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The acromegaly lipodystrophy

Pamela U. Freda*

Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University,
New York, NY, United States
Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) are essential to

normal growth, metabolism, and body composition, but in acromegaly,

excesses of these hormones strikingly alter them. In recent years, the use of

modern methodologies to assess body composition in patients with

acromegaly has revealed novel aspects of the acromegaly phenotype. In

particular, acromegaly presents a unique pattern of body composition

changes in the setting of insulin resistance that we propose herein to be

considered an acromegaly-specific lipodystrophy. The lipodystrophy, initiated

by a distinctive GH-driven adipose tissue dysregulation, features insulin

resistance in the setting of reduced visceral adipose tissue (VAT) mass and

intra-hepatic lipid (IHL) but with lipid redistribution, resulting in ectopic lipid

deposition in muscle. With recovery of the lipodystrophy, adipose tissue mass,

especially that of VAT and IHL, rises, but insulin resistance is lessened.

Abnormalities of adipose tissue adipokines may play a role in the disordered

adipose tissue metabolism and insulin resistance of the lipodystrophy. The

orexigenic hormone ghrelin and peptide Agouti-related peptide may also be

affected by active acromegaly as well as variably by acromegaly therapies,

which may contribute to the l ipodystrophy. Understanding the

pathophysiology of the lipodystrophy and how acromegaly therapies

differentially reverse its features may be important to optimizing the long-

term outcome for patients with this disease. This perspective describes

evidence in support of this acromegaly lipodystrophy model and its

relevance to acromegaly pathophysiology and the treatment of patients

with acromegaly.

KEYWORDS

acromegaly, growth hormone, lipodystrophy, adipose tissue, body composition,
insulin resistance, ghrelin, AgRP
Introduction

GH and IGF-1 are vital to normal growth, metabolism, and body composition (1). In

acromegaly, however, excesses of GH and IGF-1 markedly alter these processes. Changes

in body composition and metabolic abnormalities are prominent features of the

acromegaly phenotype and reflect, predominantly, direct actions of GH on peripheral

tissues (2, 3). In particular, disordered glucose metabolism and insulin resistance (IR) are
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common at acromegaly diagnosis and often persist despite

effective acromegaly treatment and reduce survival (4–11). In

the general population, body fat quantity and distribution are

important determinants of metabolic and cardiovascular risk

(12–16). For example, increased visceral adipose tissue (VAT)

mass associates with IR and type 2 diabetes (13, 17–19).

However, this paradigm linking body composition pattern to

metabolic abnormalities in the general population does not

apply to acromegaly. Rather, acromegaly presents a unique

constellation of these features that we propose to be

considered an acromegaly-specific lipodystrophy (Figure 1).

The lipodystrophy, initiated by a distinctive GH-driven AT

dysregulation, features IR in the setting of reduced VAT and

intra-hepatic lipid (IHL) but with lipid redistribution, resulting

in ectopic lipid deposition in muscle (20, 21). How acromegaly

therapies may differentially reverse the lipodystrophy’s features

should be considered. This perspective describes evidence in

support of this acromegaly lipodystrophy model and its

relevance to acromegaly pathophysiology and treatment.
Body composition in the
lipodystrophy

The acromegaly lipodystrophy originates in AT under the

influence of GH excess. GH modulates AT metabolism and is

lipolytic (1, 22–26). Mechanisms for this predominate in VAT (19,

27–31). GH increases HSL, reduces LPL activity, activates the b-
adrenergic 3 receptor and other lipolytic pathways, and inhibits

lipogenesis (29, 32–44). GH may also impair adipocyte
Frontiers in Endocrinology 02
differentiation and adipogenesis (45–47). These effects act in

concert to reduce AT mass in acromegaly (20, 48–50). Initial

studies utilized a four-compartment body composition model that

could not define specific depot changes (49, 51, 52), and although

DXA finds reduced trunk fat (53, 54) and suggests VAT changes

(55), techniques for VAT estimation by dual-energy X-ray

absorptiometry (DXA) require validation in acromegaly. When

directly quantified by whole-body MRI, both VAT and

subcutaneous adipose tissue (SAT) mass were lower than

predicted in active acromegaly (20). With surgical treatment,

specific AT depot changes include increases in VAT and SAT,

as quantified by CT (50) or whole-body MRI (20, 21) (Table 1).

