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Objectives: To investigate the value of imaging in predicting the growth rate of early
lung adenocarcinoma.

Methods: From January 2012 to June 2018, 402 patients with pathology-confirmed lung
adenocarcinoma who had two or more thin-layer CT follow-up images were
retrospectively analyzed, involving 407 nodules. Two complete preoperative CT images
and complete clinical data were evaluated. Training and validation sets were randomly
assigned according to an 8:2 ratio. All cases were divided into fast-growing and slow-
growing groups. Researchers extracted 1218 radiomics features from each volumetric
region of interest (VOI). Then, radiomics features were selected by repeatability analysis
and Analysis of Variance (ANOVA); Based on the Univariate and multivariate analyses, the
significant radiographic features is selected in training set. A decision tree algorithm was
conducted to establish the radiographic model, radiomics model and the combined
radiographic-radiomics model. Model performance was assessed by the area under the
curve (AUC) obtained by receiver operating characteristic (ROC) analysis.

Results: Sixty-two radiomics features and one radiographic features were selected for
predicting the growth rate of pulmonary nodules. The combined radiographic-radiomics
model (AUC 0.78) performed better than the radiographic model (0.727) and the
radiomics model (0.710) in the validation set.

Conclusions: The model has good clinical application value and development prospects
to predict the growth rate of early lung adenocarcinoma through the combined
radiographic-radiomics model.

Keywords: pulmonary nodules, tomography, X-ray computer, radiomics, volume doubling time, machine learning

INTRODUCTION

Lung cancer has the highest incidence rate of all cancers in China and worldwide. The incidence rate
and mortality rate of lung cancer in 2018 were 11.6% and 18.4%, respectively (1). In recent years, the
incidence rate of lung adenocarcinoma was the highest among lung cancers, accounting for 60% of
primary lung cancers, and lung adenocarcinoma is the most common histological type of lung cancer
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(2, 3). With the widespread use of low-dose CT screening, the
increasing early-stage lung cancer are discovered (4). A pulmonary
nodule is defined as a rounded opacity that is well or poorly
defined measuring up to 3 cm in diameter (5). Although the
current guidelines issued by the National Comprehensive Cancer
Network (NCCN) (6, 7), Fleischner Society (8), American College
of Chest Physicians (ACCP) (9), and the Asian Consensus (10)
differ in some respects regarding the diagnosis and treatment of
and follow-up strategies for pulmonary nodules, most guidelines
are based on radiographic features, such as the type and size of
pulmonary nodules. Lung adenocarcinoma is an inert tumor
compared with squamous cell carcinoma and small cell
carcinoma (11), although it is not uncommon for lung nodules
to rapidly grow from the early stage to advanced stage in a short
period. However, such nodules are usually followed up with CT
examinations, and the best treatment time may be missed.
Following the diagnosis and treatment methods recommended
by previous guidelines for such fast-growing malignant nodules
may lead to untimely diagnosis and treatment of patients, resulting
in serious disease. Among all early-stage lung cancers (TINOMO
stage), the choice of treatment and the prognosis of patients are
sometimes quite different in clinical practice. Among similarly
sized pulmonary nodules, the prognosis of aggressive lung
adenocarcinoma is significantly worse than that of inert nodules.
Radiomics extracts engineering features related to
morphology, histogram, intensity, and texture and integrates
knowledge from multiple fields of imaging (image
interpretation), computers (quantitative feature extraction) and
machine learning (model establishment and evaluation) (12, 13).
Radiomics can reveal a large amount of invisible, high-
dimensional information with potential clinical value hidden
behind the image. Currently, radiomics has achieved good results
in the diagnosis of benign and malignant pulmonary nodules (14,
15). However, there are few radiomics methods for the
prediction of the growth rate of pulmonary nodules. Therefore,
the aim of this study was to establish a radiomics-based model
for the prediction of the growth rate of early lung
adenocarcinoma to assist in clinical decision-making.

