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Abstract The Drosophila circadian pacemaker consists of transcriptional feedback loops

subjected to post-transcriptional and post-translational regulation. While post-translational

regulatory mechanisms have been studied in detail, much less is known about circadian post-

transcriptional control. Thus, we targeted 364 RNA binding and RNA associated proteins with RNA

interference. Among the 43 hits we identified was the alternative splicing regulator P-element

somatic inhibitor (PSI). PSI regulates the thermosensitive alternative splicing of timeless (tim),

promoting splicing events favored at warm temperature over those increased at cold temperature.

Psi downregulation shortens the period of circadian rhythms and advances the phase of circadian

behavior under temperature cycle. Interestingly, both phenotypes were suppressed in flies that

could produce TIM proteins only from a transgene that cannot form the thermosensitive splicing

isoforms. Therefore, we conclude that PSI regulates the period of Drosophila circadian rhythms and

circadian behavior phase during temperature cycling through its modulation of the tim splicing

pattern.

Introduction
Circadian rhythms are the organism’s physiological and behavioral strategies for coping with daily

oscillations in environment conditions. Inputs such as light and temperature feed into a molecular

clock via anatomical and molecular input pathways and reset it every day. Light is the dominant cue

for entraining the molecular clock, but temperature is also a pervasive resetting signal in natural

environments. Paradoxically, clocks must be semi-resistant to temperature: they should not hasten in

warm summer months or lag in the winter cold (this is called temperature compensation), but they

can synchronize to the daily rise and fall of temperature (temperature entrainment) (Pitten-

drigh, 1960). Not only can temperature entrain the clock, it also has a role in seasonal adaptation by

affecting the phase of behavior (see for example Majercak et al., 1999).

Molecular circadian clocks in eukaryotes are made up of negative transcriptional feedback loops

(Dunlap, 1999). In Drosophila, the transcription factors CLOCK (CLK) and CYCLE (CYC) bind to

E-boxes in the promoters of the clock genes period (per) and timeless (tim) and activate their tran-

scription. PER and TIM proteins accumulate in the cytoplasm where they heterodimerize and enter

the nucleus to feedback and repress the activity of CLK and CYC and thus downregulate their own

transcription (Hardin, 2011). This main loop is strengthened by a scaffolding of interlocked feedback

loops involving the transcription factors vrille (vri), PAR domain protein 1 (Pdp1) and clockwork

orange (cwo). Post-translational modifications are well-established mechanisms for adjusting the

speed and timing of the clock (Tataroglu and Emery, 2015).
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Increasing evidence indicates that post-transcriptional mechanisms controlling gene expression

are also critical for the proper function of circadian clocks in many organisms. In Drosophila, the

post-transcriptional regulation of per mRNA has been best studied. per mRNA stability changes as a

function of time (So and Rosbash, 1997). In addition, per contains an intron in its 3’UTR (dmpi8)

that is alternatively spliced depending on temperature and lighting conditions (Majercak et al.,

1999; Majercak et al., 2004). On cold days, the spliced variant is favored, causing an advance in the

accumulation of per transcript levels as well as an advance of the evening activity peak. This behav-

ioral shift means that the fly is more active during the day when the temperature would be most tol-

erable in their natural environment. The temperature sensitivity of dmpi8 is due to the presence of

weak non-canonical splice sites. However, the efficiency of the underlying baseline splicing is

affected by four single nucleotide polymorphisms (SNPs) in the per 3’UTR that vary in natural popu-

lations and form two distinct haplotypes (Low et al., 2012; Cao and Edery, 2017). Also, while this

splicing is temperature-sensitive in two Drosophila species that followed human migration, two spe-

cies that remained in Africa lack temperature sensitivity of dmpi8 splicing, (Low et al., 2008). Fur-

thermore, Zhang et al. (2018) recently demonstrated that the the trans-acting splicing factor B52

enhances dmpi8 splicing efficiency, and this effect is stronger with one of the two haplotypes. per is

also regulated post-transcriptionally by the TWENTYFOUR-ATAXIN2 translational activation complex

(Zhang et al., 2013; Lim et al., 2011; Lim and Allada, 2013a; Lee et al., 2017). This complex works

by binding to per mRNA as well as the cap-binding complex and poly-A binding protein. This may

enable more efficient translation by promoting circularization of the transcript. Interestingly, this

mechanism appears to be required only in the circadian pacemaker neurons. Non-canonical transla-

tion initiation has also been implicated in the control of PER translation (Bradley et al., 2012). Regu-

lation of PER protein translation has also been studied in mammals, with RBM4 being a critical

regulator of mPER1 expression (Kojima et al., 2007). In flies however, the homolog of RBM4, LARK,

regulates the translation of DBT, a PER kinase (Huang et al., 2014). miRNAs have emerged as

important critical regulators of circadian rhythms in Drosophila and mammals, affecting the circadian

pacemaker itself, as well as input and output pathways controlling rhythmic behavioral and physio-

logical processes (Tataroglu and Emery, 2015; Lim and Allada, 2013b).

RNA-associated proteins (RAPs) include proteins that either bind directly or indirectly to RNAs.

They mediate post-transcriptional regulation at every level. Many of these regulated events – includ-

ing alternative splicing, splicing efficiency, mRNA stability, and translation – have been shown to

function in molecular clocks. Thus, to obtain a broad view of the Drosophila circadian RAP landscape

and its mechanism of action, we performed an RNAi screen targeting 364 of these proteins. This led

us to discover a role for the splicing factor P-element somatic inhibitor (PSI) in regulating the pace of

the molecular clock through alternative splicing of tim.

Results

An RNAi screen for RNA-associated proteins controlling circadian
behavioral rhythms
Under constant darkness conditions (DD) flies have an intrinsic period length of about 24 hr. To iden-

tify novel genes that act at the post-transcriptional level to regulate circadian locomotor behavior,

we screened 364 genes, which were annotated in either Flybase (FB2014_03, Thurmond et al.,

2019) or the RNA Binding Protein Database (Cook et al., 2011) as RNA binding or involved in RNA

associated processes, using period length as a readout of clock function (Supplementary file 1: RAP

Screen Dataset). We avoided many, but not all, genes with broad effects on gene expression, such

as those encoding essential splicing or translation factors. When possible, we used at least two non-

overlapping RNAi lines from the TRiP and VDRC collections. RNAi lines were crossed to two differ-

ent GAL4 drivers: tim-GAL4 (Kaneko et al., 2000) and Pdf-GAL4 (Renn et al., 1999) each combined

with a UAS-dicer-2 transgene to enhance the strength of the knockdown (Dietzl et al., 2007). These

combinations will be abbreviated as TD2 and PD2, respectively. tim-GAL4 drives expression in all

cells with circadian rhythms in the brain and body (Kaneko et al., 2000), while Pdf-GAL4 drives

expression in a small subset of clock neurons in the brain: the PDF-positive small (s) and large (l)

LNvs (Renn et al., 1999). Among them, the sLNvs are critical pacemaker neurons that drive circadian

behavior in DD (Renn et al., 1999; Stoleru et al., 2005). In the initial round of screening, we tested
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the behavior of 4–8 males for each RNAi line crossed to both TD2 and PD2 (occasionally, fewer

males were tested if a cross produced little progeny). We also crossed some RNAi lines to w1118 (+)

flies (most were lines selected for retest, see below). We noticed that RNAi/+ control flies for the

TRiP collection were 0.3 hr shorter than those of the VDRC collection (Figure 1A). Furthermore, the

mean period from all RNAi lines crossed to either PD2 or TD2 was significantly shorter for the TRiP

collection than for the VDRC collection (Figure 1A) (0.2 hr, TD2 crosses; 0.5 hr, PD2 crosses). We

also found that many of the VDRC KK lines that resulted in long period phenotypes when crossed to

both drivers contained insertions in the 40D locus (VDRC annotation), although this effect was stron-

ger with PD2 than TD2. It has been shown that this landing site is in the 5’UTR of tiptop (tio) and can

lead to non-specific effects in combination with some GAL4 drivers, likely due to misexpression of

tio (Vissers et al., 2016; Green et al., 2014). Indeed, when we crossed a control line that contains a

UAS insertion at 40D (40D-UAS) to PD2, the progeny also had a ca. 0.6 hr longer period relative to

the PD2 control (Figure 1B). Thus, in order to determine a cutoff for candidates to further investi-

gate, we analyzed the data obtained in our screen from the TRiP, VDRC, and the 40D KK VDRC lines

independently (Figure 1C). These data are represented in two overlaid histograms that show period

distributions: one for the TD2 crosses (blue) and one for the PD2 crosses (magenta). We chose a cut-

off of two standard deviations (SD) from the mean period length for each RNAi line set. RNAi lines

were selected for repeat if knockdown resulted in period lengths above or below the 2-SD cutoff.

We also chose to repeat a subset of lines that did not pass the cutoff but were of interest and

showed period lengthening or shortening, as well as lines that were highly arrhythmic in constant

darkness (DD) or had an abnormal pattern of behavior in a light-dark cycle (LD). After a total of three

independent experiments, we ended up with 43 candidates (Table 1) that passed the period length

cutoffs determined by the initial screen; 31 showed a long period phenotype, while 12 had a short

period. One line showed a short period phenotype with PD2 but was long with TD2 (although just

below the 2-SD cutoff). Although loss of rhythmicity was also observed in many lines

(Supplementary file 1), we decided to focus the present screen on period alterations to increase

the probability of identifying proteins that regulate the circadian molecular pacemaker. Indeed, a

change in the period length of circadian behavior is most likely caused by a defect in the molecular

pacemaker of circadian neurons, while an increase in arrhythmicity can also originate from disruption

of output pathways, abnormal development of the neuronal circuits underlying circadian behavioral

rhythms, or cell death in the circadian neural network, for example.

