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Abstract

The major histocompatibility complex (MHC) contains the most polymorphic genetic system

in humans, the human leukocyte antigen (HLA) genes of the adaptive immune system. High

allelic diversity in HLA is argued to be maintained by balancing selection, such as negative

frequency-dependent selection or heterozygote advantage. Selective pressure against

immune escape by pathogens can maintain appreciable frequencies of many different HLA

alleles. The selection pressures operating on combinations of HLA alleles across loci, or

haplotypes, have not been extensively evaluated since the high HLA polymorphism necessi-

tates very large sample sizes, which have not been available until recently. We aimed to

evaluate the effect of selection operating at the HLA haplotype level by analyzing HLA

A~C~B~DRB1~DQB1 haplotype frequencies derived from over six million individuals geno-

typed by the National Marrow Donor Program registry. In contrast with alleles, HLA haplo-

type diversity patterns suggest purifying selection, as certain HLA allele combinations co-

occur in high linkage disequilibrium. Linkage disequilibrium is positive (Dij’>0) among fre-

quent haplotypes and negative (Dij’<0) among rare haplotypes. Fitting the haplotype fre-

quency distribution to several population dynamics models, we found that the best fit was

obtained when significant positive frequency-dependent selection (FDS) was incorporated.

Finally, the Ewens-Watterson test of homozygosity showed excess homozygosity for 5-

locus haplotypes within 23 US populations studied, with an average Fnd of 28.43. Haplotype

diversity is most consistent with purifying selection for HLA Class I haplotypes (HLA-A, -B,

-C), and was not inferred for HLA Class II haplotypes (-DRB1 and—DQB1). We discuss our

empirical results in the context of evolutionary theory, exploring potential mechanisms of

selection that maintain high linkage disequilibrium in MHC haplotype blocks.

Author summary

The adaptive immune system presents antigens derived from pathogenic and normal self

proteins on the cell surface using human leukocyte antigen (HLA) molecules. The HLA
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loci coding for these molecules are found in major histocompatibility complex (MHC)

region, the most polymorphic region in the human genome, with over 15,000 HLA alleles

observed so far in the world population. A high frequency of many different HLA alleles is

thought be sustained by balancing selection. New HLA alleles may have an advantage over

existing frequent alleles since immune escape mutations in pathogens within a population

are maintained primarily in epitopes presented on frequent HLA alleles. Host immune

function is not determined by single HLA alleles, but by both copies of autosomal HLA

genes together (genotypes). Complementarity in function across the two potentially-vari-

ant copies of HLA at each locus can result in overdominance and heterozygote advantage

at the genotype level. Less explored are selection mechanisms that may be operating across

combinations of HLA alleles across loci (haplotypes). Indeed, in addition to high allelic

diversity, HLA also has distinctive patterns of haplotype diversity, as certain HLA alleles

co-occur in high linkage disequilibrium across five classical HLA loci (HLA-A, -B, -C,

-DRB1, -DQB1). We applied multiple population genetic models to a dataset of HLA hap-

lotype frequencies derived from over six million individuals with the goal of determining

what type of selection may impact HLA haplotype diversity. We found frequent haplo-

types were preferentially maintained in the population across 23 US populations studied.

Thus, balancing selection at the allele level and purifying selection at the haplotype level

may together affect HLA diversity in human populations.

Introduction

Human leukocyte antigen (HLA) genes in the major histocompatibility complex (MHC) on

Chromosome 6 provide the core function of antigen presentation for the adaptive immune

system. Each HLA allele can present a restricted repertoire of peptides from either self or non-

self proteins to T cell receptors. HLA loci are among the most polymorphic in the human

genome [1] [2], as are their close MHC homologs in other organisms [3]. HLA allele homozy-

gotes have been suggested to be at a significant disadvantage in that their peptide repertoire is

more limited than heterozygous individuals [4]. Other genetic systems that have comparable

levels of polymorphism to HLA in humans include the olfactory receptors and killer immuno-

globulin-like receptors (KIRs) [5,6].