MATERIALS AND METHODS

Data Collection

Methods

From January 2012 to June 2018, patients with lung
adenocarcinoma confirmed by pathology who had two or more
thin-layer CT images were selected. The inclusion criteria were as
follows: 1) nodule diameter<3 cm; 2) more than 2 preoperative
thin-layer CT scans with an interval of more than 30 days (15);
3) pulmonary nodules confirmed by pathology as lung
adenocarcinoma; and 4) all cases with stage TINOMO. The
exclusion criteria were as follows: 1) preoperative surgery or
chemoradiotherapy treatment; 2) no complete clinical data; and
3) unclear image due to respiratory motion and other factors and
nodules with details that could not be displayed.

In total, 407 pulmonary nodules from 402 patients (mean age
58.45, 22-84 years) were included in this study. The cases were
randomly divided into the training set and validation set at a
ratio of 8:2. Only no-contrast CT images were included in this
study. If the patients had more than two CT images, the first CT
scan image and the last preoperative CT scan image were
selected. The average interval between the two CT images was
567.56 days (range 30-2813), with a median of 397 days. This
study was approved by the institutional review committee of our
hospital, and patient informed consent was not required.

Radiographic Features and Postoperative
Pathological Evaluation

The first CT images of all patients were independently evaluated
by two chest radiologists with 6 and 12 years of chest CT reading
experience (evaluation conditions: window width, 1500
Hounsfield units [HU]; window position, -700 HU). Any
discrepancies in the interpretation between the observers were
resolved by a consensus. The CT findings of each lesion were
analyzed, including (1) the lesion location, (2) lesion type (pure
ground glass, partial solid nodule, or solid nodule), (3) lesion
size, (4) margin (clear or blurred), (5) nodule shape (round, oval,
or irregular), (6) pleural attachment, including pleural tag and
indentation (absent or present), (7) bubble (absent or present),
(8) bronchiole change (absent or present), (9) vascular change
(absent or present), (10) and lobulation (absent or present). Solid
nodule as a nodule that completely obscures the entire lung
parenchyma within it. Part-solid GGN are those having sections
that are solid in this sense, and pure GGN are those with no solid
parts (16). Vascular changes were defined as the thickening and
twisting of blood vessels through the lesion or aggregation of
vessels surrounding the lesion (17). Bronchiole changes were
defined as enlargement, distortion, or obstruction of the
bronchus through the lesion. In the analysis of interobserver
reliability, the type (pure GGN, part GGN or solid nodules) were
compared between 2 observers, diagnostic concordance was
assessed by unweighted kappa values. Two senior pathologists
(chest pathologists with more than 5 and 10 years of working
experience) evaluated and reviewed the lung tissue according to
the classification of lung adenocarcinoma by the International
Lung Cancer Research Association, American Thoracic Society
and European Respiratory Society (2).

Evaluation of Growth Rate

The tumor volume doubling time (VDT) is a key parameter used to
distinguish fast-growing tumors from slow-growing tumors (18).
Since few studies investigated the growth rate of pulmonary
nodules, we defined the growth rate of pulmonary nodules
according to previous studies. Most studies defined pulmonary
nodules with a VDT >400 days and VDT <400 days as slow-
growing and fast-growing pulmonary nodules, respectively (11, 19).

Image Acquisition, Nodule Segmentation
and VDT Acquisition

All CT scans were performed with one of the four scanners (GE
Discovery CT750HD, 64-slice LightSpeed, VCT, Somatom
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Definition Flash; Somatom Sensation 16). The detailed scan and
reconstruction parameters are listed in Table 1.

An open-source medical image processing and navigation
software 3D slicer (version 4.8.0, Brigham and Women’s Hospital)
was used to manually delineate the volume of interest (VOI) of the
814 nodules by a radiologist with 6 years of experience with chest CT
interpretation; then, the VOI was confirmed by another radiologist
with 12 years of chest CT interpretation who corrected the boundary
of each nodule to avoid the influence of vessels, bronchus, pleura and
other structures outside the nodule to the greatest extent possible
(20). Finally, all CT data of the VOI of all nodules were exported in
NII (desensitization format) for the following analysis.

