
1Scientific ReporTS |          (2019) 9:2242  | https://doi.org/10.1038/s41598-018-38261-4

www.nature.com/scientificreports

Arrival Time Distributions of Spin-
1/2 Particles
Siddhant Das    & Detlef Dürr

The arrival time statistics of spin-1/2 particles governed by Pauli’s equation, and defined by their 
Bohmian trajectories, show unexpected and very well articulated features. Comparison with other 
proposed statistics of arrival times that arise from either the usual (convective) quantum flux or from 
semiclassical considerations suggest testing the notable deviations in an arrival time experiment, 
thereby probing the predictive power of Bohmian trajectories. The suggested experiment, including the 
preparation of the wave functions, could be done with present-day experimental technology.

In non-relativistic quantum mechanics, the probability of finding a particle in a small spatial volume d3r around 
position r at a fixed time t is given by Born’s rule |Ψ(r, t)|2d3r, where Ψ(r, t) is the wave function of the particle. 
This formula is experimentally well established. However, a formula for the probability of finding the particle at a 
fixed point r between times t and t + dt is the matter of an ongoing debate1–6. Let us consider a typical time of 
arrival experiment, in which a particle is initially trapped in a region Σ ⊂ 3, e.g., the interior of a potential well. 
The trap is released at, say, t = 0, allowing the particle to propagate freely in space. If the trapping potential is deep 
enough, the wave function of the particle at this instant, Ψ0(r) ≡ Ψ(r, t = 0), practically vanishes outside the region 
Σ. Particle detectors placed on the boundary ∂Σ measure the time of arrival of the particle, denoted by τ. If the 
experiment is repeated many times, the recorded arrival times are random, even if the initial wave function of the 
particle (Ψ0) is kept unchanged in each experiment. What is the probability distribution of arrival times τΠΨ ( )0  as 
a functional depending on Ψ0 and on ∂Σ?

Measurement in quantum mechanics has become in recent decades a tricky notion. Traditionally, measure-
ment outcomes were solely associated with observables, represented by self-adjoint operators on the Hilbert space 
of the measured system. However, it has long been known that for time measurements, such as arrival times, no 
such observable exists [2, §8.5]. In fact, the notion of self-adjoint operators defining quantum observables does 
not apply to many other experiments as well. To remedy this situation, the notion of an observable was general-
ized to positive operator valued measures (POVMs), and there are various suggestions for arrival time POVMs 
(see7,8 for a discussion). In Dürr et al.9, all measurements describable by POVMs were called linear measure-
ments. Another class of measurements have also been performed, the so-called weak measurements10, which are 
nonlinear in the sense of9. So far, however, no theoretical predictions for the arrival time distribution τΠΨ ( )0  have 
been backed up by experiments (see1,2,8,11–13 for various proposals). On the other hand, recent ‘attoclock’ experi-
ments (claimed to be measuring the tunnel delay time of ionized electrons) have shown some of the theoretical 
ideas to be empirically inadequate14,15.

One problem with arrival time measurements is that detection events are based on interactions of the detec-
tors with the detected particle, which may disturb its wave function in an uncontrollable way, leading to backscat-
tering and in extreme cases to the quantum Zeno effect. While this is a valid concern, we note that the double-slit 
experiment (mentioned also below) is an example where the distribution of arrival positions of the particle on 
the detector screen (the ubiquitous interference picture) is analyzed without any reference to the presence of the 
detector. Note well that the particles strike the detector surface at random times, a fact blissfully ignored in the 
usual discussions of the double-slit experiment–and there are good reasons why that is justified. We expect that 
in the experiment proposed in this paper the same will be true, i.e., the detection event should not be drastically 
disturbed by the presence of the detector. Our expectation is based on our results, namely, on the very striking 
articulated features of the computed arrival time distributions, which should survive mild disturbances.

A further problem is that the notion of arrival time is most naturally connected with that of particle trajecto-
ries, an idea which is hard to concretize in the orthodox interpretation of quantum mechanics. Bohmian mechan-
ics (or de Broglie-Bohm pilot wave theory) is a quantum theory (and not simply an alternative interpretation of 
quantum mechanics) where particles move on well defined smooth trajectories, hence it is naturally suited for 
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computing arrival times of a particle. See Kocsis et al.10 for a weak measurement of average quantum trajectories 
in a double-slit experiment, which can indeed be seen as Bohmian trajectories. Bohmian mechanics has been 
proven to be empirically equivalent to standard quantum mechanics, wherever the latter is unambiguous (e.g., in 
position and momentum measurements)9,16. It has been shown that Bohmian mechanics provides in (far field) 
scattering situations ideal (i.e. devise independent) arrival time statistics for spin-0 particles6, via the quantum 
flux (or the probability current) J:

rJ( ) ( , ) ds ( : ( )) (1)qf
0 ∫τ τ τΠ = ⋅ = Π .