The direction and magnitude of selective pressure on genes can be estimated through the

analysis of allelic variation within populations. For most genes, the nonsynonymous substitu-

tions that alter the amino acid sequence of a protein are typically neutral or deleterious, with

very few advantageous variants appearing. However, for HLA genes amino acid variation in

the antigen recognition domain of HLA proteins determines the repertoire of peptides loaded

onto the HLA protein and presented to the T cell receptor. Compared to other genes nonsy-

nonymous variants in HLA genes were proposed to be often advantageous because a novel

peptide repertoire may improve control of evolving pathogen strains [7]. Comparing patterns

of variation among different genes, HLA has among the highest ratios of nonsynonymous sub-

stitutions relative to synonymous substitutions, which is a hallmark of balancing selection (i.e.

selection maintaining a larger number of alleles than expected from genetic drift). Further-

more, the Ewens-Watterson test for neutrality also shows that observed HLA allele homozy-

gosity is less than expected, another indicator consistent with balancing selection [8].

Host-pathogen co-evolution has also been proposed to lead to balancing selection that

maintains high levels of HLA allelic diversity within populations. Viral escape mutations may

be positively selected even if they have a fitness cost to the virus [9–13], reducing the number
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of epitopes from existing viral variants that can be presented by frequent HLA alleles. This pro-

cess of immune evasion could produce a fitness advantage to hosts carrying rare HLA alleles.

As pathogens maintain escape mutations in epitopes presented by the more frequent HLA

alleles within a population, negative frequency-dependent selection favors less frequent HLA

alleles [14].

While the forces shaping the HLA allele frequency distribution have been extensively dis-

cussed, the forces affecting co-occurrence of alleles across HLA loci and the resulting haplo-

type (allele combination) frequency distribution have not yet been thoroughly examined. HLA

haplotype dynamics add another layer of complexity since HLA alleles are in clear linkage dis-

equilibrium [15]. Some sets of HLA alleles co-occur on haplotypes more often than expected

given the allele frequency distribution and other sets of alleles co-occur much less often than

expected. A large number of new haplotypes emerges in the human population in every gener-

ation through recombination when compared to less frequently occurring mutation events.

For example, the Southeast Asian population and the European populations have been esti-

mated to diverge about 23,000 years ago [10], yet 64% of the Asian HLA haplotypes are not

represented in the European population. HLA haplotype diversity across loci is thus far greater

than the allelic diversity at a single locus.

Viral escape mutations typically alter recognition by a single HLA allele. However, specific

haplotypes may provide better control of pathogens, or ensure proper activation of natural

killer (NK) cells [16]. The innate immune response can be modulated by engagement of inhib-

itory KIR receptors on NK cells with HLA Class I ligands on target cells. The KIR ligand status

is dependent on epitopes present on a subset of HLA alleles. Different HLA alleles will engage

with different KIRs, or no KIRs at all, and these interactions influence the degree to which NK

cells are licensed to kill target cells in which HLA expression is disrupted. Beyond immune

modulation from HLA polymorphisms there is also genomic copy number variation for the

number of inhibitory and activating KIR receptors.

Allele combinations at different loci on the same haplotype that present multiple epitopes

from frequent pathogens could be preferred because they could have better redundancy to pre-

vent immune escape. Interestingly, new results using the ratio of synonymous to non-synony-

mous mutations suggest selection favors heterozygotes with more divergent allele sequences

[17]. This same mechanism preferring divergence in sequence (and therefore function) could

also apply across HLA loci on haplotypes. Epistatic selection has been argued to affect immune

and autoimmune responses [18]. Within the HLA locus, epistatic effects have been observed

in the class II region [19]. In viruses, combination of epistasis and balancing selection has been

shown to affect the genomes of viral populations [20].

While the high linkage disequilibrium (LD) between HLA alleles has long been known [21],

possible models for the selection inducing this LD and its effect on haplotype frequency distri-

bution have never been studied empirically. Such an analysis has been hampered by the need

for extremely large samples to ascertain the shape of the haplotype frequency distribution. To

meet this challenge we employed a large dataset of HLA haplotype frequency estimates for 23

United States populations derived from over six million volunteer stem cell donors recruited

by the National Marrow Donor Program (NMDP) registry [22].