The volume doubling time (VDT) refers to the time required
to calculate the volume doubling based on an exponential growth
model (21). Two CT scan images were selected for each patient to
analyze and calculate the VDT as follows: the first CT image was
selected as the scan image from the first CT scan in our hospital,
and the second image was the last preoperative CT scan image.
The following formula was used to calculate the VDT:

VDT = (volume doubling time) = % ,where V0 and
V1 represent the volumes at T1 (time 1- the second examination
date) and TO (time O - the baseline examination date).

Feature Extraction and Repeatability
Analysis of Radiomics

Feature Extraction

Pyradiomics Toolkit (Version 2.1.0, https://github.com/
Radiomics/pyradiomics) was used to extracted the radiomics
features, including the first-order features based on the CT value
or the pixel value of the preprocessed image, the shape descriptor
features used to describe the shape and size, the gray-level
cooccurrence matrix (GLCM), the gray-level run lengths
matrix (GLRLM), the gray level size zone matrix (GLSZM),
and the gray level dependence matrix (GLDM), to describe the
internal and surface texture of the lesion. In total, 1218 radiomics
features were extracted from each lesion (22).

Repeatability Analysis

The specific method was as follows: 60 nodules were randomly
selected for independent segmentation by a radiologist with
6 years of experience with chest CT interpretation. One month
later, the radiologist repeated the same procedure. Then, the

TABLE 1 | CT scanning parameters.

interclass correlation coefficient (ICC) was assessed to analyze
the correlation of the 1218 features extracted from these 60
nodules. Finally, features with an ICC >0.80 were selected and
included in the follow-up study (23) (Figure 1).

Feature Selection, Model Establishment,
and Verification

Feature Selection

Data collected in practice often have many missing values,
duplicate values, and abnormal values, but the final value of
the model depends on the amount of useful information.
Therefore, the Python 3.7.1 software is used to normalize the
feature with Min-Max scaling. Finally, to remove the irrelevant
features to prevent over fitting and enhance the robustness of the
model, an ANOVA was used to perform a univariate analysis of
each radiomics feature, and the radiomics feature that had the
most significant impact was selected.

Establishment and Verification of the Model

First, in the training set, the statistically significant differences in
the radiographic features between the two groups were analyzed
by a univariate analysis, and a multivariate analysis was
performed to confirm the independent radiographic predictors
that can predict the growth rate of pulmonary nodules. A fast,
distributed and high-performance gradient promotion
framework (Light Gradient Boosting Machine, LightGBM)
based on a decision tree algorithm was used to build a
radiomics-based model. Finally, the AUC value was used to
evaluate the effectiveness of the model.

Statistical Analysis

All statistical analyses were performed using R statistical software
(version 3.4.3; http://www.Rproject.org) and a commercially
available software program (SPSS 23.0 for Windows; SPSS,
Chicago, IL, USA), and the qualitative data are described as
n (%). A chi square test or Fisher’s exact test was used to analyze
the categorical variables, and an independent-samples t-test or
Kruskal Wallis test was used to analyze the continuous variables.
The ROC curve, area under curve (AUC) and precision recall
(P-R) curve were used to evaluate the predictive effectiveness of
the model, and P<0.05 indicated statistical significance. The
integrated discrimination improvement (IDI) was used to

GE Discovery CT750 HD Light Speed VCT Somatom Definition Flash Somatom Sensation 16
Tube voltage 120 kVp 120 kVp 120 kVp 120 kVp
Tube current 200 mA 200 mA 200 mA 200 mA
Pitch 0.984:1 0.984:1 1.0 0.8
Collimation 0.625 mm*64 0.625 mm*64 0.6 mm*64 0.75 mm*16
Rotation time 0.5 s/rot 0.5 s/rot 0.33 s/rot 0.35 s/rot
SFOV 50 cm 50 cm 50 cm 50 cm
Slice thickness of reconstruction 1.25 mm 1.256 mm 1T mm 1/1.5 mm
Slice interval of reconstruction 1.25 mm 1.25 mm 1 mm 1/1.5 mm
Reconstruction algorithm STND STND Medium sharp Medium sharp
Number of nodules 108 138 67 99
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1578 patients with 1680 lung nodules
pathological confirmed with pulmonary
adenocarcinoma