Σ

Ψ

∂

Only in scattering situations (i.e., when the detector surface ∂Σ is far away from the support of the initial wave 
function Ψ0), is the surface integral in (1) demonstrably positive6, otherwise it cannot be interpreted as a prob-
ability density (see7 for a discussion of POVMs versus flux statistics). Although often not recognized or empha-
sized in textbooks, it is the quantum flux J, integrated over time, that yields the double-slit interference pattern 
of arrival positions of particles on the screen—as there is no given time at which the particles arrive at the screen.

Here, we must mention as well another flux based (Bohmian) arrival time distribution derived by C. R. 
Leavens (Eq. (9) of17), which is valid only in one space dimension (as discussed in1, [Ch. 5]). Therefore, it is not 
applicable for particles with spin-1/2, except perhaps in some idealized situations. In this paper, we propose a 
Bohmian formula for the distribution of first arrival times of a spin-1/2 particle (Eq. (9) below), which may be 
referred to as an ideal or intrinsic distribution, since it is formulated without referring to any particular measure-
ment device, just as equation (1). In fact, the spin-1/2 analogue of (1) becomes a special case of (9), whenever the 
so-called current positivity condition6 is met. Evaluating our formula numerically for a specific, carefully chosen 
experiment, we find that the resulting arrival time distributions show drastic and unexpected changes when 
control parameters are varied. Since the predicted distributions show such interesting and significant behavior, 
we suggest that the proposed experiment be performed to test the predictive power of Bohmian mechanics for 
spin-1/2 particles.

One may legitimately ask, how can the idea of an ideal first arrival time distribution be entertained at all? 
Our standpoint on this is as follows: Given the relative simplicity of making the Bohmian prediction for the ideal 
arrival time distribution, and given the ambiguity of quantum mechanical proposals mentioned above, why not 
just do the experiment to check it? However the experimental results turn out, they provide in any case valuable 
experimental data that would enrich our understanding of quantum mechanics and of Bohmian mechanics as 
well. A word of clarification is, however, in order: we do not construe in our work any contradiction to quantum 
mechanics, since an unambiguous answer to the question of arrival times has not been given within this frame-
work. The main advantage of Bohmian mechanics is the clear picture of reality, independent of observation, it 
provides and which in the problem of arrival times allows an unambiguous answer in contrast to the answers 
given in quantum mechanics, so far.

We proceed now to a description of the proposed experiment. A spin-1/2 particle of mass m is constrained to 
move within a semi-infinite cylindrical waveguide (Fig. 1). Initially, it is trapped between the end face of the 
waveguide and an impenetrable potential barrier placed at a distance d. At the start of the experiment, the particle 
is prepared in a ground state Ψ0 of this cylindrical box, then the barrier at d is suddenly switched off, allowing the 
particle to propagate freely within the waveguide. The arrival surface ∂Σ is the plane situated at distance L (>d) 
from the end face of the waveguide. We then compute numerically from the Bohmian equations of motion how 
long it takes for the particle to arrive at ∂Σ, and determine the empirical distribution Bohm τΠΨ ( )0  from typical tra-
jectories (trajectories whose initial points are randomly drawn from the Born |Ψ0|2 distribution) for different 
initial ground state wave functions.

The Bohmian equations for spin-1/2 particles are as follows: The wave function Ψ(r, t) is a two-component 
complex-valued spinor solution of the Pauli equation

 
σ ∇∂

∂
Ψ = − ⋅ Ψ + Ψr r r ri

t
t

m
t V t t( , )

2
( ) ( , ) ( , ) ( , ), (2)

2
2

with given initial condition Ψ0(r). Here, V(r, t) is an external potential, and x y zx y zσ σ σ σ= + +ˆ ˆ ˆ is a 3-vector 
of Pauli spin matrices. The quantum continuity equation for the Pauli equation reads18,19

Figure 1.  Schematic drawing of the experimental setup. The barrier at d is switched off at t = 0 and arrival times 
are monitored at z = L.
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where Ψ† is the adjoint of Ψ, and |Ψ| = Ψ Ψ†2 . The rightmost equality of (3) defines the Bohmian velocity field 
Bohm Pauli= |Ψ|Ψv J / 2. The term  ∇Ψ Ψ†Im[ ]

m
 is the so-called convective flux, while  σ∇ × Ψ Ψ†( )

m2
 is the spin flux. 