Pegvisomant therapy also increases intra-abdominal fat with a

short-term treatment (56) and VAT and SAT with a long-term

treatment (57) (Table 1). Limited data suggest increases in fat

mass and decreases in lean mass (by DXA) with short-acting

octreotide or Somatostatin receptor ligands (SRL) therapy (58,

59). Body composition changes in acromegaly relate to disease

activity, including IGF-1 levels (54, 59) and rise in VATmass after

surgery correlates with the decrease in GH (21). Interestingly, AT

mass changes, especially those of VAT, are greater in men than

women with acromegaly (20, 53, 60). Mechanisms for this are

incompletely understood, but known gender differences in body

composition (61) and greater sensitivity of VAT to GH in men

(62) may contribute to these differences. VAT may rise to above

expected in men (21), but in one study, VAT lowering followed an

early post-operative rise (60) and another suggested that gender

differences attenuate in the long-term (59). Further investigation

into the time course, patterns, and long-term outcome of ATmass

changes after acromegaly therapy in men vs. women is warranted.
A B

FIGURE 1

(A) Model of the acromegaly lipodystrophy that is present when the disease is active (i.e., elevated levels of GH and IGF-1). The lipodystrophy is
initiated by a GH-induced accelerated lipolysis leading to insulin resistance, adipose tissue inflammation, and reduced adipose tissue mass,
especially that of the VAT depot. Hepatic lipid is reduced, but hepatic insulin resistance occurs. Lipid is redistributed from VAT and SAT depots
to ectopic deposition in muscle and may contribute to muscle insulin resistance. (B) Model of recovery of the lipodystrophy with biochemical
remission after acromegaly treatment. After normalization of GH by surgery or medical therapy, adipose tissue lipolysis is reduced, permitting a
re-accumulation of VAT and SAT lipid stores, a rise in intra-hepatic lipid and reduction in insulin resistance. Muscle lipid may not decrease due
to the rise in total adipose tissue mass with acromegaly therapy despite improvement in insulin resistance.
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Given the reduced AT mass in acromegaly, dysfunctional AT

appears to be a greater determinant than absolute AT mass to the

metabolic abnormalities. The contributions of the former and its

changes with acromegaly treatment are incompletely understood

yet highly relevant to optimizing therapy.

GH has important effects on protein metabolism that favor

anabolism in muscle (63, 64), and some evidence for this in

acromegaly exists (65, 66). Recent advances in body composition

testing methodologies have also enabled the assessment of

skeletal muscle (SM) mass in acromegaly. In patients with
Frontiers in Endocrinology 03
active acromegaly, SM mass did not differ from predicted (by

whole-body MRI) (21, 67) but was higher [by Bioelectrical

Impedance Analysis (BIA)] in pre-operative patients (60).

Whereas earlier studies reported no change in body cell mass

with acromegaly treatment (68), subsequent studies found

decreases in SM volume (by CT) (50) and in SM mass by BIA

(60) and by MRI (in men) (20) after surgery (Table 1). SM mass

did not change with the long-term pegvisomant therapy (57)

(Table 1). In cross-sectional studies, lean tissue mass (by DXA)

was increased in active acromegaly compared with that in
TABLE 1 Body composition changes in patients with acromegaly treated with surgery (top) or pegvisomant therapy (bottom).

# Patients
(Men/Women)

Age (Years)
(Median, Range)

Prior
Therapy

VAT
Mass

SAT Mass SM Mass Intra-Hepatic Lipid: %
Water Signal (MRS)

A: Surgical therapy

Pre-surgery 10/13 44 (18–69) Percent change from baseline values Men: 0.0137 ± 0.02;
Women: 0.0098 ± 0.006;

Men and women: 0.012 ± 0.02

Post-operative

6 months

Men 86.4 ± 71
(P = 0.03)

17.6 ± 7.4
(P = 0.015)

−5.56 ± 6.8

Women 7.98 ± 19
(P = 0.049)

5.5 ± 5.7
(P = 0.03)

1.9 ± 16.8

1 year

Men 112.8 ± 93
(P = 0.006)

19.9 ± 15
(P = 0.01)