Exclusion criteria:
1)1046 patients with 1129 lung nodules were

excluded due to the follow-up loss(n=902)

A 4

> and immediate resection of lung nodolues
(n=144)
2)93 patients were analyzed using CT slices

402 patients with 407 lung nodules included

thicker =2.0mm
3) 51 patients had a previous therapy history

.

Fast -growing lung nodules (VDT=<400) VS Slow-growing lung nodules(VDT>400)

v

v
Training set
v
v v

Clinical and CT factors Radiomics

v v

v

Validation set
A

Multivariate logistic
regression analysis

using ANOVA

Feature selection

v

Radiomics-based model

FIGURE 1 | The workflow of the study.

measure the difference in model performance (24), and an IDI>0
indicates that the performance of the model is improved.

RESULTS

Comparison of Radiographic Features

Between Slow- and Fast-Growing Nodules
In total, 407 pulmonary nodules from 402 patients with two or
more CT images were collected from January 2012 to June 2018,
including 41 AIS 42, 158 MIA and 207 IPA. According to the
VDTs of the nodules, the 407 nodules were divided into the
following two groups: fast-growing nodules (n=77, 18.9%;
average VDT=221.78 days) and slow-growing nodules (n=330,
81.1%; average VDT=1722.21 days). In total, 325 cases (fast-
growing nodules: n=61; slow-growing nodules: n=264) and 82
cases (fast-growing nodules: n=16; slow-growing nodules: n=66)
were randomly divided into the training sets and validation set at
a ratio of 8:2. There was no statistically significant difference in
the distribution of the clinical and radiographic features between

the training sets and validation set, except for the nodule shape
and bronchiole change. However, after multivariate analysis in
the training set, the two factors were not included in the
subsequent analysis. The radiographic features evaluated by the
two chest radiologists were almost perfect agreement
(unweighted kappa-values, 0.898). The complete patient
profiles in the two sets are shown in Table 2.

Feature Selection and Establishment of
the Radiomics Model

In total, 575 robust radiomics features (ICC: 0.8002-0.9777) were
selected for the follow-up analysis. In total, 62 radiomics features
(the first 10 radiomics features are shown in Table 3) were
selected. The details of 62 radiomics features were included in the
Supplement Data.

In the univariate analysis, four CT factors were statistically
significantly associated with the growth rate of pulmonary
nodules (Table 4).Then, According to the results of the
multivariate analysis, the nodule type (pure GGN, part GGN,
or solid nodules) was ultimately identified as an independent risk
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TABLE 2 | Patient information for the training and validation sets.

TABLE 3 | Top 10 imaging features after feature screening.