We developed a set of population genetic models to attempt to infer the selection pressures

that operate on this large haplotype frequency distribution. We here present multiple pieces of

evidence indicating that the HLA haplotype frequency distribution deviates from expectations

under neutral evolution [23], and conclude that selection favoring existing frequent haplotypes

best explains the distribution of HLA haplotypes observed.
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Results

Validation of HLA haplotype frequency distributions

High resolution HLA haplotype frequencies were previously estimated using the expectation-

maximization (EM) algorithm based on NMDP registry HLA genotypes [24]. Accuracy of HLA

haplotype frequency estimates are limited by the resolution of the input genotypes [25]. HLA

typing assays historically could not distinguish between all known HLA alleles, due to either

lack of ability to phase polymorphisms within the gene, or lack of complete sequencing of the

gene, or both. The resulting HLA typing results were considered “low resolution” and are repre-

sented by a list of possible allele pairs, or genotypes, that might be present at that locus. “High

resolution” genotypes are generated when all known alleles that differ in the exons coding for

the antigen recognition site (exons 2 and 3 for class I and exon 2 for class II) were distinguished

experimentally. The NMDP haplotype frequencies were estimated at high resolution and uti-

lized as input both low resolution genotypes and high resolution HLA genotypes. Low resolu-

tion typing within a locus can result in misidentification of the high resolution allele in the

frequency data, while a lack of experimental data on haplotype phase between HLA loci can

lead to the construction of incorrect arrangements of high resolution alleles into haplotypes.

In order to assure that EM-based estimates of HLA haplotype frequency distributions are

suitable for estimating selection, we performed several validation procedures. To assess the

effect of incomplete HLA typing, we analyzed 38,715 donors with both high and low resolution

typing and measured concordance between the predicted high resolution haplotype con-

structed from the EM algorithm using the low resolution typing and the experimentally mea-

sured high resolution typing (Fig 1A). The discordance rate (most probable predicted high-

resolution haplotype different than actual) varied from 14% for very rare haplotypes

(frequency<1.e-7) to less than 1% for frequent haplotypes (f>1.e-2). However, this discor-

dance does not lead to an error in the overall shape of the frequency distribution, since low fre-

quency haplotypes are typically replaced by other low frequency haplotypes and not by high

frequency haplotypes, as can be seen by the Quantile-Quantile (QQ) plot (position of percen-

tiles of one distribution vs the other) of the low and high resolution haplotype distributions

(Fig 1B). To further validate that the correct haplotypes are replaced by discordant haplotypes

of similar frequency, we divided all haplotypes based on their frequency in the EM based hap-

lotype distribution. We then computed the average frequency of the appropriate high resolu-

tion haplotypes. As can be seen in Fig 1C, the distributions are similar.

To validate that phasing errors do not affect the shape of the expected haplotype distribu-

tion, we compared haplotype phasing of 4,000 cord-mother pairs using EM versus direct

counting using pedigree analysis (see Methods). We found that the shape of the haplotype fre-

quency distribution was not appreciably affected by EM phasing errors. (Fig 1D).

Selection models for alleles and haplotypes

In order to correlate haplotype and allele frequencies with possible selection models, we define

here in detail the terms we use describing selection forces for alleles and haplotypes along with

the many underlying evolutionary mechanisms that have been proposed to contribute to these

selection forces.

We use “balancing selection” as an umbrella term for all those selection pressures that lead

to a greater diversity in HLA allele frequency distributions than what would be expected under

a neutral evolutionary model.

Underlying this balancing selection are several distinct evolutionary mechanisms that

together may combine to form the allele frequency distributions we observe. The model of
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negative frequency-dependent selection, or rare allele advantage, suggests that continual evolu-

tion of viral strains to evade common HLA variants maintains high diversity in HLA alleles in

a population. Heterozygote advantage, or overdominance, is a model where heterozygote

genotypes have higher fitness than homozygote genotypes. Heterozygotes are capable of pre-

senting a wider peptide repertoire than homozygotes, which would confer improved likelihood

of immune detection of pathogens. Takahata and Nei found that “Minority advantage consid-

ered here produces essentially the same pattern of genetic polymorphism as that for overdomi-

nant selection”, and many other researchers have since encountered similar challenges in

teasing apart the mechanisms behind balancing selection [26].

We here introduce "purifying selection" as a parallel umbrella term for all those selection

pressures that lead to less diversity in HLA haplotype frequency distributions than what would

be expected under a neutral model.