−7.6 ± 6.8 (P
= 0.01)

0.034 ± 0.06

Women 29.7± 27
(P = 0.03)

7.7 ± 14.5 −0.975 ± 8.3 0.016 ± 0.01

Men
and women

0.026 ± 0.04 (P = 0.03)

2 years

Men 161.7 ± 76
(P = 0.03)

27 ± 12.6
(P = 0.03)

−9.53 ± 2.4
(P = 0.01)

Women 46 ± 42
(P = 0.03)

19 ± 16.9 −5.27 ± 6.6

B: Pegvisomant therapy

Pre-
pegvisomant

12/4 48 (19–62) S (16), C(11), BC
(4), P (1),

SA (13), RT (8)

0.022 ± 0.01

On-pegvisomant*

1–2 years 16 60.1 ± 56.1
(P = 0.003)

3.9 ± 11.9 −0.583 ± 6.6 0.043 ± .03 (P = 0.04)

3–4 years 6 99.3 ± 52.1
(P = 0.002)

23.7 ± 21.2
(P = 0.04)

0.356 ± 6.8

5–6 years 6 88.5 ± 50.9
(P = 0.007)

17 ± 17.7
(P = 0.06)

−2.942 ± 6.9

>8 years 4 138.7 ± 7
(P = 0.045)

19.1 ± 21.7 −1.087 ± 10.6
Top: Total body MRI measured percent changes in VAT (visceral adipose tissue), SAT (subcutaneous adipose tissue), and SM (skeletal muscle) masses from pre-operative values to those at
6 months, 1 year, and 2 years after surgery in men and women, separately. Mean 1HMRS measured intra-hepatic lipid (IHL) pre-operatively and 1-year post-operatively in men, women,
and men and women combined. Bottom: Changes in VAT, SAT, and SM mass from pre-pegvisomant baseline to 1–2 years, 3–4 years, 5–6 years, and ≥ 8 years of pegvisomant therapy in
men and women combined. Mean 1HMRS IHL in acromegaly men and women combined, pre-pegvisomant and after 1–2 years on pegvisomant.
Adapted from the author’s work in references (21, 57).
Data are mean ± SD, unless otherwise noted.
P-values represent significance of change from pre-therapy (baseline) to each post-operative or on pegvisomant follow-up time point.
Types of prior therapy: S, transsphenoidal surgery; C, cabergoline; BC, bromocriptine; P, pergolide; SA, long-acting somatostatin analog; RT, radiotherapy (number of patients).
*Men and women combined.
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remission acromegaly (53, 54, 69). Importantly, however, DXA

lean tissue estimates are not a surrogate for SM in acromegaly, as

they include measures of soft tissues (51, 70) that are influenced

by the increased tissue hydration of acromegaly (48, 49). In fact,

changes in DXA lean tissue with acromegaly treatment are

accounted for by those of the non-SM components that make

up lean tissue (57, 67). Genders differ in the interaction of

acromegaly disease activity with lean or SM changes (54), which

are greater in men (53). SM mass is likely influenced by gonadal

steroid changes in men with acromegaly (66, 71). Overall,

reductions in SM mass with acromegaly therapy are small, and

reports on the effect of acromegaly and its treatment on SM

function vary (72–75), but the impact on SM metabolism and

other outcomes requires further study.

MRI and proton magnetic resonance spectroscopy (1HMRS)

imaging use has also enabled visualization of muscle lipid

content in acromegaly. MRI revealed that inter-muscular AT

(IMAT), AT located between muscle groups and beneath the

fascia (76–78), is increased in active acromegaly. This is an

important feature of the lipodystrophy (20). GH-induced AT

lipolysis may lead to lipid movement from VAT and SAT depots

to muscle where it is deposited ectopically. Free fatty acid (FFA)

flux and uptake in muscle are increased in acromegaly and with

GH use (32, 79–82), and supraphysiologic GH increased intra-

myocellular lipid (IMCL) on SM biopsy (83). In other settings,

FFA rise is associated with an increase in IMCL (84, 85) and

IMAT (86–89) and with IR (90, 91). Anti-lipolysis along with

GH administration reduces its effect on muscle IR (32, 92),

supporting a role for muscle lipid in IR in acromegaly. IMAT

may relate to IR in acromegaly (20), but IMAT was lowered only

in women after surgery and not lowered with pegvisomant

therapy despite improved IR (21, 57). Increases in total AT, a

major determinant of IMAT, may obscure IMAT changes with

acromegaly therapy. IMCL did not change with surgery (21, 93)