Demographic and Clinical Training set Validation set p
Characteristic (n=325) (n=82)
Sex 0.385
Male 193 (59.4%) 53 (64.6%)
Female 132 (40.6%) 29 (35.4%)
Age (years) 57.575+11.652 57.939+11.048 0.532
Size (cm) 0.892+0.498 0.890+0.505 0.928
Location 0.882
Right upper lobe 90 (27.7%) 25 (30.5%)
Right middle lobe 51 (15.7%) 15 (18.3%)
Right lower lobe 93 (28.6%) 21 (25.6%)
Left lower lobe 28 (8.6%) 5 (6.1%)
Left lower lobe 63 (19.4%) 16 (19.5%)
Smoking history 0.531
Never smoker 22 (6.8%) 4 (4.9%)
Current or former smoker 302 (93.2%) 78 (95.1%)
Family history of cancer 1.000
Present 5(1.5%) 1(1.2%)
Absent 320 (98.5%) 81 (98.8%)
Margin 0.116
Clear 64 (19.7%) 10 (12.2%)
Blurred 261 (80.3%) 72 (87.8%)
Type 0.849
Pure ground glass 130 (40.0%) 30 (36.6%)
Partial solid nodule 130 (40.0%) 35 (42.7%)
Solid nodule 65 (20.0%) 17 (20.7%)
Shape 0.025*
Round 137 (42.2%) 30 (36.6%)
Oval 105 (32.3%) 39 (47.6%)
Irregular 83 (25.5%) 13 (15.9%)
Pleural attachment 0.446
Present 72 (22.2%) 15 (18.3%)
Absent 253 (77.8%) 67 (81.7%)
Bubble 0.827
Present 33 (10.2%) 9 (11.0%)
Absent 292 (89.8%) 73 (89.0%)
Bronchiole change 0.014*
Present 37 (11.4%) 2 (2.4%)
Absent 288 (88.6%) 80 (97.6%)
Vascular change 0.164
Present 37 (11.4%) 14 (17.1%)
Absent 288 (88.6%) 68 (82.9%)
Lobulation 0.419
Present 55 (16.9%) 17 (20.7%)
Absent 270 (83.1%) 65 (79.3%)
Growth rate 0.878
Fast-growing nodules 61 (18.8%) 16 (19.5%)
Slow-growing nodules 264 (81.2%) 66 (80.5%)

Age and size are shown as the mean + standard deviation; other data are shown as the
number of patients, with the percentage in parentheses. The P value is derived from the
univariate association analyses between clinical parameters and the growth rate of
pulmonary nodules.

*p value < 0.05.

factor for the prediction of the growth rate of nodules (Table 5)
and was included in the model establishment.

Evaluation of the Predictive Effectiveness
of the Radiomics Models

In the training set, the AUCs of the radiographic model, the
radiomics model and the combined radiographic-radiomics
model were 0.717 (95%CI: 0.683-0.754), 0.876 (95%CIL: 0.855-

Class Feature name

First-order features wavelet-HHH_firstorder_Variance

Gray-level cooccurrence  wavelet-LHH_glcm_ClusterProminence

matrix wavelet-HHH_glcm_Contrast
wavelet-HHH_glcm_ClusterTendency’
wavelet-HHH_glem_ClusterProminence
wavelet-HHH_glcm_DifferenceVariance
wavelet-HHH_glem_SumSquares

Gray-level run lengths wavelet-HHH_glrim_GrayLevelVariance

matrix
Gray level dependence  wavelet-
matrix HHH_gldm_SmallDependenceHighGraylLevelEmphasis

wavelet-HHH_gldm_GrayLevelVariance

0.898) and 0.903 (95%CI: 0.884-0.924), respectively (Figure 2).
And the recall of the radiographic model, the radiomics model
and the combined radiographic-radiomics model were 60.7%
(precision 71.7%), 85.3% (precision 81.5%) and 80.3% (precision
83.7%), respectively. In the validation set, the AUCs of the
radiographic model, the radiomics model and the combined
radiographic-radiomics model were 0.727 (95%ClI: 0.663-0.792),
0.710 (95%CI: 0.638-0.754) and 0.778 (95%CI: 0.713-0.844),
respectively (Figure 3). And the recall of the radiographic
model, the radiomics model and the combined radiographic-
radiomics model were 43.8% (precision 80.5%), 62.5% (precision
74.4%) and 87.5% (precision 65.6%). Compared with the
radiographic model, the IDI value of the combined
radiographic-radiomics model was 0.086(versus 0), and the
difference was statistically significant (z statistic, P<0.05).
Compared with the radiomics model, the IDI value of the
combined model was 0.094 (versus 0), indicating a statistically
significant difference (z statistic, P<0.05). Finally, the results
showed that the growth rate of early lung adenocarcinoma
could be predicted more effectively by the combined model.