Among the 43 candidate genes (Tables 1 and 2), we noticed a high proportion of genes involved

or presumed to be involved in splicing (17), including five suspected or known to impact alternative

splicing. Perhaps not surprisingly, several genes involved in snRNP assembly were identified in our

screen. Their downregulation caused long period phenotypes. We also noticed the presence of four

members of the CCR4-NOT complex, which can potentially regulate different steps of mRNA metab-

olism, including deadenylation, and thus mediate translational repression. Their downregulation

mostly caused short period phenotypes and tended to result in high levels of arrhythmicity. Rga

downregulation, however, resulted in a long period phenotype, suggesting multiple functions for

the CCR4-NOT complex in the regulation of circadian rhythms. Interestingly, two genes implicated

in mRNA decapping triggered by deadenylation, were also identified, with long periods observed

when these genes were downregulated. Moreover, POP2, a CCR4-NOT component, was recently

shown to regulate tim mRNA and protein levels (Grima et al., 2019). Another gene isolated in our

screen, SMG5, was also recently found to impact circadian behavior (Ri et al., 2019). This validates

our screen.

Knockdown of Psi shortens the period of behavioral rhythms
A promising candidate to emerge from our screen was the alternative splicing regulator PSI

(Labourier et al., 2001; Siebel et al., 1992). Knockdown of Psi with both TD2 and PD2 crossed to

two non-overlapping RNAi lines from the VDRC collection (GD14067 and KK101882) caused a signif-

icant period shortening, compared to the TD2/+ and PD2/+ controls (Figure 2A–E, Table 3), which

the experimental flies need to be compared to since the GAL4 drivers in the TD2 and PD2 combina-

tion cause a previously reported dominant ca. 0.8 hr period lengthening (Figure 2C, left panel (TD2/

+ compared to w1118); Kaneko et al., 2000; Renn et al., 1999; Zhang and Emery, 2013;

Zhang et al., 2013). Importantly, the RNAi lines did not cause period shortening on their own

(Figure 2C left panel, Table 3). While most experiments were performed at 25˚C, we noticed that at
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Figure 1. An RNAi screen of RNA associated proteins identifies long and short period hits. (A–B) Background effect of TRiP and VDRC collections on

circadian period length. Circadian period length (hrs) is plotted on the y axis. RNAi collection and genotypes are labeled. Error bars represent SEM. (A)

Left group (black bars): Patterned bars are the average of period lengths of a subset of RNAi lines in the screen crossed to w1118 (TRiP/+ N = 17

crosses, VDRC/+ N = 46 crosses, 40D KK VDRC/+ N = 20 crosses). Solid bar is the w1118 control (N = 20 crosses). Middle group (blue bars): Patterned

Figure 1 continued on next page
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30˚C, TD2/+ control had a period of ca. 24 hr (Figure 2C). We could thus meaningfully compare

TD2/RNAi flies to both RNAi/+ and TD2/+ control at that temperature. The period of the experi-

mental flies was significantly shorter than both controls (Figure 2C). Two additional lines from the

TRiP collection (JF01476 and HMS00140) also caused period shortening when crossed to TD2

(Table 1). Interestingly, HMS00140 targets only the Psi-RA isoform, indicating that the RA isoform is

important for the control of circadian period (Figure 2A). Since four RNA lines caused a similar phe-

notype and only two of them partially overlapped (Figure 2A), we are confident that the period

shortening was not caused by off-target effects. Moreover, both the KK101882 and GD14067 lines

have been shown to efficiently downregulate Psi (Guo et al., 2016), and we confirmed by quantita-

tive Real-Time PCR (qPCR) that the RNAi line KK101882, which gave the shortest period phenotype

with TD2, significantly reduced Psi mRNA levels in heads (Figure 2—figure supplement 1). This line

was selected for most of the experiments described below as it gave the strongest period

phenotype.

The phenotype caused by Psi downregulation was more pronounced with TD2 than with PD2

(Figure 2C–D, Table 3). This was unexpected since the sLNvs - targeted quite specifically by PD2 -

determine circadian behavior period in DD (Stoleru et al., 2005; Renn et al., 1999). This could hap-

pen if PD2 is less efficient at downregulating Psi in sLNvs than TD2, or if the short period phenotype

is not solely caused by downregulation of Psi in the sLNvs. To distinguish between these two possi-

bilities, we used Pdf-GAL80 combined with TD2 to inhibit GAL4 activity specifically in the LNvs

(Stoleru et al., 2004), while allowing RNAi expression in all other circadian tissues. With this combi-

nation, we also observed a significant period shortening compared to TD2/+; Pdf-GAL80/+ controls,

but the period shortening was not as pronounced as with TD2 (Figure 2E, Table 3). We therefore

conclude that both the sLNvs and non-PDF cells contribute to the short period phenotype caused by

Psi downregulation (see discussion).

Psi overexpression disrupts circadian behavior
Since we observed that downregulating Psi leads to a short period, we wondered whether overex-

pression would have an inverse effect and lengthen the period of circadian behavior. Indeed, when

we overexpressed Psi by driving a UAS-Psi transgene (Labourier et al., 2001) with the tim-GAL4

(TG4) driver, the period length of circadian behavior increased significantly by about 0.7 hr com-

pared to the TG4/+ control (Figure 2F, Table 3). Interestingly, we also observed a severe decrease

Figure 1 continued

bars are the average of period lengths of all RNAi lines in the screen crossed to tim-GAL4, UAS-Dicer2 (TD2) (TRiP/TD2 N = 151 crosses, VDRC/TD2

N = 340 crosses, 40D KK VDRC/TD2 N = 61 crosses). Solid bar is the TD2/+ control (N = 35 crosses). Right group (magenta bars): Patterned bars are

the average of period lengths of all RNAi lines in the screen crossed to Pdf-GAL4, UAS-Dicer2 (PD2) (TRiP/PD2 N = 176 crosses, VDRC/PD2 N = 448

crosses, 40D KK VDRC/PD2 N = 69 crosses). Solid bar is the PD2/+ control (N = 36 crosses). One-way ANOVA followed by Tukey’s multiple comparison

test: *p<0.05, ***p<0.001, ****p<0.0001. Note that the overall period lengthening, relative to wild-type (w1118), when RNAi lines are crossed to TD2 or

PD2 is a background effect of our drivers (see main text), while the period differences between the TRiP (shorter) and VDRC (longer) collections is most

likely a background effect of the RNAi lines themselves. There is also a lengthening effect of the 40D insertion site in the VDRC KK collection that

cannot be explained by a background effect, as it is not present in the RNAi controls (Left panel). Instead the lengthening was only observed when

these lines were crossed to our drivers. A modest effect was seen with TD2 (middle panel) and a larger effect was seen with PD2 (right panel). (B) The

period lengthening effect of the VDRC 40D KK lines is likely due to overexpression of tio, as we observed lengthening when a control line that lacks a

RNAi transgene, but still has a UAS insertion in the 40D (40D-UAS) locus was crossed to PD2. N = 32 flies per genotype, ****p<0.0001, Unpaired

Student’s t-test. (C) Histogram of period lengths obtained in the initial round of screening. Number of lines per bin is on the y axis. Binned period

length (hrs) is on the x axis. Bin size is 0.1 hr. TD2 crosses are in blue and PD2 crosses are in magenta. Dashed lines indicate our cutoff of 2 standard

deviations from the mean. Number of crosses that fell above or below the cutoff is indicated. Top panel: TRiP lines. 0 lines crossed to TD2 and 2 lines

crossed to PD2 gave rise to short periods and were selected for repeats. four lines crossed to TD2 and 10 lines crossed to PD2 gave rise to long

periods and were selected for repeats. Middle panel: VDRC lines. eight lines crossed to TD2 and 5 lines crossed to PD2 gave rise to short periods and

were selected for repeats. 12 lines crossed to TD2 and 20 lines crossed to PD2 gave rise to long periods and were selected for repeats. Bottom panel:

VDRC 40D KK lines. one line crossed to TD2 and 1 line crossed to PD2 gave rise to short periods and were selected for repeats. two lines crossed to

TD2 and 3 lines crossed to PD2 gave rise to long periods and were selected for repeats.

The online version of this article includes the following source data for figure 1:

Source data 1. 40D insertion control – behavior data.

Source data 2. Figure statistics – Figure 1.
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Table 1. Circadian behavior in DD of screen candidates