The alert reader will recognize that the spin flux is divergenceless, hence one may argue that neither the flux JPauli 
nor the Bohmian velocity are uniquely defined. However, observing that the Pauli equation and its flux emerge as 
non-relativistic limits of the Dirac equation and the Dirac flux, respectively, which are unique20–22, one is led 
directly to the current and Bohmian velocity given here.

The Bohmian trajectories are integral curves of the velocity field Bohmv Ψ , hence the Bohmian guidance law reads
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(4)

Here, R(t) is the position of the particle at time t. In Bohm’s theory, the spin-1/2 particle has no degrees of free-
dom other than those specifying its position in space, so spin is not an extra degree of freedom. Thus, all quantum 
mechanical phenomena attributed to spin (such as the deflection of particles in the Stern-Gerlach experiment) 
arise solely from the non-linear equation of motion23,24. The guidance law ((4) is time reversal invariant and its 
right-hand side transforms as a velocity under Galilean transformations (see16,21 for further discussion). We inte-
grate Eq. (4) for a statistical ensemble of |Ψ0|2-distributed initial particle positions R(0) (see25 for a justification).

Methods
Our computations and results are for the following setup: Let the cylindrical waveguide be mounted on the xy−plane 
of a right-handed orthogonal coordinate system, the axis of the cylinder defining the z−axis (Fig. 1). Employing cylin-
drical coordinates r ≡ (ρ, φ, z), we model the potential field of the waveguide as ρ= +⊥rV t V V z t( , ) ( ) ( , ), where 

ρ ω ρ=⊥V m( ) 1
2

2 2 is a transverse confining potential, and θ= + − −V z t v z t v d z( , ) ( ) ( ) ( ) is a time dependent 
axial potential comprised of an impenetrable hard-wall at z = 0, viz.,

{v z z
z

( ) 0
0 0

,
(5)

= ∞ ≤
>

and another impenetrable potential barrier v(d−z) that is switched off at t = 0. The wall at z = 0 is the end face 
of the waveguide and θ(x) is Heaviside’s step function. Fortunately, near perfect harmonic confinements can be 
realized in conventional (ultrahigh vacuum) Penning traps, which can trap single electrons26,27 and protons28 
over a wide range of trapping frequencies. For electrons, typical waveguide parameters read: L ≈ 6−10 mm, 
ω ≈ 109−1011 rad/s26,29. In30 we give a detailed analysis of the proposed experiment for a quadrupole ion trap 
(Paul trap) waveguide.

The particle is prepared in a ground state of the cylindrical box at t = 0, which can be written as Ψ0(r) = ψ0(r)
χ, where (setting ħ = m = d = 1),

r z z z( ) 2 ( ) (1 ) sin( ) exp
2 (6)0

2ψ ω θ θ ω
π

π ρ= −
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−





is the spatial part of the wave function, and

e
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, 0 , 0 2 ,
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is a normalized Bloch spinor χ χ =†( 1). Fixing α and β, we obtain different ground state wave functions. For 
instance, α = 0 (π) gives the spin-up (spin-down) ground state wave function, usually denoted by Ψ↑ (Ψ↓), while 
α = π

2
 yields the so-called up-down ground state wave function Ψ = Ψ + Ψ↑ ↓

( )1
2

. We refer to α and β as spin 
orientation angles, because they specify the orientation of the “spin vector” σ= Ψ Ψ |Ψ |†s : ( )/1

2 0 0 0
2, given by

α β α β α= + + .x y zs 1
2

(sin cos sin sin cos )^ ^ ^

The instant the barrier is switched off, the wave function spreads dispersively, filling the volume of the waveguide. 
The particle moves according to (4) on the Bohmian trajectory = Φ + Φ +^ ^ ^R x y zt R t t t Z t( ) ( ) [ cos ( ) sin ( ) ] ( ) . In 
this choice of coordinates the first arrival time of a trajectory starting at R(0) and arriving at z = L is