Fig 1. Methodology validation. (A)—Fraction of discordance between the computed most probable haplotype for an

individual based on low resolution typing and the haplotype measured from high resolution typing. The discordance level is

computed as a function of the low resolution typing haplotype frequency. (B) Quantile-Quantile (QQ) comparison of the

frequency distribution of the most probable haplotype per individual as computed from low resolution typing and the parallel

from high resolution typing. The distribution was computed over all donors with both high and low resolution typing. The x-axis

is the frequency of a haplotype at the kth quantile in the low resolution based EM estimate, and the y-axis is the parallel in the

high resolution typing. Values on the diagonal imply a similar cumulative distribution function (CDF) (C) The observed

haplotypes were logarithmically binned by their low-res frequency and the geometric means of both the low and high resolution

frequencies were calculated, resulting in largely the same values for each bin. (D) Quantile-Quantile comparison of the

haplotype distribution in the same patients between phased and un-phased genotypes.

https://doi.org/10.1371/journal.pcbi.1005693.g001
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Several evolutionary mechanisms may underlie purifying selection. Under purifying selec-

tion, rare deleterious mutations are continually purged from populations because they contrib-

ute to lower fitness. Purifying selection can occur at the haploid level as HLA alleles are co-

dominant or at the diploid level in the case of recessive deleterious mutations in the MHC.

Positive frequency-dependent selection is another potential mechanism that would favor more

frequent HLA haplotypes that most effectively modulate the immune response. As was the

case with alleles, both frequency-dependent and non-frequency dependent mechanisms can

induce the same haplotype frequency distribution we observe.

HLA allele frequencies show signs of balancing selection

HLA allele frequencies have long been shown to be consistent with balancing selection, [8,15].

An important indicator for the action of balancing selection is the Ewens-Watterson homozy-

gosity test [27]. In order to test for balancing selection on single-locus allele distributions

within the studied populations, we performed Ewens-Watterson tests on random subsamples

of 1,200 alleles for each US subpopulation [28] (S1 Table) We also computed the observed and

expected homozygosity (as predicted from the sum of squares of haplotype frequencies), and

normalized deviate of homozygosity Fnd [29] of the subsamples. Negative Fnd indicates

observed homozygosity below expected homozygosity.

The Ewens-Watterson test shows that many, but not all, populations exhibit homozygosity

values significantly lower than the expectation from neutral evolution in a fixed population,

suggesting balancing selection (See Methods for multiple measurement corrections method).

Further, negative Fnd values were observed for the HLA alleles in all subpopulations (Fig 2

and S1 Appendix showing lower homozygosity than expected in alleles) in agreement with

previous reports [8]. The largest difference between expected and observed homozygosity

occurred in HLA-C and DQB1(average Fnd values of -1.23 and -1.33), and on average over all

populations, balancing selection was observed in all loci. Some populations show balancing

selection more clearly than others, with Koreans and Caribbean Hispanics displaying the

strongest deviation from neutrality. The only notable exception to this observation is the

DRB1 locus in the Filipino population, which did not exhibit balancing selection.

Detecting selection on haplotypes is more complex than for alleles. Thus, we applied a set of

different tests—all showing clear signs of deviation from neutral drift toward a lower than

expected diversity, consistent with models, where existing frequent haplotypes are favored

over new rare haplotypes.

Linkage disequilibrium patterns shows more frequent haplotypes than

expected in hardy-weinberg equilibrium

We computed the normalized linkage disequilibrium value Dij’ for all 2-locus HLA haplotypes,

as defined by Lewontin [30], and estimated its value as a function of the haplotype frequency.

Lewontin’s Dij’ is a normalized coefficient of linkage disequilibrium between two specific

alleles ranging between -1 and 1, with positive values indicating that the specific 2-locus haplo-

type is more frequent than expected by the marginal frequencies of the two alleles. A 2-locus

haplotype is defined as a combination of two alleles (e.g. one allele of HLA-B and one allele of

HLA-C) or two haplotypes of multiple loci in the same class cluster (one haplotype of Class I

and one haplotype of Class II where each haplotype is treated as if it were a single-locus allele).

In a neutral model, rare haplotypes would have a low Dij value, while frequent haplotype

would have a high Dij (See S2 Text for simulation results). Positive FDS or similar purifying

selection mechanisms would push more haplotypes from intermediate to high frequency val-

ues (for selectively favored haplotypes) and to low values (for haplotypes selected against).

Purifying selection for HLA class I haplotypes
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Positive FDS may thus produce negative Dij’ values for intermediate frequencies and positive

values for low and high frequencies.