Gene RNAi Line Driver n
% of
Rhythmic Flies

Period Average
±SEM

Power Average
±SEM

Atx-1 GD11345 TD2 24 75 26 ± 0.1 61.5 ± 4.1

PD2 17 76 26.4 ± 0.1 50.7 ± 5.6

KK108861 TD2 24 79 25.7 ± 0.1 49.1 ± 4.7

PD2 23 74 26.2 ± 0.1 61.8 ± 4.5

barc GD9921 PD2 20 75 26.5 ± 0.2 46.9 ± 5.6

KK101606** TD2 6 83 25.3 ± 0.5 55.4 ± 12.7

PD2 16 75 27 ± 0.4 43.9 ± 5.1

bsf JF01529 TD2 24 88 25.8 ± 0.1 68.4 ± 4.6

PD2 24 67 25.7 ± 0.1 47.6 ± 4.1

CG16941 GD9241 PD2 8 0

HMS00157 PD2 24 4 23.4 28.3

KK102272 PD2 8 0

CG32364 HMS03012 PD2 24 88 25.7 ± 0.1 58.9 ± 3

CG42458 KK106121 TD2 23 35 26.5 ± 0.2 38.3 ± 4.9

PD2 22 82 26.2 ± 0.1 71 ± 4.1

CG4849 KK101580 TD2 1 0

PD2 24 63 27.3 ± 0.2 48.8 ± 4.1

CG5808 KK102720* TD2 23 70 27.4 ± 0.1 45.3 ± 5.1

PD2 24 54 28.5 ± 0.6 34.8 ± 2.7

CG6227 GD11867 TD2 1 0

PD2 16 63 26.7 ± 0.2 51.4 ± 7

KK108174 TD2 4 0

PD2 20 30 24.2 ± 0.4 30.9 ± 3.5

CG7903 KK103182* TD2 24 8 23.6 26.3

PD2 24 75 26.4 ± 0.2 49.1 ± 3.7

CG8273 GD13870 TD2 24 83 25.9 ± 0.1 47.3 ± 4.6

PD2 14 100 25.4 ± 0.1 51.2 ± 4.8

KK102147 TD2 24 58 25.5 ± 0.1 41.1 ± 5

PD2 23 100 25.7 ± 0.1 64.3 ± 3.9

CG8636 GD13992 PD2 12 50 26.9 ± 0.2 36 ± 6.4

KK110954 TD2 1 0

PD2 19 63 26.3 ± 0.3 51.4 ± 5.6

CG9609 HMS01000 PD2 24 46 26.3 ± 0.2 46.1 ± 6.5

KK109846 TD2 23 78 25.3 ± 0.1 48.5 ± 4.2

PD2 23 91 26.3 ± 0.1 56.4 ± 3.9

Cnot4 JF03203 TD2 23 26 23.7 ± 0.1 39.8 ± 6

PD2 31 77 23.9 ± 0.1 51.1 ± 3.2

KK101997 TD2 32 47 23.9 ± 0.1 37.3 ± 2.9

PD2 27 93 25 ± 0.1 48 ± 4.1

Dcp2 KK101790 TD2 22 64 26 ± 0.1 49.7 ± 5.3

PD2 24 92 25.9 ± 0.1 62.5 ± 4.1

eIF1 KK109232* PD2 24 4 23.2 68.9

eIF3l KK102071 TD2 24 21 26 ± 0.2 28.9 ± 2.4

PD2 23 100 25.7 ± 0.1 62.5 ± 3.9

Table 1 continued on next page
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Table 1 continued

Gene RNAi Line Driver n
% of
Rhythmic Flies

Period Average
±SEM

Power Average
±SEM

Hrb98DE HMS00342 PD2 22 91 25.8 ± 0.1 60.2 ± 4.1

l(1)G0007 GD8110 PD2 24 63 26.3 ± 0.2 42.4 ± 3.7

KK102874 TD2 24 17 26.9 ± 0.4 32.6 ± 5.5

PD2 23 48 26.7 ± 0.2 48 ± 6.1

LSm7 GD7971 PD2 22 36 28 ± 0.4 43.5 ± 5.6

ncm GD7819 PD2 8 0

KK100829* PD2 19 32 23.3 ± 0.1 34.4 ± 5.6

Nelf-A KK101005 TD2 24 63 26.4 ± 0.1 52.9 ± 4.4

PD2 23 74 24.8 ± 0.1 59.4 ± 4.5

Not1 GD9640 PD2 23 4 22.6 43.6

KK100090 PD2 10 30 23.8 ± 0.3 39.4 ± 4.7

Not3 GD4068 PD2 8 0

KK102144 PD2 21 14 23.6 ± 0.1 30.8 ± 2.1

Patr-1 KK104961* TD2 23 30 26.3 ± 0.2 33.6 ± 3

PD2 24 63 27.1 ± 0.2 38.3 ± 3.6

Pcf11 HMS00406 PD2 8 13 24 20.1

KK100722 PD2 24 21 23.3 ± 0.1 35.4 ± 5

pcm GD10926 TD2 16 63 25.7 ± 0.1 36.6 ± 4.1

PD2 20 55 26.3 ± 0.2 40.4 ± 3.8

KK108511 TD2 24 21 25.7 ± 0.2 40.7 ± 7.8

PD2 24 17 27.7 ± 0.6 32.9 ± 6.1

Psi GD14067 TD2 48 79 23.7 ± 0.07 49.6 ± 3.0

PD2 32 84 24.2 ± 0.1 53.3 ± 4.1

HMS00140 TD2 24 100 24 ± 0.1 61.8 ± 4.2

PD2 20 85 24.5 ± 0.1 52.9 ± 5.6

JF01476 TD2 24 92 24 ± 0.1 64.7 ± 4.9

PD2 24 92 24.3 ± 0.1 53.2 ± 4

KK101882 TD2 35 77 23.6 ± 0.06 61.9 ± 3.7

PD2 47 89 24.7 ± 0.06 56.3 ± 3.4

Rga GD9741 TD2 24 21 26.2 ± 0.1 32.8 ± 3.2

PD2 22 36 25.4 ± 0.2 36.1 ± 4.7

RpS3 GD4577 PD2 14 57 26.4 ± 0.2 48.9 ± 5.9

JF01410 PD2 24 50 25.6 ± 0.2 34.9 ± 2.3

KK109080 PD2 8 38 26 ± 1.3 34.5 ± 6.3

Rrp6 GD12195 PD2 10 10 24.5 27.2

KK100590 PD2 21 10 23.6 43.2

sbr HMS02414 TD2 13 85 26.8 ± 0.2 48.7 ± 5.3

PD2 21 100 24.9 ± 0.1 57.2 ± 4.6

Set1 GD4398 TD2 20 90 25.8 ± 0.1 52.1 ± 4.2

PD2 13 77 25.3 ± 0.1 42.1 ± 5.5

HMS01837 TD2 23 78 25.6 ± 0.1 47.9 ± 3.6

PD2 24 92 24.8 ± 0.1 50 ± 3.8

SmB GD11620 PD2 13 69 26.2 ± 0.1 52.1 ± 8

Table 1 continued on next page
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in the number of rhythmic flies. When we overexpressed Psi with Pdf-GAL4 (PG4), period was not

statistically different from control (PG4/+), and rhythmicity was not reduced compared to the UAS-

Psi/+ control (Figure 2G). Overexpression of Psi with the tim-GAL4; Pdf-GAL80 combination caused

a severe decrease in rhythmicity but caused only a subtle period lengthening compared to TG4/+;

Pdf-GAL80/+ controls (Figure 2H, Table 3). The effect of Psi overexpression on period is in line with

the knockdown results, indicating that PSI regulates circadian behavioral period through both PDF+

LNvs and non-PDF circadian neurons. However, the increase in arrhythmicity observed with Psi over-

expression is primarily caused by non-PDF cells.

Psi downregulation also shortens the period of body clocks
We wanted to further examine the effect of Psi knockdown on the molecular rhythms of two core

clock genes: period (per) and timeless (tim). To do this, we took advantage of two luciferase reporter

transgenes. We downregulated Psi with the TD2 driver in flies expressing either a TIM-LUCIFERASE

(ptim-TIM-LUC) or a PER-LUCIFERASE (BG-LUC) fusion protein under the control of the tim or per

promoter, respectively. We estimated period of luciferase activity rhythms over the first two days in

DD, because oscillations rapidly dampened. Fully consistent with our behavioral results, the period

of LUC activity was significantly shortened by about 1–1.5 hr compared to controls when Psi was

downregulated in ptim-TIM-LUC flies (Figure 2—figure supplement 2A and B). Knockdown of Psi in

Table 1 continued

Gene RNAi Line Driver n
% of
Rhythmic Flies

Period Average
±SEM

Power Average
±SEM

HM05097 PD2 24 58 25.6 ± 0.1 45.2 ± 4.4

KK102021 PD2 2 100 25.6 67.1

SmE GD13663 PD2 24 58 25.7 ± 0.3 37.3 ± 3.3

HMS00074 PD2 8 100 24.5 ± 0.1 55.1 ± 7.4

KK101450 PD2 15 67 26.5± 51.3 ± 7.8

SmF JF02276 PD2 24 75 25.8 ± 0.1 46.3 ± 3.9

KK107814 PD2 21 57 27.3 ± 0.3 45.4 ± 4.2

smg GD15460 PD2 24 58 26.5 ± 0.2 39 ± 3.5

Smg5 KK102117 TD2 23 52 23.7 ± 0.1 38.9 ± 3.7

PD2 24 79 23.9 ± 0.1 58.5 ± 4.3

Smn JF02057 TD2 3 67 24.2 25.9

PD2 24 54 25.7 ± 0.1 47.2 ± 3.6

KK106152 TD2 24 67 25.3 ± 0.1 39.7 ± 3.5

PD2 24 96 26.3 ± 0.2 48.7 ± 2.7

snRNP-U1-C GD11660 PD2 11 82 25.7 ± 0.1 56.5 ± 6.1

HMS00137 PD2 24 92 25.8 ± 0.1 55.9 ± 4.1

Spx GD11072 PD2 14 64 26.5 ± 0.2 56.1 ± 7.4

KK108243 TD2 4 100 24 ± 0.2 47.5 ± 10.2

PD2 19 79 26.9 ± 0.3 56.4 ± 5

Srp54k GD1542 PD2 5 0

KK100462 PD2 24 17 23.7 ± 0.4 31.3 ± 6

Zn72D GD11579 TD2 28 89 26.3 ± 0.1 46.1 ± 4.6

PD2 22 82 26.4 ± 0.1 59.4 ± 6.9

KK100696 TD2 26 73 26.8 ± 0.1 57 ± 3.6

PD2 24 83 26 ± 0.1 57 ± 4.5

*Line contains insertion at 40D.