τ = | = ∈ ΨR R Rt Z t L( (0)) inf{ ( , (0)) , (0) supp( )}, (8)0

where Z(t, R(0)) ≡ Z(t) is the z−coordinate of the particle at time t, and supp(Ψ0) denotes the support of the 
initial wave function (the interior of the cylindrical box). Since the initial position R(0) is |Ψ0|2-distributed25, the 
distribution of τ(R(0)) is given by
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In general, there is no closed-form expression for (8), hence the integral in (9) cannot be evaluated analytically. 
However, if the Bohmian trajectories cross ∂Σ at most once, or in other words if the quantum flux JPauli is out-
ward directed at every point of ∂Σ, at all times (also referred to as the current positivity condition), then Bohm ( )0 τΠΨ  
reduces to the integrated quantum flux Πqf(τ), Eq. (1) with the Pauli current JPauli replacing J5,6.

Note well that by the very meaning of the quantum flux, (1) is a natural guess for the arrival time distribution 
from the point of view of standard quantum mechanics as well5. However, (1) makes sense only if the left-hand 
side is positive, which need not be the case. Of course, if the current positivity condition holds, the left-hand side 
of (1) ≥0, and Πqf becomes a special case of (9). Generally, this condition does not hold, in which case one com-
putes Bohm( )0 τΠΨ  numerically from a large number of Bohmian trajectories.

Results and Discussion
(i) For the spin-up (α = 0) and spin-down (α = π) wave functions the arrival time distribution Bohm ( )0 τΠΨ  coin-
cides with the quantum flux expression (1), since in these cases the current positivity condition is satisfied. 
Moreover, in these cases JPauli(r,τ) can be replaced by the convective flux ∇Ψ Ψ†Im[ ]

m
  in (1). The resulting dis-

tribution has a heavy tail τ∼ −4 as τ → ∞. (ii) For other initial wave functions Bohm τΠΨ ( )0  differs from (1) and falls 
off faster than τ−4. For any initial ground state wave function, the arrival time distribution displays an infinite 
sequence of self-similar lobes below 


τ =

π
mdL
2

 (see Fig. 2 below), which diminish in size as τ → 0. These lobes 
mirror typical wave function evolution when suddenly released to spread freely into the volume of the waveguide 
(see also31). (iii) If the initial wave function is an equal superposition of the spin-up and spin-down wave functions 
(α = π

2
), the arrival time distribution pinches off at a maximum arrival time τmax, i.e., no particle arrivals occur 

for τ > τmax. Moreover an even more striking manifestation of the lobes can be seen: characteristic “no-arrival 
windows” appear between the smaller lobes, inside which the arrival time distribution is zero. (iv) Time of flight 
measurements refer in general to semiclassical expressions based on the momentum distribution. Our distribu-
tions deviate significantly from this alleged semiclassical formula.

A few details concerning the computation of our results are in order. First note that the Pauli equation (2) with 
initial condition Ψ0(r) can be solved in closed form, facilitating very fast numerical computation of Bohmian tra-
jectories. The time dependent wave function takes the form Ψ(r, t) = ψ(r, t)χ, where the spin part is given by (7),  
while

r t i t W z t( , ) 2 exp
2

( , ),
(10)

2ψ ω
π

ω
ρ ω=



− −





where

   θ= − + − − + − − −W z t z z t z t z t z t( , ) ( )[ ( 1, ) (1 , ) (1 , ) ( 1 , ) ], (11)

which we call the ‘time evolution integral’. In (11):

Figure 2.  Arrival time histograms for spin-up Bohm τΠ |( ( ))0 0  and up-down Bohm τΠ |π
( ( ))02  wave functions, L = 100 and 

ω = 103 graphed along with the semiclassical arrival time distribution Πsc(τ) (dashed line) and the quantum 
(convective) flux distribution Πqf(τ) (solid line). We see agreement between Bohm τΠ | ( )0 0  and Πqf(τ). For the up-
down case, no arrivals are recorded for τ > 42.9 (= τmax). Note the disagreement of all distributions with 
Πsc(τ). Each histogram in this figure has been generated with 105 Bohmian trajectories. The time scale on the 
horizontal axis is ≈21.7 μs, assuming d = 50 μm. Inset: Magnified view of the self-similar smaller lobes of the 
up-down histogram, separated by distinct no-arrival windows.
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where erfc(x) is the complementary error function. A detailed derivation of this result will be given elsewhere32. 
Substituting our solution for the time dependent wave function in the guidance law (4), we obtain coupled 
non-linear equations of motion for the spin-1/2 particle:

α β= Φ −

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

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R t t W
W

Z t t( ) sin sin( ( ) ) Re ( ( ), ),
(13a)

R
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t
t W

W
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 ω αα βΦ Φ= −
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W

Z t t t R t( ) Im ( ( ), ) sin sin( ( ) ) ( ),
(13c)

ω α βΦ=
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
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

+ −

where R, Φ and Z are the cylindrical coordinates of R and W′ = ∂W/∂z. The parameters in the initial wave func-
tion are, in view of (7), α and β, so we denote Bohm Bohmτ τΠ ≡ Πα βΨ |( ) ( )0 . In fact, it is enough to consider β = 0 only 
since

τ τΠ = Πα β α| |( ) ( ), (14a)0
Bohm Bohm

Bohm Bohmτ τΠ = Π .α β π α β| − |( ) ( ) (14b)

These properties follow partly from the symmetries of Eq. (13) and partly from the initial uniform distribution 
of Φ(0) due to the choice of the initial state Eq. (6) (see32 for further details). We sample N ≈ 105 initial positions 
from the |Ψ0|2 distribution, solve Eq. (13) numerically for each point in this ensemble, continuing until the trajec-
tory hits z = L, then record the arrival time and plot the histogram for Bohm τΠα| ( )0 .

For the spin-up and spin-down wave functions, Eq. (13c) reduces to = ′Z W W Z t tIm[ / ]( ( ), ) and numerically 
it turns out that Im[W′/W](L, t) > 0. Hence the spin-up and spin-down trajectories cross ∂Σ at most once, and 
the first arrival time distribution (or simply the arrival time distribution) in these cases equals (cf. Eq. (1))

τ τ τΠ = ′ .⁎W L W L( ) 2 Im[ ( , ) ( , )] (15)qf

As noted, (15) is non-negative for all values of τ, and features prominently a large main lobe for τ >
π
L

2
. The 

main lobe falls off as τ → ∞.
π τ( ) , asL 3 4

4  An infinite train of smaller lobes permeates the interval τ< <
π

0 L
2

, 
which are well approximated by the formula ( )csin

L
L4 2π
τ

, whenever τ  L. Apart from that we find that Πqf(τ) is 
a function only of the arrival distance L. It is also independent of the trapping frequency ω, which is rather sur-
prising. In fact, the spin-up (down) arrival time distributions are independent of the exact shape of the transverse 
confining potential V⊥(ρ) of the waveguide as well32. Figure 2 depicts our results for L = 100 (≈5 mm for a 
d = 50 m trap) and ω = 103 (≈46.3 × 106 rad/s). Note: We have expressed L, ω and τ in units of d, 

md2
 and 


md2

, 
respectively. For a d = 50 μm trap, known electron mass m ≈ 9.11 × 10−31 kg and reduced Planck’s constant 
ħ ≈ 1.05 × 10−34Js, the frequency and time units are ≈46.3 × 103 rad/s and ≈21.7 μs, respectively.

For wave functions corresponding to α< ≤ π0
2

 (cf. (14b)), the first arrival time distribution is not given by 
the integrated flux (1). This is because the Bohmian trajectories in these cases cross ∂Σ more than once, hence the 
aforementioned current positivity condition is not met. As α approaches π

2
, the tail of Bohm τΠα| ( )0  thins gradually, 

pinching off completely at a characteristic maximum arrival time τmax for α = π
2

 (i.e. all Bohmian trajectories 
with wave function Ψ



 strike the detector surface z = L before t = τmax). In Fig. 2 τmax ≈ 42.9, which corre-
sponds to ≈1 ms. This behavior results in a sharp drop in the mean first arrival time τ in the vicinity of α = π

2
, as 

shown in Fig. 3 below.
Unlike the spin-up (down) case, the up-down arrival time statistics are influenced by the trapping frequency 

ω. Keeping L fixed, we find that the maximum arrival time τmax, mean first arrival time 〈τ〉, and the standard devi-
ation σ corresponding to τΠ |π

( )02
Bohm  decrease with increasing ω, each approaching a constant for ω  1. Conversely, 

when these quantities are graphed as functions of L with ω fixed, we see a clear linear growth in each (see Fig. 4).
Remarkably, these effects persist even for large L, provided ω is also made suitably large (a welcome feature 

for Penning traps). Increasing L causes the arrival time distributions to shift to larger values of τ, thus the smaller 
lobes can be easily seen, especially in experiments incapable of resolving very small arrival times.