or in pegvisomant-treated acromegaly patients vs. controls (94)

but did decrease with the addition of pegvisomant to SRL

therapy (95) and correlated inversely with insulin sensitivity in

a combined acromegaly and control cohort (94). Further study is

needed to understand the effects of acromegaly and its therapy

on muscle lipid and its relationship to IR in acromegaly.

Another key component of the acromegaly lipodystrophy

revealed by 1HMRS is that IHL is low in active acromegaly in the

setting of IR (21, 93). This appears to contrast with the positive

correlation between IHL and IR in other populations (96). Other

data support an influence of GH on liver fat: mice with impaired

GH signaling or GH receptor deletion have increased liver fat

and steatosis (97–99), and, in case reports, liver fat was increased

in patients with growth hormone deficiency (GHD) (100–102).

In small cross-sectional studies, IHL was up to three-fold higher

in treated acromegaly vs. controls (94, 103). IHL rises with

surgical therapy (21, 93, 104), when pegvisomant is added to SRL

therapy (95) and with long-term pegvisomant monotherapy (57)

(Table 1). On pegvisomant, IHL was similar to controls,
Frontiers in Endocrinology 04
suggesting that it returns to the expected levels on therapy

(57). It seems that hepatic lipid accumulation cannot be

implicated in hepatic IR in acromegaly (96), but whether other

characteristics of IHL can, for example, altered proportions of

certain lipid species (105) requires further study.

Amount and distr ibut ion of AT are important

determinants of IR in acromegaly (54, 106). In other

lipodystrophies, inability to store lipid in SAT is thought to

promote ectopic lipid deposition and IR, and, conversely, lipid

storage in SAT may be protective for ectopic lipid deposition,

IR and diabetes (12, 14, 107, 108). Potentially, in the

acromegaly lipodystrophy, inability to store lipid in SAT

contributes to IR, and SAT re-expansion with its recovery is

important to its resolution. We found that lowering of

homeostatic model assessment (HOMA) score correlated

with SAT and VAT increases after surgical treatment (21),

but others found less rise in trunk fat after surgery to be

associated with greater improvement in HOMA score (55).

These relationships require further study.
Insulin resistance in
the lipodystrophy

IR, a central feature of acromegaly ’s metabolic

abnormalities, is thought to be due primarily to GH’s insulin-

antagonistic and lipolytic effects (63, 79, 109–112). IGF-1’s

insulin agonism may partially offset those of GH, but

circulating IGF-1 has a little role in regulating glucose

homeostasis in acromegaly (10). Both hepatic and peripheral

IR occur in acromegaly (79, 109, 110, 112, 113). Mechanisms for

this are incompletely understood but may include impaired

insulin signaling and substrate competition (10, 114–117). In

other settings, IR relates strongly to increased FFAs from

lipolysis by a number of proposed mechanisms (41, 63, 90,

116–134). GH increases FFA flux into muscle, which may

increase muscle lipid and IR as described above (32, 79–81,

83–85, 92). Interestingly, although GH administration acutely

increases FFA levels (43) and leads to increased muscle IR (135,

136), circulating FFA levels are not consistently elevated in

acromegaly (110, 137, 138) but acromegaly treatment lowers

them along with IR (139).

The importance of IR in AT has recently been emphasized

(106, 140) and is a central feature of the acromegaly

lipodystrophy. Dysfunctional AT is a major contributor to

systemic IR in other populations (141). GH has complex

effects that impair insulin action in AT and decrease its uptake

and utilization of glucose (44, 114, 142–144). In acromegaly,

accelerated lipolysis is the likely inciting precipitant of AT IR

(140). In other models, disordered lipid metabolism in AT,

particularly lipolysis and FFA release, may signal to induce

inflammation in AT, which, in turn, promotes IR (145–154).
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In mice, GH excess is associated with immune and inflammatory

changes in AT (155). In vitro, GH induced pro-inflammatory

cytokines in pre-adipocytes yet suppressed them in AT

macrophages (ATMs) (156). Because ATMs buffer lipid

increases (145, 146, 148, 149) and the lack of functional GHRs

in macrophages is associated with inflammatory ATMmigration

and IR in AT (157), acromegaly’s effects on immune

components of AT could contribute to AT IR.