** Unknown if line contains insertion at 40D.
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Table 2. Predicted or known functions of screen candidates

Gene Molecular function (based on information from Flybase) (Thurmond et al., 2019)

Atx-1 RNA binding

barc mRNA splicing; mRNA binding; U2 snRNP binding

bsf mitochondrial mRNA polyadenylation, stability, transcription,
translation; polycistronic mRNA processing; mRNA 3’-UTR binding

CG16941/Sf3a1 alternative mRNA splicing; RNA binding

CG32364/tut translation; RNA binding

CG42458 mRNA binding

CG4849 mRNA splicing; translational elongation

CG5808 mRNA splicing; protein peptidyl-prolyl isomerization;
regulation of phosphorylation of RNA polymerase II
C-terminal domain; mRNA binding

CG6227 alternative mRNA splicing; ATP-dependent RNA helicase activity

CG7903 mRNA binding

CG8273/Son mRNA processing; mRNA splicing; RNA binding

CG8636/eIF3g1 translational initiation; mRNA binding

CG9609 transcription; proximal promoter sequence-specific DNA binding

Cnot4 CCR4-NOT complex

Dcp2 deadenylation-dependent decapping of mRNA;
cytoplasmic mRNA P-body assembly; RNA binding

eIF1 ribosomal small subunit binding;
RNA binding; translation initiation

eIF3l translational initiation

Hrb98DE translation; alternative mRNA splicing; mRNA binding

l(1)G0007 alternative mRNA splicing; 3’�5’ RNA helicase activity

LSm7 mRNA splicing; mRNA catabolic process; RNA binding

ncm mRNA splicing; RNA binding

Nelf-A transcription elongation; RNA binding

Not1 translation; poly(A)-specific ribonuclease activity; CCR4-NOT complex

Not3 translation; transcription; poly(A)-specific
ribonuclease activity; CCR4-NOT complex

Patr-1 cytoplasmic mRNA P-body assembly;
deadenylation-dependent decapping of mRNA; RNA binding

Pcf11 mRNA polyadenylation; transcription termination; mRNA binding

pcm cytoplasmic mRNA P-body assembly; 5’�3’ exonuclease activity

Psi alternative mRNA splicing; transcription; mRNA binding

Rga translation; transcription; poly(A)-specific ribonuclease activity;
CCR4-NOT complex

RpS3 DNA repair; translation; RNA binding; structural constituent of ribosome

Rrp6 chromosome segregation; mRNA polyadenylation;
nuclear RNA surveillance; 3’�5’ exonuclease activity

sbr mRNA export from nucleus; mRNA polyadenylation; RNA binding

Set1 histone methyltransferase activity; nucleic acid binding;
contains an RNA Recognition Motif

SmB mRNA splicing; RNA binding

SmE mRNA splicing; spliceosomal snRNP assembly

SmF mRNA splicing; spliceosomal snRNP assembly; RNA binding

smg RNA localization; translation; mRNA poly(A) tail shortening;
transcription; mRNA binding

Table 2 continued on next page
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BG-LUC flies resulted in a similar trend, although differences did not reach statistical significance

(Figure 2—figure supplement 2C and D). Period was however shorter in experimental flies com-

pared to both control genotypes in all four independent experiments performed with BG-LUC (and

all six with ptim-TIM-LUC). Since the luciferase signal in these flies is dominated by light from the

abdomen (Lamba et al., 2018; Stanewsky et al., 1997), this indicates that Psi knockdown, shortens

the period of circadian clocks in peripheral tissues as well as in the brain neural network that controls

circadian behavior.

Alternative splicing of two clock genes, cwo and tim, is altered in Psi
knockdown flies
PSI has been best characterized for its role in alternative splicing of the P element transposase gene

in somatic cells (Labourier et al., 2001; Siebel et al., 1992). However, it was recently reported that

PSI has a wider role in alternative splicing (Wang et al., 2016). Wang et al. reported an RNA-seq

dataset of alternative splicing changes that occur when a lethal Psi-null allele is rescued with a copy

of Psi in which the AB domain has been deleted (PSIDAB). This domain is required for the interaction

of PSI with the U1 snRNP, which is necessary for PSI to mediate alternative splicing of P element

transposase (Labourier et al., 2002). Interestingly, Wang et al. (2016) found that PSIDAB affects

alternative splicing of genes involved in complex behaviors such as learning, memory and courtship.

Intriguingly, we found four core clock genes listed in this dataset: tim, cwo, sgg and Pdp1. We

decided to focus on cwo and tim, since only one specific splicing isoform of Pdp1 is involved in the

regulation circadian rhythm, (Pdp1e) (Zheng et al., 2009), and since the sgg gene produces a very

complex set of alternative transcripts. After three days of LD entrainment, we collected RNA sam-

ples at four time points on the first day of DD and determined the relative expression of multiple iso-

forms of cwo and tim in Psi knockdown heads compared to driver and RNAi controls.

CWO is a basic helix-loop-helix (bHLH) transcriptional factor and is part of an interlocked feed-

back loop that reinforces the main loop by competing with CLK/CYC for E-box binding

(Matsumoto et al., 2007; Lim et al., 2007; Kadener et al., 2007; Richier et al., 2008). There are

three mRNA isoforms of cwo predicted in Flybase (Figure 3—figure supplement 1A)

(Thurmond et al., 2019). Of the three, only cwo-RA encodes a full-length CWO protein. Exon two is

skipped in cwo-RB, and in cwo-RC there is an alternative 3’ splice site in the first intron that length-

ens exon 2. Translation begins from a downstream start codon in cwo-RB and -RC, because exon

two skipping or lengthening, respectively, causes a frameshift after the start codon used in cwo-RA.

The predicted start codon in both cwo-RB and cwo-RC would produce an N-terminal truncation of

the protein, which would thus be missing the basic region of the bHLH domain and should not be

able to bind DNA. The cwo-RB and cwo-RC isoforms may therefore encode endogenous dominant

negatives.

We found that the level of the cwo-RB isoform was significantly reduced compared to both con-

trols at CT 9 (Figure 3—figure supplement 1C). The cwo-RA isoform was also reduced compared

to both controls at CT9 (Figure 3—figure supplement 1B). This reduction was significant compared

to the TD2/+ control (p=0.0002) but was just above the significance threshold compared to the PsiR-

NAiKK/+ control (p=0.0715). Conversely, cwo-RC isoform expression was significantly increased at

CT 15 (Figure 3—figure supplement 1D). The overall expression of all cwo mRNAs in Psi

Table 2 continued

Gene Molecular function (based on information from Flybase) (Thurmond et al., 2019)

Smg5 nonsense-mediated decay; ribonuclease activity

Smn spliceosomal snRNP assembly; RNA binding

snRNP-U1-C mRNA 5’-splice site recognition; mRNA splicing, alternative mRNA splicing

Spx mRNA splicing; mRNA binding

Srp54k SRP-dependent cotranslational protein targeting to membrane; 7S RNA binding

Zn72D mRNA splicing; RNA binding
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Figure 2. Expression level of Psi affects the circadian behavior period length and circadian rhythmicity. (A) Schematic of Psi isoforms and position of the

long and short hairpins used in this study. Adapted from Ensembl 94 (Zerbino et al., 2018). (B–E) Knockdown of Psi shortens the behavioral period. (B)

Double-plotted actograms showing the average activities during 3 days in LD and 5 days in DD. Left panel: TD2/+ (control) flies. Right panel: TD2/

PsiRNAi (Psi knockdown) flies. Note the short period of Psi knockdown flies. n = 8 flies/genotype. (C–E) Circadian period length (hrs) is plotted on the y

Figure 2 continued on next page
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knockdown fly heads was significantly reduced at both CT 9 and CT 15, indicating that the RC iso-

form’s contribution to total cwo mRNA levels is quite modest (Figure 3—figure supplement 1E).

We then analyzed alternative splicing of tim in Psi knockdown heads compared to controls. Spe-

cifically, we looked at the expression of three temperature-sensitive intron inclusion events in tim

that all theoretically lead to C-terminal truncations of the protein (Figure 3A). The tim-cold isoform,

which is not annotated in Flybase (Thurmond et al., 2019), is dominant at low temperature (18˚C)

and arises when the last intron is retained (Boothroyd et al., 2007). We found that tim-cold is ele-

vated in Psi knockdown heads at peak levels under 25˚C conditions (CT15, Figure 3D). Similarly, we

found that another intron inclusion event, tim-sc (tim-short and cold) which has also been shown to

be elevated at 18˚C and is present in the tim-RN and -RO isoforms (Martin Anduaga et al., 2019), is

significantly increased at 25˚C in Psi knockdown heads at CT15 (Figure 3B). Thus, interestingly, two

intron inclusion events that are upregulated by cold temperature are also both upregulated in Psi

knockdown heads at 25˚C. In contrast, we found that an intron included in the tim-RM and -RS iso-

forms (tim-M, for tim-Medium) and shown to be increased at high temperature (29˚C,

Martin Anduaga et al., 2019; Shakhmantsir et al., 2018) is significantly decreased at CT 9, 15 and

21 in Psi knockdown heads at 25˚C (Figure 3F). In the case of tim-sc, it should be noted that the

intron is only partially retained, because a cleavage and poly-adenylation signal is located within this

intron, thus resulting in a much shorter mature transcript (Martin Anduaga et al., 2019). Based on

PSI function, the most parsimonious explanation is that PSI reduces production of tim-sc by promot-

ing splicing of the relevant intron. However, we cannot entirely exclude that PSI regulates the proba-

bility of premature cleavage causing the RNA polymerase to undergo transcription termination soon

after passing the poly-adenylation signal.