DISCUSSION

In this study, 407 lung nodules were followed up by chest CT
examinations over a long period, and the value of the radiomics
features and radiographic features in predicting the growth rate
of early-stage lung adenocarcinoma was analyzed. Finally, we
established a combined radiographic-radiomics model that can
better predict the growth rate of lung adenocarcinoma, with an
AUC of 0.778 (95%CI: 0.713-0.844) and a recall of 87.5%
(precision 65.9%).

Previously, the prediction of the growth of pulmonary
nodules mainly depended on radiographic features (25).
However, these CT features are subjective and inaccurate. In
this study, we not only analyzed the radiographic features but
also combined radiomics features to include more information
and establish a more convenient and feasible prediction model,
and the model finally achieved good performance.

In this study, the univariate analysis of the clinical data and
CT features showed that there were statistically significant
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TABLE 4 | Comparison of fast-growing and slow-growing cases in the
training set.

Demographic and Clinical
Characteristic

Fast-growing
nodules (n=61)

Slow-growing P
nodules(n=264)

Sex 0.351
Male 33 (54.1%) 160 (60.6%)
Female 28 (45.9%) 104 (39.4%)
Age (years) 56.885+11.986 58.966+11.562 0.238
Size (cm) 0.997+0.529 0.868+0.489 0.030*
Location 0.297
Right upper lobe 14 (23.0%) 76 (28.8%)
Right middle lobe 7 (11.5%) 44 (16.7%)
Right lower lobe 18 (29.5%) 75 (28.4%)
Left lower lobe 9 (14.8%) 19 (7.2%)
Left lower lobe 13 (21.3%) 50 (18.9%)
Smoking history 0.180
Never smoker 7 (11.5%) 15 (5.7%)
Current or former smoker 54 (88.5%) 249 (94.3%)
Family history of cancer 0.943
Present 1(1.6%) 4 (1.5%)
Absent 60 (98.4%) 260 (98.5)
Margin 0.154
Clear 16 (26.2%) 48 (18.2%)
Blurred 45 (73.8%) 216 (81.8%)
Type 0.001*
Pure ground glass 17 (27.9%) 113 (42.8%)
Partial solid nodule 21 (34.4%) 109 (41.3%)
Solid nodule 23 (37.7%) 42 (156.9%)
Shape 0.036*
Round 17 (27.9%) 120 (45.5%)
Oval 23 (37.7%) 82 (31.1%)
Irregular 21 (34.4%) 62 (23.5%)
Pleural retraction 0.605
Present 12 (19.7%) 60 (22.7%)
Absent 49 (80.3%) 204 (77.3%)
Bubble lucency 0.396
Present 8 (13.1%) 25 (9.5%)
Absent 53 (86.9%) 239 (90.5%)
Bronchiole change 0.384
Present 5 (8.2%) 32 (12.1%)
Absent 56 (91.8%) 232 (87.9%)
Vascular change 0.358
Present 5 (8.2%) 32 (12.1%)
Absent 56 (91.8%) 232 (87.9%)
Lobulation 0.011*
Present 17 (27.9%) 38 (14.4%)
Absent 44 (72.1%) 226 (85.6%)

Age and size are shown as the mean + standard deviation; other data are shown as the
number of patients, with the percentage in parentheses. The P value is derived from the
univariate association analyses between clinical parameters and the growth rate of
pulmonary nodules.

*p value < 0.05.

differences in the size, type, shape and lobulation of nodules
between the fast-growing and slow-growing nodules (P<0.05).
However, after the multivariate analysis, only the type (pure
GGN, part GGN or solid nodules) significantly differed between
the two groups. In total, 77 fast-growing pulmonary nodules
were identified, including 19 cases (24.7%) of pure GGN, 28 cases
(36.3%) of partial GGN, and 30 cases (39.0%) of solid nodules.
From this result, we can get a general conclusion that aggressive
nodules may be more commonly observed in patients with solid

TABLE 5 | Multivariate analysis of the radiographic features.