Since the smaller (self-similar) lobes become progressively smaller, resolving the nth lobe (denoting the main 
lobe by n = 1) is limited by the least time count (δt) of the measuring apparatus. Roughly, δt < width of nthlobe 
should suffice to resolve the first n lobes. This translates into32


t md L

n (16)2δ
π

<






 .
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For d = 50 μm and L = 5 mm (Fig. 2), a modest δt ≈ 10 μs will successfully resolve 8 lobes (main + 7 smaller 
lobes), while δt ≈ 0.1 μs will resolve as many as 83 lobes (main + 82 smaller lobes). However, we must also under-
stand that only a few data points (about 

π( )N
n

2
2 4  in N experiments) contribute to the nth lobe, especially when 

n 1. This number, being independent of any tunable parameters like L, ω, etc., sets an intrinsic limit on the 
experimenter’s ability to resolve the distant lobes.

Finally, we come to the semiclassical arrival time distribution (dashed line in Fig. 2),

∫τ
τ

ψ
τ

Π =
⋅ 






∂Σ

~r rs( ) d ,
(17)sc 4 0

2

routinely used in the interpretation of time-of-flight experiments. Here, ψ~0 denotes the Fourier transform of the 
initial wave function ψ0. Although (17) is based on the tacit assumption that the particle moves classically between 
preparation and measurement stages (see § 5.3.1 of5), it can also be motivated from the scattering formalism6,  
[pg 971], provided the detector surface (∂Σ) is placed far away from the support of the initial wave function ψ0 
(far field regime), where the external potentials are negligible. In typical cold atom experiments these conditions 
are met, hence the semiclassical formula (17) is empirically adequate. Therefore, soliciting deviations from (17), 
theorists have recommended “moving the detectors closer to the region of coherent wave packet production, or 
closer to the interaction region”2,33, pg 419] (i.e. L ≈ d). However, such a relocation may disturb the wave function 
of the particle in an undesirable way.

Figure 3.  Mean first arrival time 〈τ〉 vs. spin orientation angle α for L = 10 and β = 0. The symmetry of the 
curves about α = π

2
 is a consequence of property (14b).

Figure 4.  (a) Graphs of mean first arrival time τ , standard deviation σ and maximum arrival time τmax for 
the up-down wave function vs. L, keeping ω fixed. The mean arrival time of Πqf(τ) is also shown here. (b) 
Graphs of mean, standard deviation and maximum arrival time vs. ω, keeping L fixed.
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For a meaningful comparison with our results, Eq. (17) (which is only applicable for free propagation) must be 
generalized to account for the presence of the waveguide. This is done with the help of Newtonian trajectories for 
our setup and the quantum mechanical distribution of the initial momenta of the particle. A careful calculation32 
yields

Π τ π
τ

τ
τ π

=
−

L L
L

( ) 8 cos ( /2 )
(( / ) )

,
(18)sc 2

2

2 2 2

which falls off as 
π τ( ) L8

3 2  (compare this with Eq. (15) and its τ−4 fall-off). In Fig. 2, we see that the semiclassical 
formula (18) for L = 100 remains distinctly different from the Bohmian arrival time distributions, notwithstanding 
the largeness of L. This is because the (spin dependent) Bohmian trajectories for our setup do not approach 
Newtonian trajectories even at large L, unlike the Bohmian trajectories of a free particle, which become approxi-
mately Newtonian at large distances6.

Bohmian mechanics has been fruitfully applied in various physical disciplines with reference to technical 
advances34–37, and to a better understanding of quantum phenomena, even in quantum gravity38,39. We have pro-
posed here a simple experiment that can possibly be performed with a detection mechanism as discussed in13,40–42,  
and we have provided the Bohmian arrival times as a benchmark: Our results demonstrate that the distribution 
of first arrival times of a spin-1/2 particle bears clear signatures of Bohm’s guidance law. The deviations of 
Bohm τΠΨ ( )0  from the quantum flux distribution (1), so strikingly in evidence, are particularly noteworthy.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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