Collectively, these results indicate that, in wild-type flies, PSI shifts the balance of tim alternative

splicing events toward a warm temperature tim RNA isoform profile at an intermediate temperature

(25˚C). This could be achieved either by altering the temperature sensitivity of tim introns, or by pro-

moting a ‘warm temperature splicing pattern’ independently of temperature. We therefore also

measured tim splicing isoforms at 18˚C and 29˚C (Figure 3C,E,G). We entrained flies for 3 days in LD

at 25˚C to maintain similar levels of GAL4 expression and thus of Psi knockdown (the GAL4/UAS sys-

tem’s activity increases with temperature, Duffy, 2002). We then shifted them to either 18˚C or 29˚C

Figure 2 continued

axis. Genotypes are listed on the x axis. Error bars represent SEM. Solid black bar is w1118 (WT) control; solid blue, magenta and gray bars are driver

controls; patterned bars are Psi knockdown with two non-overlapping RNAi lines: GD14067 (PsiRNAiGD) and KK101882 (PsiRNAiKK). *p<0.05,

***p<0.001, ****p<0.0001, one-way ANOVA followed by Tukey’s multiple comparison test (C) Dunnett’s multiple comparison test (D and E). (C)

Knockdown in all circadian tissues. Left panel 25˚C, right panel 30˚C. Note that even at 25˚C, the experimental flies are shorter than their respective

RNAi/+ control, despite the dominant period lengthening caused by TD2 (D) Knockdown in PDF+ circadian pacemaker neurons. (E) Knockdown in

PDF- circadian tissues. In D and E, only the driver controls are shown, since they are the controls which the experimental flies need to be compared to

because of the dominant period lengthening caused by PD2 and TD2. (F–H) Overexpression of Psi lengthens the behavioral period and decreases

rhythmicity. Left panels: Circadian period length (hrs) is plotted on the y axis. Error bars represent SEM. Right panels: Percent of flies that remained

rhythmic in DD is plotted on the y axis. Both panels: Genotypes are listed on the x axis. Not significant (ns)p>0.05, *p<0.05, ****p<0.0001, one-way

ANOVA followed by Tukey’s multiple comparison test. (F) Overexpression of Psi in all circadian tissues lengthened the circadian period and decreased

the percent of rhythmic flies. (G) Overexpression of Psi in PDF+ circadian pacemaker neurons caused a slight but non-significant period lengthening

compared to the driver control (PG4/+), which is the relevant comparison because of the dominant period lengthening caused by PG4. Rhythmicity was

slightly reduced compared to PG4/+ but not compared to UAS-Psi/+. (H) Overexpression of Psi in PDF- circadian tissues lengthened the circadian

period and decreased rhythmicity.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Psi downregulation and overexpression – behavior data.

Source data 2. Figure statistics – Figure 2.

Figure supplement 1. Psi mRNA expression does not cycle and its level is reduced in heads of Psi knockdown flies.

Figure supplement 1—source data 1. Psi qPCR data.

Figure supplement 1—source data 2. Figure statistics – Figure 2—figure supplement 1.

Figure supplement 2. Knockdown of Psi shortens circadian period of PER and TIM rhythms in peripheral tissues.

Figure supplement 2—source data 1. TIMLUC signal.

Figure supplement 2—source data 2. BGLUC signal.

Figure supplement 2—source data 3. Figure statistics – Figure 2—figure supplement 2.
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at CT 0 on the first day of DD and collected samples at CT 3, 9, 15 and 21. We found that both the

tim-cold intron and the tim-sc introns were elevated at 18˚C in both Psi knockdown heads and con-

trols (Figure 3C and E). Thus, Psi knockdown does not block the temperature sensitivity of these

introns. tim-M levels were unexpectedly variable in DD, particularly in the Psi knockdown flies, per-

haps because of the temperature change. Nevertheless, we observed a trend for the tim-M intron

retention to be elevated at 29˚C (Figure 3G), further supporting our conclusion that Psi knockdown

Table 3. PSI affects circadian behavior

Genotype
Period
±SEM

Power
±SEM n

% of
Rhythmic Flies

Psi downregulation and overexpression at 25˚C

TD2/+ 24.8 ± 0.04 48.2 ± 2.3 71 82

TD2/PsiRNAiGD 23.7 ± 0.07 49.6 ± 3.0 48 79

TD2/PsiRNAiKK 23.6 ± 0.06 61.9 ± 3.7 35 77

PD2/+ 24.9 ± 0.04 50.4 ± 2.1 77 83

PD2/PsiRNAiGD 24.2 ± 0.06 53.3 ± 4.1 32 84

PD2/PsiRNAiKK 24.7 ± 0.06 56.3 ± 3.4 47 89

TD2/+; PdfGAL80/+ 24.5 ± 0.07 49.4 ± 2.8 40 75

TD2/PsiRNAiGD; PdfGAL80/+ 23.8 ± 0.17 45.8 ± 5.5 24 50

TD2/PsiRNAiKK; PdfGAL80/+ 24.0 ± 0.05 71.9 ± 4.0 39 95

w1118 24.1 ± 0.03 84.8 ± 2.5 70 99

PsiRNAiGD/+ 24.2 ± 0.04 58.9 ± 2.9 63 94

PsiRNAiKK/+ 24.0 ± 0.04 67.1 ± 3.7 55 96

TG4/+ 25.2 ± 0.05 52.5 ± 2.2 68 88

TG4/+; UAS-Psi/+ 25.9 ± 0.07 31.3 ± 1.2 302 16

PG4/+ 25.0 ± 0.05 66.0 ± 3.5 26 96

PG4/+; UAS-Psi/+ 25.2 ± 0.07 44.0 ± 2.7 48 77

TG4/+; PdfGAL80/+ 24.6 ± 0.06 42.8 ± 2.8 37 84

TG4/+; PdfGAL80/UAS-Psi 24.9 ± 0.19 31.3 ± 2.8 116 11

UAS-Psi/+ 24.2 ± 0.04 46.4 ± 1.8 80 79

Psi downregulation at 20˚C

TD2/+ 24.9 ± 0.10 42.0 ± 3.1 39 59

TD2/PsiRNAiGD 23.6 ± 0.07 52.2 ± 4.7 44 66

TD2/PsiRNAiKK 23.7 ± 0.08 43.8 ± 5.5 44 36

PsiRNAiGD/+ 24.0 ± 0.09 46.0 ± 3.7 32 72

PsiRNAiKK/+ 23.8 ± 0.08 39.1 ± 4.9 32 38

Psi downregulation at 30˚C

TD2/+ 23.7 ± 0.07 48.2 ± 2.9 39 87

TD2/PsiRNAiGD 23.1 ± 0.13 38.3 ± 3.8 42 40

TD2/PsiRNAiKK 22.8 ± 0.15 43.1 ± 4.2 41 41

PsiRNAiGD/+ 23.6 ± 0.04 43.2 ± 3.4 32 75

PsiRNAiKK/+ 23.5 ± 0.03 63.0 ± 3.7 31 90

TIM-HA suppression of PSI’s effect on circadian behavior

TG4/PsiRNAiKK; UAS-Dcr2/+ 23.4 ± 0.04 59.5 ± 4.3 57 75

TG4/+; UAS-Dcr2/+ 24.9 ± 0.04 59.4 ± 3.1 36 92

tim0,TG4/tim0; UAS-Dcr2/timHA 24.9 ± 0.07 44.3 ± 4.0 28 75

tim0,TG4/tim0,PsiRNAiKK; UAS-Dcr2/timHA 24.8 ± 0.06 50.0 ± 2.9 38 79

Foley et al. eLife 2019;8:e50063. DOI: https://doi.org/10.7554/eLife.50063 13 of 28

Research article Neuroscience

https://doi.org/10.7554/eLife.50063


Figure 3. Knockdown of Psi increases the expression of cold induced tim isoforms and decreases the expression of a warm induced tim isoform. (A)

Schematic of tim isoforms. Flybase transcript nomenclature on left, intron retention events studied here on right (tim-L refers to tim transcripts that do

not produce C-terminal truncations of TIM via intron retention). Arrows indicate the location of retained introns: blue, upregulated at cold temperature;

red, upregulated at warm temperature. The retained intron that gives rise to the tim-cold isoform is not annotated in Flybase (Thurmond et al., 2019).

It is possible that multiple tim-cold transcripts may exist due to alternative splicing and alternative transcription/translation start sites in the 5’ region of

Figure 3 continued on next page
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does not affect the temperature sensitivity of tim splicing, but rather determines the ratio of tim

mRNA isoforms, and it does this at all temperatures.

As expected from these results, Psi downregulation did not affect the ability of flies to adjust the

phase of their evening and morning peak to changes in temperature (Figure 3—figure supplement

2). We also tested whether Psi knockdown flies responded normally to short light pulses, since TIM

is the target of the circadian photoreceptor CRY (Emery et al., 1998; Stanewsky et al., 1998;

Lin et al., 2001; Busza et al., 2004; Koh et al., 2006). These flies could both delay or advance the

phase of their circadian behavior in response to early or late-night light pulses, respectively (Fig-

ure 3—figure supplement 3). We noticed however a possible slight shift of the whole Phase

Response Curve toward earlier times. This would be expected since the pace of the circadian clock

is accelerated.

PSI controls the phase of circadian behavior under temperature cycle
Since PSI regulates thermosensitive tim splicing events, we wondered whether it might have an

impact on circadian behavioral responses to temperature. As mentioned above, Psi downregulation

does not affect Drosophila’s ability to adjust the phase of their behavior to different constant ambi-

ent temperatures, under a LD cycle (Figure 3—figure supplement 2). Psi knockdown did not appear

to affect temperature compensation, as these flies essentially responded to temperature in a similar

way as their TD2/+ control, with shorter period at 29˚C (Figure 4—figure supplement 1). However,

we found a striking phenotype in flies with Psi downregulation under temperature cycle (29/20˚C).

Once flies had reached a stable phase relationship with the entraining temperature cycle

(Busza et al., 2007), the phase of the evening peak of activity was advanced by about 2.5 hr in TD2/

PsiRNAi, compared to controls, and this with two non-overlapping dsRNAs (Figure 4). Controls

included TD2/+ or TD2/VIE-260B (KK host strain), RNAi/+, as well as TD2 crossed to a KK or GD

RNAi line that did not produce a circadian phenotype. Importantly, no such phase advance was

observed under LD (Figure 3—figure supplement 2), indicating that the short period phenotype

does not account for the evening-peak advanced phase under temperature cycle. Rather, the phase

advance is specific to temperature entrainment. The morning peak was difficult to quantify as it

tended to be of low amplitude.