Characteristic OR (95% CI) P

Size 0.992 (0.932-1.056) 0.806
Type 1.701 (1.112-2.603) 0.014
Shape 1.319 (0.903-1.926) 0.152
Lobulation 1.405 (0.653-3.021) 0.384

OR, odds ratio; Cl, confidence interval.

nodules and have a lower VDT; these results are consistent with
previous studies (26, 27). Additionally, Oda S et al. found that the
growth rate of solid nodules is usually faster than that of part
GGNs and pure GGNs (26, 28). We speculate that this finding
may be due to most solid components of malignant nodules
being mainly proliferative stacks of tumor cells. In this study,
although the size, shape and lobulation of the nodules in the
univariate analysis were statistically significantly different, these
features can predict the growth rate of pulmonary nodules
remains to be determined. Kobayashi et al. (29) reported that
the nodule size may be robustly associated with the growth of
pulmonary nodules; however, this study did find the correlation
after multivariate analysis, the reasons may include the following
aspects: first, this study only used a univariate analysis and
should not be considered authentic. Second, this study used
manual measurement of the nodule size to judge the growth of
pulmonary nodules; however, the presence of subjective factors,
such as inaccurate measurement and error, require a more
rigorous analysis.

Radiomics is widely used in clinical research because it can
excavate a large amount of invisible information with great
clinical value and has achieved good results (20, 30). Due to the
instability of the features, a repeatability analysis was carried
out. Most studies are based on the assumption that the
features are redundant, thus reducing the number of
radiomics features used in modeling research. However, each
feature may affect the training accuracy to a certain extent.
Therefore, to avoid overfitting the model and enhance the
robustness, this study adopted data normalization and an
ANOVA, and 62 useful features were finally selected for
model establishment. According to the theory of radiomics,
the features we extracted can reflect the spatial heterogeneity,
microenvironment and gene expression of tumors (31).
LightGBM is a newly developed gradient lifting algorithm
framework based on a decision tree algorithm that can further
optimize the tree model and is more conducive to clinical
application (32). Therefore, we established a combined
radiographic-radiomics model that can better distinguish the
growth rate of pulmonary nodules and proved the feasibility of
the modeling method. Yooh et al. (33) evaluated 52 lung
adenocarcioma patients and demonstrated the potential of
margin-related radiomics feature to predict tumor doubling
times in lung adenocarcinoma, however, we finally decided that
dividing the lung nodules into slow- and fast-growing nodules
according to the VDT, because it can be more conducive to the
management of nodules in clinical, and has the potential to
develop a personalized follow-up strategy for patients (19).
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FIGURE 2 | AUC value of the training set. (A) The AUC value of the radiographic model with the training set is 0.717. (B) The AUC value of the radiomics model
with the training set is 0.876. (C) The AUC value of the combined radiographic-radiomics model with the training set is 0.903.
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FIGURE 3 | AUC value of the validation set. (A-C) The AUC value of the radiographic model with the validation set is 0.727. (B) The AUC value of the radiomics
model with the validation set is 0.710. (C) The AUC value of the combined radiographic-radiomics model with the validation set is 0.778.

There are certainly some underlying limitations to this study.
First, this study was a single-center retrospective study that
lacked external validation data, and prospective studies are
needed to assess the robustness and practical clinical value of
the combined model. Second, due to the different reconstruction
cores, the CT acquisition protocol is not standardized, which
may have had a potential impact on the extraction of the
radiomics features. However, all images included in the current
study were thin-slice CT image to minimize these variabilities
(34). Third, the model achieved good results with the training set
but lower results in the validation set, which may be caused by
the limited amounts of samples in the study. In the future, we
aim to improve the efficacy and feasibility of this model through
multicenter data, standardized CT scanning parameters and a
larger sample.

In summary, this study analyzed the value of CT features and
radiomics features in the diagnosis of lung adenocarcinoma.
Considering its practicability and accuracy, we established a
combined model that can better predict the growth rate of
pulmonary nodules and assist in clinical decision-making.
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