GH-induced changes in adipokines may also contribute to

the development of IR in acromegaly. GH reduces leptin gene

expression in VAT (158), and in acromegaly, circulating leptin

levels are low (159–162) and rise with surgical (159) or

pegvisomant (57, 163) therapy. Whether leptin changes are

explained by or independent of those in fat mass is unclear

(57, 164–167). Leptin deficiency contributes to IR and abnormal

metabolism in other settings (168–170): leptin therapy corrects

hyperglycemia in diabetic mice (171, 172) and lipodystrophy

patients (170, 173, 174). However, changes in leptin and IR with

acromegaly treatment do not consistently correlate (21), and

whether low leptin contributes to IR in acromegaly and its rise to

IR improvement is unknown. Circulating levels of visfatin (175)

were increased in acromegaly in some (106, 160, 176) but not

other studies (177) and correlated with those of IGF-1 (176),

variably with IR (176, 178) and inversely with percentage body

fat (160). GH increases visfatin expression in mature human

adipocytes, supporting a pathogenic role in AT inflammation in

acromegaly (160). Data conflict with regard to adiponectin levels

in acromegaly, these were reduced in some (106, 177, 179) but

not other (160, 161) studies. Some in vitro data suggest that GH

may reduce adiponectin gene transcription (180). GHmodulates

11B-HSD1 in AT and in acromegaly (34, 181–183), which could

also play a role the lipodystrophy and its recovery.
Ghrelin in the lipodystrophy

The effect of acromegaly on ghrelin is also relevant to the

lipodystrophy. Ghrelin is an orexigenic hormone that is

importantly linked to appetite and body composition (184–

186) and to the GH–IGF-1 axis as a stimulator of pituitary

GH secretion (187). Evidence supports that GH excess

suppresses ghrelin: Ghrelin levels are lowered in active

acromegaly (159, 188, 189) and rise with surgical treatment

(159, 188). Most rodent data (190–192) and the finding that

high-dose GH suppresses ghrelin (193) are consistent with this.

In acromegaly, ghrelin levels correlated inversely with insulin

levels and HOMA score in most studies (159, 188, 189), and

ghrelin rise was inversely related to the decrease in these with

surgery (159, 188). Other data support that hyperinsulinemia

suppresses ghrelin (194–197). Interestingly, in one study, rise in

ghrelin correlated with increase in body fat with surgical

remission (159). These may be related. In rodents, ghrelin
Frontiers in Endocrinology 05
induces lipogenesis, reduces fat utilization, and promotes

weight gain (198–200), and in humans, ghrelin increased food

intake (201) and promoted weight gain. Ghrelin and body fat

also relate inversely during GH therapy (202). Transition from

the state of increased lipolysis and energy expenditure (EE)

before to that favoring lipogenesis and decreased EE after

surgery (48, 110) could, in part, reflect ghrelin effects. A GH-

overexpressing rodent model featured increased EE and resisted

diet-induced obesity (203). Although a rise in ghrelin with

increasing fat mass may seem paradoxical, ghrelin is

dysregulated in active acromegaly, but after surgical remission,

this may be reset to the expected negative correlations between

ghrelin levels and BMI. By contrast, somatostatin analogs (SRLs)