Figure 3 continued

the gene (dashed box). However, for simplicity, we depict this region of tim-cold using the most common exons. Adapted from Ensembl 94

(Zerbino et al., 2018). (B, D, F) Relative expression of tim mRNA isoforms at 25˚C (normalized to the average of all Psi knockdown time points) in heads

on the y axis measured by qPCR. Circadian time (CT) on the x axis. Error bars represent SEM. Gray line: driver control. Black line: RNAi control. Dashed

line: Psi knockdown. Controls, N = 3. Psi knockdown, N = 5 (3 technical replicates per sample). Both driver and RNAi control compared to Psi

knockdown, two-way ANOVA followed by Tukey’s multiple comparison test: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (C, E, G) Relative expression

of tim mRNA isoforms at 18˚C and 29˚C (normalized to the average of all Psi knockdown time points). Solid line: RNAi control. Dashed line: Psi RNAi

knockdown. Blue indicates flies were transferred to 18˚C at CT0 (start of subjective day) on the first day of DD. Red indicates flies were transferred to 29˚

C. N = 3 (3 technical replicates per sample). 18˚C samples compared to 29˚C samples, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, two-way ANOVA

followed by Tukey’s multiple comparison test. (C) Blue asterisks refer to RNAi control compared to Psi knockdown.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. tim qPCR data.

Source data 2. Figure statistics – Figure 3.

Figure supplement 1. Knockdown of Psi affects the balance of cwo isoform expression.

Figure supplement 1—source data 1. cwo qPCR data.

Figure supplement 1—source data 2. Figure statistics – Figure 3—figure supplement 1.

Figure supplement 2. Psi knockdown flies have normal behavioral adaptation to temperature.

Figure supplement 2—source data 1. Psi downregulation – anticipation phase.

Figure supplement 2—source data 2. Figure statistics – Figure 3—figure supplement 2.

Figure supplement 3. Psi knockdown flies have a normal photic phase response.

Figure supplement 3—source data 1. Psi downregulation – PRC.

Figure supplement 3—source data 2. Figure statistics – Figure 3—figure supplement 3.
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Figure 4. Knockdown of Psi advances the phase of circadian behavior under temperature cycle. (A) Eductions showing the average activity of flies

during 4 days of 12:12 29˚C(red)/20˚C(blue) temperature entrainment (days 7–10) in DD. Top panels: (driver controls) TD2/+ (left), TD2/VIE-260B (right).

Middle panels: (RNAi controls) PsiRNAiGD/+ (left), PsiRNAiKK/+ (right). Bottom panels: (Psi knockdown) TD2/PsiRNAiGD (left), TD2/PsiRNAiKK (right).

Note that, Psi knockdown flies advance the phase of their evening activity by about 2.5 hr relative to controls. (C–D) Evening peak phase relative to an

Figure 4 continued on next page
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tim splicing is required for PSI’s regulation of circadian period and
circadian behavior phase under temperature cycle
Because tim is a key element of the circadian transcriptional feedback loop and its splicing pattern is

determined by the ambient temperature, we wondered whether PSI might be regulating the speed

of the clock and the phase of the evening peak through its effects on tim splicing. We therefore res-

cued the amorphic tim allele (tim0) with a tim transgene that lacks the known temperature sensitive

alternatively spliced introns as well as most other introns (timHA) (Figure 5A) (Rutila et al., 1998).

Importantly, the tim0 mutation is a frame-shifting deletion located upstream of the temperature-sen-

sitive alternative splicing events (Myers et al., 1995), and would thus truncate any TIM protein pro-

duced from the splice variants we studied. Strikingly, we found that knockdown of Psi in timHA

rescued tim0 flies had no impact on the period of circadian behavior (Figure 5B–C, Table 3). Like-

wise, the evening peak phase under temperature cycles was essentially insensitive to Psi knockdown

in timHA rescued tim0 flies (Figure 5D–E). This indicates that PSI controls circadian period in DD and

the phase of the evening peak under temperature cycle through tim splicing.

Discussion
Our results identify a novel post-transcriptional regulator of the circadian clock: PSI. PSI is required

for the proper pace of both brain and body clock, and for proper phase-relationship with ambient

temperature cycles. When Psi is downregulated, the circadian pacemaker speeds up and behavior

phase under temperature cycles is advanced by 3 hr, and these phenotypes appear to be predomi-

nantly caused by an abnormal tim splicing pattern. Indeed, the circadian period and behavior phase

of flies that can only produce functional TIM protein from a transgene missing most introns is insensi-

tive to Psi downregulation. We note however that cwo’s splicing pattern is also affected by Psi

downregulation, and we did not study sgg splicing pattern, although it might also be controlled by

PSI (Wang et al., 2016). We therefore cannot exclude a small contribution of non-tim splicing events

to PSI downregulation phenotypes, or that in specific tissues these other splicing events play a

greater role than in the brain.

Interestingly, Psi downregulation results in an increase in intron inclusion events that are favored

under cold conditions (tim-sc and tim-cold), while an intron inclusion event favored under warm con-

ditions is decreased (tim-M). However, the ability of tim splicing to respond to temperature changes

is not abolished when Psi is downregulated (Figure 3C,E,G). This could imply that an as yet unknown

factor specifically promotes or represses tim splicing events in a temperature-dependent manner.

Another possibility is that the strength of splice sites or tim’s pre-mRNA structure impacts splicing

efficiency in a temperature–dependent manner. For example, suboptimal per splicing signals explain

the lower efficiency of per’s most 3’ splicing event at warm temperature (Low et al., 2008).

How would the patterns of tim splicing affect the pace of the circadian clock, or advance the

phase of circadian behavior under temperature cycles? In all splicing events that we studied, intron

retention results in a truncated TIM protein. It is therefore possible that the balance of full length

and truncated TIM proteins, which may function as endogenous dominant-negatives, determines

Figure 4 continued

internal control in each run (w1118) (hrs) is plotted on the y axis. Genotypes are listed on the x axis. Error bars represent SEM. ***p<0.001, ****p<0.0001,

one-way ANOVA followed by Tukey’s multiple comparison test. N = 3–5 runs (C) Quantification of PsiRNAiGD knockdown and controls. Note additional

RNAi controls: larpRNAiGD/+ (black bar, gray border) and TD2/larpRNAiGD (patterned bar, gray border). larpRNAiGD (GD8214) is an RNAi line from

the GD collection that targets a RAP from our screen that was not a hit. (D) Quantification of PsiRNAiKK knockdown and controls. Note additional RNAi

controls: VIE260B/+ (white bar, black border), TD2/VIE260B (gray bar), Rbp9RNAiKK/+ (black bar, gray border) and TD2/Rbp9RNAiKK (patterned bar,

gray border). VIE260B is a KK collection host strain control containing the 30B transgene insertion site. Rbp9RNAiKK (KK109093) is an RNAi line from

the KK collection targeting a RAP from our screen that was not a hit.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Psi downregulation – temperature cycle phase.

Source data 2. Figure statistics – Figure 4.

Figure supplement 1. Free-running circadian behavior of Psi knockdown flies and controls at different temperatures in DD.

Figure supplement 1—source data 1. Psi downregulation – temperature compensation.

Figure supplement 1—source data 2. Figure statistics – Figure 4—figure supplement 1.
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Figure 5. The short period and temperature cycle phase advance effects of Psi knockdown are dependent on tim

introns. (A) Schematic of timHA transgene. The tim promoter is fused upstream of the transcription start site (TSS).

Two introns remain in the 5’UTR, upstream of the start codon; however, they are not, to our knowledge,

temperature sensitive. A C-terminal HA tag is fused to full length tim cDNA, which lacks any of the introns that are

Figure 5 continued on next page
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circadian period. For example, truncated TIM might be less efficient at protecting PER from degra-

dation, thus accelerating the pacemaker, or affecting its phase. Consistent with this idea, overex-

pression of the shorter cold-favored tim isoform (tim-sc) shortens period (Martin Anduaga et al.,

2019). Strikingly, Psi downregulation increases this isoform’s levels and also results in a short pheno-

type. Shakhmantsir et al. (2018) also proposed that production of tim-M transcripts (called tim-tiny

in their study) delays the rate of TIM accumulation. Such a mechanism could also contribute to the

short period we observed when Psi is downregulated, since this reduces tim-M levels, which may

accelerate TIM accumulation. Another interesting question is how PSI differentially affects specific

splice isoforms of tim. One possibility is that the execution of a specific tim splicing event negatively

influences the probability of the occurrence of other splicing events. For example, PSI could downre-

gulate tim-sc and tim-cold by enhancing splicing and removal of the introns whose retention is nec-

essary for production of these isoforms. This could indirectly reduce splicing of the intron that is

retained in the warm tim-M isoform and result in tim-M upregulation. Conversely, PSI could directly

promote tim-M intron retention and indirectly downregulate production of tim-sc and tim-cold.

Other splicing factors have been shown to be involved in the control of circadian rhythms in Dro-

sophila. SRm160 contributes to the amplitude of circadian rhythms by promoting per expression

(Beckwith et al., 2017), while B52/SMp55 and PRMT5 regulate per’s most 3’ splicing, which is tem-

perature sensitive (Zhang et al., 2018; Sanchez et al., 2010). Loss of PRMT5 results in essentially

arrhythmic behavior (Sanchez et al., 2010), but this is unlikely to be explained by its effect on per’s

thermosensitive splicing. B52/SMp55 knockdown flies show a reduced siesta, which is controlled by

the same per splicing (Zhang et al., 2018). With the identification of Psi, we uncover a key regulator

of tim alternative splicing pattern and show that this pattern determines circadian period length,

while per alternative splicing regulates the timing and amplitude of the daytime siesta. Interestingly,

a recent study identified PRP4 kinase and other members of tri-snRNP complexes as regulators of

circadian rhythms (Shakhmantsir et al., 2018). Downregulation of prp4 caused excessive retention

of the tim-M intron. PSI and PRP4 might thus have complementary functions in tim mRNA splicing

regulation, working together to maintain the proper balance of tim isoform expression.