An analysis of the patterns of linkage disequilibrium in all four relevant pairs of loci: A~B,

A~C, B~C, and DRB1~DQB1, across all populations uniformly shows this bimodal pattern

with Dij’ of rare haplotypes close to zero, negative linkage disequilibrium for intermediate fre-

quency haplotypes, and positive LD for the most common haplotypes (Fig 3). The main effect

was observed for the A~B and A~C Class I haplotypes, in agreement with the results from the

Ewens-Watterson tests discussed below.

In order to test that this linkage disequilibrium pattern is not an artifact of the population

dynamics, we have performed simulations of neutral evolution (See S1 Text for description of

simulations), using realistic parameters for the HLA loci (See S2 Table for parameter esti-

mates), and show that the neutral simulations do not produce the observed LD patterns.

Fig 2. Fnd values of haplotypes and allele frequencies. The difference between expected and observed homozygosity, as

defined by the Fnd of alleles (A plot), haplotypes (C plot) and allele combination (B plot) frequency distributions, calculated from

subsamples of 1,200 individuals in 4 broad race groups (AFA—African American, API—Asian and Pacific Islander, CAU—

European (Caucasian) and HIS—Hispanic). Single-locus Fnd values are negative (lower observed than expected homozygosity)

in most populations, indicating that observed homozygosity exceeds that expected for a constant-size neutrally evolving

population (upper plot). Contrary to the single-locus results, Fnd values of full 5-locus haplotypes are positive, denoting multi-locus

homozygosity above expectation (C plot). This extra homozygosity holds most strongly for Class I loci, versus Class II loci. The

Fnd of two-locus Class I haplotypes containing the HLA-A locus show a positive Fnd value (B plot).

https://doi.org/10.1371/journal.pcbi.1005693.g002
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Fig 3. Linkage disequilibrium patterns. Mean normalized Dij’ (using the Lewontin normalization) as a function

of the frequency for four broad race populations.Dij is a normalized measure of linkage disequilibrium (LD) taking

values between -1 and 1 (maximal LD) and in neutrality should be 0. Each allele/haplotype-pair was assigned its

combined frequency and a Dij’ value and the Dij’ values were averaged over all allele pairs within the same

frequency bin in a given population. One can observe that for all allele pairs, the average Dij’ values are zero for

very low frequencies, null or negative for intermediate frequencies and highly positive for high frequencies. This

pattern of Dij’ values indicates that frequent allele pairs are much more frequent than expected by the

frequencies of their components (e.g. p(AB>P(A)P(B) for high P(AB) values, but P(AB)<P(A)P(B) for

intermediate P(AB) values).

https://doi.org/10.1371/journal.pcbi.1005693.g003
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(S2 Text. Section 1). These simulations were performed for either constant or growing popula-

tions and with or without population substructure. We have further produced model simula-

tions of populations with positive FDS to show that such populations can display a minimal

value of Dij in intermediate frequency ranges (S2 Text Section 3). This is obviously not a proof

that positive FDS is the model driving the observed dynamics, only that positive FDS is a possi-

ble mechanism for the purifying selection of HLA haplotypes.

Ewens-Watterson test on haplotype frequencies show excess

homozygosity

In order to further test deviation from the null model of neutral evolution, we performed the

Ewens-Watterson test on the five-locus haplotype frequency distribution. In contrast with

allele frequency, in haplotype frequency distributions a clear positive and significant Fnd is

observed for the 5-locus haplotype frequencies of all populations (average Fnd = 28.43). The

resulting positive Fnd values are consistent with positive selection. (Fig 2 and S1 Appendix).

These results are robust to sampling and to changes in sample size (S2 Text Section 4). While

the Ewens-Watterson test was developed specifically for non-recombining loci, its efficacy in

the detection of positive selection in the case of haplotypes has previously been established

[31]. Moreover, the deviation from neutrality attributed to recombination generally decrease

the haplotype homozygosity [32,33] and is thus not expected to be interpreted as positive selec-

tion. In order to test that the presented results are not the result of recent population growth,

population substructure, the high recombination and mutation rate of the HLA loci, the bal-

ancing selection on alleles or sampling effect, we simulated such scenarios (see detailed list of

scenarios studied in S1 Text). None of the simulated scenarios produced deviation from neu-

trality that approached what was observed in our haplotype frequency distributions (S2 Text

Section 5). Moreover, none of these scenarios led to a combination of positive Fnd values for

haplotypes and negative Fnd values for alleles. However, when balancing selection on alleles is

combined with purifying selection on haplotypes the opposite deviations from neutrality can

be easily obtained (S2 Text Section 6).

