the 
host tissue, which are essential steps of invasive 
disease,38 and several studies, described before, 
proved its importance to meningococci. Given 
our results, Brazilian strains express these anti-
gens, suggesting high pathogenic capacity. The 

Figure 1.  Immunoblotting of mAb 7BE211-E12. On 
the left, molecular weight and electrophoretic profile 
of strain B:4:nt, on the right, mAb Immunoblotting. 
mAb, monoclonal antibody.
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strains were isolated from IMD cases, which 
agrees with that assumption. The emergence of 
different serotypes and epidemiological changes, 
as we have seen with the emergency of serogroups 
W and Y, are usually connected to hypervirulent 
strains,39 so it must be important that key factors 
to pathogenicity are maintained among them and, 
therefore, are characterized by surveillance pro-
grams. Weidlich et al.40 and Lemos et al.41 studied 
the hypervirulent strain W:2a:P1.5,2 in Brazilian 
cases of IMD. That strain was also seen in 
Argentina42 and in Chile, where, in 2010, it 
became the most prevalent strain and led to an A, 
C, W and Y quadrivalent vaccine campaign.43

All these data reaffirm how important it is to pro-
ceed with antigenic characterization, in order to 
recognize hypervirulent strains and take control 
initiatives. Besides the recognition of important 
antigens between strains, that led us to under-
stand the pathogen better, phenotypic characteri-
zation may be applied to study vaccine targets, 
given that it would be interesting to induce an 
immune response against antigens that are key 
factors for virulence. Besides that, characteriza-
tion allows us to check if current vaccine strains 
present such antigens, contributing to surveil-
lance over immunization.37,44

Conclusion
Due to the impact of IMD, it is important con-
stantly to maintain and improve vaccine studies. 

The characterization of epitopes provides data 
about meningococci virulence, the prevalence of 
circulating strains and contributes to immuniza-
tion research and monitoring. Simple techniques, 
such as Dot-ELISA, and tools such as mAbs, are 
important and collaborate with strain selection 
for vaccine improvement and IMD control.
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