An unexpected finding is the role played by both PDF neurons and other circadian neurons in the

short period phenotype observed with circadian locomotor rhythms when we knocked-down Psi.

Indeed, it is quite clear from multiple studies that under constant darkness, the PDF-positive sLNvs

dictate the pace of circadian behavior (Stoleru et al., 2005; Yao and Shafer, 2014). Why, in the

case of Psi downregulation, do PDF negative neurons also play a role in period determination? The

explanation might be that PSI alters the hierarchy between circadian neurons, promoting the role of

PDF negative neurons. This could be achieved by weakening PDF/PDFR signaling, for example.

While we focused our work on PSI, several other interesting candidates were identified in our

screen (Tables 1 and 2). We note the presence of a large number of splicing factors. This adds to

the emerging notion that alternative splicing plays a critical role in the control of circadian rhythms.

Figure 5 continued

known to be retained at high or low temperatures. (B) Knockdown of Psi with tim-GAL4 and a UAS-dcr2 transgene

inserted on the 3rd chromosome also causes period shortening. We used this insertion to more easily generate

stocks in a tim0 background, since the tim gene is on the second chromosome, instead of the TD2 combination

that has both the tim-GAL4 and UAS-dcr2 transgenes on the 2nd chromosome. ****p<0.0001, Student’s t-test. (C)

Period shortening in response to Psi knockdown with tim-GAL4 and UAS-dcr2 is abolished in tim0, ptim-timHA

flies that can only produce the full length tim isoform. ns, p=0.1531, Student’s t-test. (B, C) Circadian period length

(hrs) is plotted on the y axis. Genotypes are listed on the x axis. Error bars represent SEM. (D) Knockdown of Psi

with tim-GAL4 and a UAS-dcr2 3rd chromosome transgene also causes a phase advance in a 12:12 29˚C/20˚C

temperature cycle. (E) The phase advance is abolished in tim0, ptim-timHA flies that can only produce the full

length tim isoform. (D, E) Evening peak phase relative to an internal control in each run (w1118) (hrs) is plotted on

the y axis. Genotypes are listed on the x axis. Error bars represent SEM. **p<0.01, one-way ANOVA followed by

Tukey’s multiple comparison test. N = 3 runs.

The online version of this article includes the following source data for figure 5:

Source data 1. Psi downregulation in a tim0; timHA background – behavioral period length in DD and tempera-

ture cycle phase.

Source data 2. Figure statistics – Figure 5.
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We have already mentioned above several per splicing regulators that can impact circadian behav-

ior. In addition, a recent study demonstrated that specific classes of circadian neurons express spe-

cific alternative splicing variants, and that rhythmic alternative splicing is widespread in these

neurons (Wang et al., 2018). Interestingly, in this study, the splicing regulator barc, which was iden-

tified in our screen and which has been shown to causes intron retention in specific mRNAs

(Abramczuk et al., 2017), was found to be rhythmically expressed in LNds. Moreover, in mammals,

alternative splicing appears to be very sensitive to temperature, and could explain how body tem-

perature rhythms synchronize peripheral clocks (Preußner et al., 2017). Another intriguing candi-

date is cg42458, which was found to be enriched in circadian neurons (LNvs and Dorsal Neurons 1)

(Wang et al., 2018). In addition to emphasizing the role of splicing, our screen suggests that regula-

tion of polyA tail length is important for circadian rhythmicity, since we identified several members

of the CCR4-NOT complex and deadenylation-dependent decapping enzymes. Future work will be

required to determine whether these factors directly target mRNAs encoding for core clock compo-

nents, or whether their effect on circadian period is indirect. Interestingly, the POP2 deadenylase,

which is part of the CCR4-NOT complex, was recently shown to regulate tim mRNA levels post-tran-

scriptionally (Grima et al., 2019). It should be noted that while our screen targeted 364 proteins

binding or associated with RNA, it did not include all of them. For example, LSM12, which was

recently shown to be a part of the ATXN2/TYF complex (Lee et al., 2017), was not included in our

screen because it had not been annotated as a potential RAP when we initiated our screen.

In summary, our work provides an important resource for identifying RNA associated proteins

regulating circadian rhythms in Drosophila. It identifies PSI is an important regulator of circadian

period and circadian phase in response to thermal cycles, and points at additional candidates and

processes that determine the periodicity of circadian rhythms.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene
(Drosophila
melanogaster)

Psi FLYB:FBgn0014870 Flybase name:
P-element
somatic inhibitor

Gene
(Drosophila
melanogaster)

tim FLYB:FBgn0014396 Flybase
name: timeless

Gene
(Drosophila
melanogaster)

tio FLYB:FBgn0028979 Flybase
name: tiptop

Gene
(Drosophila
melanogaster)

per FLYB:FBgn0003068 Flybase
name: period

Gene
(Drosophila
melanogaster)

cwo FLYB:FBgn0259938 Flybase name:
clockwork orange

Gene
(Drosophila
melanogaster)

RpL32 FLYB:FBgn0002626 qPCR control
Flybase name:
Ribosomal
protein L32

Gene
(Drosophila
melanogaster)

larp FLYB:FBgn0261618 Flybase name:
La related protein

Gene
(Drosophila
melanogaster)

Rbp9 FLYB:FBgn0010263 Flybase name:
RNA-binding protein 9

Gene
(Drosophila
melanogaster)

Dcr-2 FBgn0034246 Flybase name:
Dicer-2

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic
reagent
(D. melanogaster)

tim-GAL4 Kaneko et al., 2000 FLYB:FBtp0010385

Genetic
reagent
(D. melanogaster)

Pdf-GAL4 Renn et al., 1999 FLYB:FBtp0011844

Genetic
reagent
(D. melanogaster)

Pdf-GAL80, Pdf-GAL80 Stoleru et al., 2004

Genetic
reagent
(D. melanogaster)

UAS-Dcr2 Dietzl et al., 2007 FLYB:FBti0100275
RRID:BDSC_24650

Chromosome 2

Genetic
reagent
(D. melanogaster)

UAS-Dcr2 Dietzl et al., 2007 FLYB:FBti0100276 Chromosome 3

Genetic reagent
(D. melanogaster)

PsiRNAi KK101882 FLYB:FBal0231542

Genetic
reagent
(D. melanogaster)

PsiRNAi GD14067 Dietzl et al., 2007 FLYB:FBst0457756

Genetic
reagent
(D. melanogaster)

UAS-Psi Labourier et al., 2001

Genetic
reagent
(D. melanogaster)

BG-LUC Stanewsky et al., 1997

Genetic
reagent
(D. melanogaster)

ptim-TIMLUC Lamba et al., 2018

Genetic
reagent
(D. melanogaster)

timHA Rutila et al., 1998 FLYB:FBal0143160

Genetic
reagent
(D. melanogaster)

tim0 Sehgal et al., 1994 FLYB:FBal0035778

Genetic
reagent
(D. melanogaster)

VIE260B VDRC_ID:
60100

genetic reagent (D. melanogaster) larpRNAi
GD8214

Dietzl et al., 2007 VDRC_ID:
17366

Genetic
reagent
(D. melanogaster)

Rbp9RNAi
KK109093

VDRC_ID:
101412

Genetic
reagent
(D. melanogaster)

w1118 VDRC_ID:
60000

Genetic
reagent
(D. melanogaster)