suppress ghrelin levels (188, 204, 205). Potentially, ghrelin

suppression protects from weight gain similarly to the

resistance to diet-induced obesity and increased EE of mice

lacking ghrelin receptors (206). However, it is unknown whether

SRL therapy is associated with less gain in central adiposity than

other acromegaly therapies, but if shown, this would be

important to consider in choosing an acromegaly therapy. SRL

suppression of other gut and pancreatic hormones, which may

impair glucose tolerance despite biochemical control, may also

contribute to their effect on the acromegaly lipodystrophy and its

metabolic consequences (207).
Agouti-related peptide in
the lipodystrophy

GH has well-known direct effects on metabolism in

peripheral tissues (208), but recent data show that GH also

acts in brain to control energy metabolism (209, 210). Systemic

GH administration in mice was shown to activate Agouti-related

peptide (AgRP) neurons to produce orexigenic responses, and

GH receptor antagonism with pegvisomant attenuated them

(209). Transgenic central nervous system (CNS) GH

overexpress ion increased hypothalamic AgRP and

Neuropeptide Y(NPY) expression and food intake (211). These

data suggest that GH stimulation of AgRP may be a mechanism

by which GH restores energy homeostasis during nutrient

deprivation (209). Because hypothalamic AgRP promotes food

intake and weight gain (212) and plasma AgRP levels rise with

caloric restriction in humans (213), AgRP may mediate the

metabolic effects of GH’s rise in physiologic settings that need

nutritional intake (214). AgRP-Growth Hormone Releasing

Hormone (GHRH) neuron interaction may also couple

nutritional status with growth (82). In humans, plasma AgRP

levels increase after acute and chronic caloric restriction and

relate to nutritional state in the pattern expected for

hypothalamic AgRP (213, 215–217). We recently found that

the plasma AgRP levels are higher in active acromegaly than in
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matched healthy subjects and are lower after surgery that

reduced GH/IGF-1 or pegvisomant that lowered IGF-1 levels

(218), suggesting that GH/IGF-1 and AgRP are positively

related. AgRP and proopiomelanocortin (POMC) neurons also

integrate CNS pathways that modulate glucose utilization and

production (219–224). In healthy humans, the plasma AgRP

levels relate to insulin levels and HOMA score (213, 215, 216),

and, in mice, evidence supports an effect of AgRP neuron

activation to impair glucose metabolism (220, 225–231). These

data suggest a possible role for GH excess, acting centrally on

AgRP, in the metabolic abnormalities of acromegaly. Although,

in acromegaly, the peripheral actions of chronic GH excess to

reduce AT stores predominate clinically over AgRP’s central

mechanisms that, conversely, promote adiposity and fatty liver

(230, 231), the rise in AgRP could prevent even more fat loss in

this setting. A potential role for the GH-AgRP axis in the

acromegaly lipodystrophy warrants further study.
Conclusions

The acromegaly-specific lipodystrophy features IR in the

setting of a unique body composition pattern of reduced VAT

and IHL and of impaired lipid storage in SAT, resulting in

ectopic lipid deposition in muscle (20). The lipodystrophy

results from a complex interplay of direct effects of GH on

AT, primarily driven by accelerated lipolysis and the resultant

promotion of IR. The effects on adipokines, ghrelin, and AgRP

may also be important to producing IR in the face of low AT

storage, as well as promoting AT mass regain along with

reductions in IR during the lipodystrophy recovery. Increases

in body fat with recovery of the lipodystrophy are nearly

balanced by reduction in non-SM lean tissues such that only

small increases in body weight occur (21, 159). Acromegaly

therapies act by different mechanisms and at different targets

along the GH–IGF-1 axis and may not impact all aspects of the

lipodystrophy similarly. Gender differences in the lipodystrophy

and its recovery require further study. Further investigation on

the mechanisms of IR in AT, how AT distribution changes relate

to IR, and the role of muscle lipid in IR in active acromegaly and

during its treatment is warranted. Pegvisomant seems to reverse

the acromegaly lipodystrophy pattern similarly to surgical

therapy, but modern body composition methods have not yet

been used to assess how it changes with SLR therapy.

Interestingly, biochemical control of acromegaly reduces

cardiovascular (CV) disease despite the post-treatment rise in

VAT mass that, in the general population, is linked to CV risk.

Whether VAT/IHL rise with acromegaly treatment persists and

whether overtreatment could lead them to become above normal

and potentially effect cardiovascular or diabetes risk require

further study. Increases in fat mass may impact negatively on

patients’ body image (232) and worsen quality of life (233)
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despite effective acromegaly treatment, and the development of

mechanistic-directed therapies aimed at mitigating this during

acromegaly therapy should be considered. Mechanisms for the

acromegaly lipodystrophy are not fully elucidated, and

understanding its pathophysiology and how therapies

differentially impact its recovery is important to optimizing

the long-term outcome for patients with this disease.
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