40D-UAS VDRC_ID:
60101

Sequence-
based reagent

RpL32-forward Dubruille et al., 2009 PCR primers ATGCTAAGCTGTCGCACAAA

Sequence-
based reagent

RpL32-reverse Dubruille et al., 2009 PCR primers GTTCGATCCGTAACCGATGT

Sequence-
based reagent

psi-forward This paper PCR primers GGTGCCTTGAATGGGTGAT

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Sequence-
based reagent

psi-reverse This paper PCR primers CGATTTATCCGGGTCCTCG

Sequence-
based reagent

tim-M-forward This paper PCR primers TGGGAATCTCGCCCGAAAC

Sequence-
based reagent

tim-M-reverse This paper PCR primers AGAAGGAGGAGAAGGAGAGAGG

Sequence-
based reagent

tim-sc-forward This paper PCR primers ACTGTGCGATGACTGGTCTG

Sequence-
based reagent

tim-sc-reverse This paper PCR primers TGCTTCAAGGAAATCTTCTG

Sequence-
based reagent

tim-cold-forward This paper PCR primers CCTCCATGAAGTCCTCGTTCG

Sequence-
based reagent

tim-cold-reverse This paper PCR primers ATTGAGCTGGGACACCAGG

Sequence-
based reagent

cwo-foward This paper PCR primers TTCCGCTGTCCACCAACTC

Sequence-
based reagent

cwo-reverse This paper PCR primers CGATTGCTTTGCTTTACCAGCTC

Sequence-
based reagent

cwoRA-forward This paper PCR primers TCAAGTATGAGAGCGAAGCAGC

Sequence-
based reagent

cwoRA-reverse This paper PCR primers TGTCTTATTACGTCTTCCGGTGG

Sequence-
based reagent

cwoRB-forward This paper PCR primers GTATGAGAGCAAGATCCACTTTCC

Sequence-
based reagent

cwoRB-reverse This paper PCR primers GATGATCTCCGTCTTCTCGATAC

Sequence-
based reagent

cwoRC-forward This paper PCR primers GTATGAGAGCCAAGCGACCAC

Sequence-
based reagent

cwoRC-reverse This paper PCR primers CCAAATCCATCTGTCTGCCTC

Commercial
assay or kit

Direct-zol RNA
MiniPrep kit

Zymo Research Zymo Research:
R2050

Commercial
assay or kit

iSCRIPT cDNA
synthesis kit

Bio-RAD Bio-RAD: 1708891

Commercial
assay or kit

iTaq Universal
SYBR Green
Supermix

Bio-RAD Bio-RAD: 1725121

Chemical
compound, drug

D-Luciferin,
Potassium Salt

Goldbio Goldbio: LUCK-1G

Chemical
compound, drug

TRIzol Reagent Invitrogen Thermo
Fisher Scientific:
15596026

Software,
algorithm

FaasX software Grima
et al., 2002

http://neuro-
psi.cnrs.fr/spip.php?
article298&lang=en

Software,
algorithm

MATLAB
(MathWorks) signal-
processing toolbox

Levine
et al., 2002

MATLAB
RRID: SCR_001622

Software,
algorithm

MS Excel RRID: SCR_016137

Software,
algorithm

GraphPad Prism
version 7.0 c
for Mac OS X

GraphPad Software,
La Jolla, CA USA

RRID: SCR_002798 www.graphpad.com
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Fly stocks
Flies were raised on a standard cornmeal/agar medium at 25˚C under a 12 hr:12 hr light:dark (LD)

cycle. The following Drosophila strains were used: w1118 – w; tim-GAL4, UAS-dicer2/CyO (TD2)

(Dubruille et al., 2009) – y w; Pdf-GAL4, UAS-dicer2/CyO (PD2) (Dubruille et al., 2009) – y w; Tim-

GAL4/CyO (TG4) (Kaneko et al., 2000) – y w; Pdf-GAL4 (PG4) (Renn et al., 1999) – w;; UAS-dcr2

(Dietzl et al., 2007) – y w;; timHA (Rutila et al., 1998) – yw; TD2; Pdf-Gal80, Pdf-GAL80 (Zhang and

Emery, 2013). The following combinations were generated for this study: y w; TG4; Pdf-GAL80, Pdf-

GAL80 – w; tim-GAL4/CyO; UAS-dicer2/TM6B – tim0,TG4/CyO; UAS-Dcr2/TM6B – tim0, PsiRNAiKK/

CyO; timHA/TM6B. TD2, ptim-TIM-LUC and TD2, BG-LUC transgenic flies expressing a tim-lucifer-

ase and per-luciferase fusion gene respectively, combined with the TD2 driver, were used for lucifer-

ase experiments. The TIM-LUC fusion is under the control of the tim promoter (ca. 5 kb) and 1st

intron (Lamba et al., 2018), BG-LUC contains per genomic DNA encoding the N-terminal two-thirds

of PER and is under the control of the per promoter (Stanewsky et al., 1997). RNAi lines (names

beginning with JF, GL, GLV, HM or HMS) were generated by the Transgenic RNAi Project at Harvard

Medical School (Boston, MA) and obtained from the Bloomington Drosophila Stock Center (Indiana

University, USA). RNAi lines (names beginning with GD or KK) and control lines (host strain for the

KK library containing landing sites for the RNAi transgenes, VIE-260B, and tio misexpression control

strain, 40D-UAS) were obtained from the Vienna Drosophila Stock Center. UAS-Psi flies were kindly

provided by D. Rio (Labourier et al., 2001).

Behavioral monitoring and analysis
The locomotor activity of individual male flies (2–5 days old at start of experiment) was monitored in

Trikinetics Activity Monitors (Waltham, MA). Flies were entrained to a 12:12 LD cycle for 3–4 days at

25˚C (unless indicated) using I-36LL Percival incubators (Percival Scientific, Perry IA). After entrain-

ment, flies were released into DD for five days. Rhythmicity and period length were analyzed using

the FaasX software (courtesy of F. Rouyer, Centre National de la Recherche Scientifique, Gif-sur-

Yvette, France) (Grima et al., 2002). Rhythmicity was defined by the criteria – power >20, width >1.5

using the c2 periodogram analysis. Actograms were generated using a signal-processing toolbox

implemented in MATLAB (MathWorks), (Levine et al., 2002). For phase-shifting experiments, groups

of 16 flies per genotype were entrained to a 12:12 LD cycle for 5–6 days at 25˚C exposed to a 5 min

pulse of white fluorescent light (1500 lux) at different time points on the last night of the LD cycle. A

separate control group of flies was not light-pulsed. Following the light pulse, flies were released in

DD for six days. To determine the amplitude of photic phase shifts, data analysis was done in MS

Excel using activity data from all flies, including those that were arrhythmic according to periodo-

gram analysis. Activity was averaged within each group, plotted in Excel, and then fitted with a 4 hr

moving average. A genotype-blind observer quantified the phase shifts. The peak of activity was

found to be the most reliable phase marker for all genotypes. Phase shifts were calculated by sub-

tracting the average peak phase of the light-pulsed group from the average peak phase of non-light

pulsed group of flies. Temperature entrainment was performed essentially as described in

Busza et al. (2007). Flies were entrained for 4–5 days in LD followed by 11 days in an 8 hr phase

advanced temperature cycle. Behavior was analyzed between day 7 and day 10 of the temperature

cycle. Actograms were used to ensure that all genotypes had reached – as expected from

Busza et al. (2007) – a stable phase relationship with the temperature cycle. The phase of the even-

ing peak of activity was determined as described for the phase response curve above. Because,

under a LD cycle, the evening peak tend to be truncated by the light off transition, we used the

approach described in Harrisingh et al. (2007), which compares the percent of activity between

ZT17.5–23.5 that occurs between ZT20.5–23.5 (Morning anticipation phase score), or the percent of

activity between ZT5.5–11.5 that occurs between ZT8.5–11.5 (Evening anticipation phase score). If

phase is advanced, and activity increases earlier than normal, this percent will decrease.

Statistical analysis
For the statistical analysis of behavioral and luciferase period length, Student’s t-test was used to

compare means between two groups, and one-way analysis of variance (ANOVA), coupled to post

hoc tests, was used for multiple comparisons. Tukey’s post hoc test was used when comparing three

or more genotypes and Dunnett’s post hoc test was used when comparing two experimental
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genotypes to one control. For the statistical analysis of qPCR and the behavioral phase-shifting

experiments, two-way ANOVA, coupled to Tukey’s post hoc test, was used for multiple compari-

sons. Statistical analyses were performed using GraphPad Prism version 7.0 c for Mac OS X, Graph-

Pad Software, La Jolla California USA, www.graphpad.com. P values and 95% Confidence Intervals

are reported in data source files ‘Figure statistics’.

Luciferase experiments
The luciferase activity of whole male flies on Luciferin (Gold-biotech) containing agar/sucrose

medium (170 ml volume, 1% agar, 2% sucrose, 25 mM luciferin), was monitored in Berthold LB960

plate reader (Berthold technologies, USE) in l-36LL Percival incubators with 90% humidity (Percival

Scientific, Perry IA). Three flies per well were covered with needle-poked Pattern Adhesive PTFE

Sealing Film (Analytical sales and services 961801). The distance between the agar and film was such

that the flies were not able to move vertically. Period length was determined from light measure-

ments taken during the first two days of DD. The analysis was limited to this window because TIM-

LUC and BG-LUC oscillations severely dampened after the second day of DD. Period was estimated

by an exponential dampened cosinor fit using the least squares method in MS Excel (Solver

function).

Real-time quantitative PCR
Total RNA from about 30 or 60 fly heads collected at CT 3, CT9, CT15 and CT21 on the first day of

DD were prepared using Trizol (Invitrogen) and Zymo Research Direct-zol RNA MiniPrep kit (R2050)

following manufacturer’s instructions. 1 mg of total RNA was reverse transcribed using Bio-RAD

iSCRIPT cDNA synthesis kit (1708891) following manufacturer’s instructions. Real-time PCR analysis

was performed in triplicate (three technical replicates per sample) using Bio-RAD iTaq Universal

SYBR Green Supermix (1725121) in a Bio-RAD C1000 Touch Thermal Cycler instrument. A standard

curve was generated for each primer pair, using RNA extracted from wild-type fly heads, to verify

amplification efficiency. Data were normalized to RpL32 (Dubruille et al., 2009) using the 2-DDCt

method. Primers used: RpL32-forward ATGCTAAGCTGTCGCACAAA; RpL32-reverse GTTCGA

TCCGTAACCGATGT; psi-forward GGTGCCTTGAATGGGTGAT; psi-reverse CGATTTATCCGGG

TCCTCG; tim-M-forward TGGGAATCTCGCCCGAAAC; tim-M-reverse AGAAGGAGGAGAAGGA-

GAGAGG; tim-sc-forward ACTGTGCGATGACTGGTCTG; tim-sc-reverse TGCTTCAAGGAAATCTTC

TG; tim-cold-forward CCTCCATGAAGTCCTCGTTCG; tim-cold-reverse ATTGAGCTGGGACAC-

CAGG; cwo-foward TTCCGCTGTCCACCAACTC; cwo-reverse CGATTGCTTTGCTTTACCAGCTC;

cwoRA-forward TCAAGTATGAGAGCGAAGCAGC; cwoRA-reverse TGTCTTATTACGTCTTCCGG

TGG; cwoRB-forward GTATGAGAGCAAGATCCACTTTCC; cwoRB-reverse GATGATCTCCGTCTTC

TCGATAC; cwoRC-forward GTATGAGAGCCAAGCGACCAC; cwoRC-reverse CCAAATCCATCTG

TCTGCCTC.
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