In order to test the robustness of these results to sampling, we have repeated the analysis

100 times for each subpopulation, and obtained a very limited variance over all populations

studied (S2 Text Section 5). As was the case for alleles, large variation in Fnd values was

observed among all populations. Among the broad race groups, the Fnd statistic was signifi-

cant at the p<0.001 level after multiple measurement corrections for all populations. Fnd was

largest in the European population, and comparably large for the rest, while among the

detailed race groups the Vietnamese population showed the strongest effect (S1 Appendix).

Note that all populations show a very clear deviation of excess homozygosity, in opposition to

the observation in the allele frequency distributions.

Positive Fnd is restricted to HLA Class I

In order to test which haplotypes affect the deviation from the null hypothesis of neutral evolu-

tion, we performed the Fnd test described above on two-locus and three-locus HLA Class I

and two-locus Class II haplotypes. The results show positive Fnd across most populations for

the HLA Class I haplotypes, and especially for haplotypes containing the HLA-A locus. Mean-

while, Fnd values were mostly negative for the DRB1~DQB1 HLA Class II haplotypes (Fig 2).

Excess homozygosity is not caused by population substructure. Excess homozygosity is

often observed in HLA population samples that contain a mix of genetically-distinct popula-

tions. This phenomenon has been termed the Wahlund effect [34]. To rule out the
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confounding impact of any population substructure in our data on our selection model results,

we present the following lines of evidence:

• We observed a clear difference between the measures of selection on different sets of loci in

the same population. Differences in Fnd values were observed between class I haplotypes

and class II haplotypes. Such differences, on the same set of individuals, cannot be explained

by population substructure.

• The more divergent and homogenous populations, such as the Japanese population, show a

clear deviation from neutrality in the direction of purifying selection, just as the admixed

populations do (Mexican, African American).

• Simulations with substructure do not show opposite deviations in homozygosity for single

loci versus haplotypes.

Fitting evolutionary models for deviation from neutrality to HLA haplotype

frequency distributions

The Fnd statistic and p-values from the Ewens-Watterson test are measures of deviation from

neutrality and equilibrium and not directly measures of selection. Other factors may affect the

observed deviations, as has been explored by Akey et al [35]. The Dij’ measure may also be

affected, in theory, by other elements that impact LD. In order to directly test whether purify-

ing selection models are better consistent with the observed distribution than neutral models,

we directly analyzed the haplotype frequency distribution—examining the relation between

the frequency of a haplotype in the sample and the number of unique haplotypes at that

frequency.

By very general arguments, one may describe the allele and haplotype frequencies by a

birth-death process. If birth and death are balanced, the population can be studied in equilib-

rium, while if birth exceeds death, an out-of-equilibrium model must be constructed. If one

assumes no selection, two models can be considered:

1. The marginal distribution of Ewens’ sampling formula, which assumes a constant popula-

tion size and neutral evolution [36] composed of birth, death and random mutations.

2. Yule-Simon distribution, which results from a process of pure birth, exponential growth

and neutral evolution [37]. The difference between the Yule model and the Ewens distribu-

tion is that death is neglected, and the population grows exponentially.

One can model purifying and balancing selection through a frequency-dependent selection

process. If such a model is invoked, a third type of stochastic model known as a Birth, Death

and Innovation Model (BDIM) can be used to fit the observed frequency distribution. BDIM

models admit the possibility of density-dependent growth and death rates, which can be inter-

preted as a non-neutral evolution [38]. Specifically, the total growth and death rates of each

sub population are proportional to the population size plus a constant. If these constants are 0,

the model is neutral. The details of all models are explained in S2 Text Section 7. Note that in

this context density-dependent selection can be used as a rough proxy for other types of selec-

tion in the sense that the resulting haplotype frequency distribution can be compared with the

one expected in neutral evolution.

In order to identify which model best represents the observed distributions, we fit both the

Yule-Simon and BDIM models to the frequency distributions of haplotypes using a maximum

likelihood approach. The Ewens model was not suitable for fitting because it has no free

parameter (except for a normalization constant), and the distribution did not fit the observed
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distribution. The functional forms of all distributions are described in the methods section.

The BDIM model contains a selection parameter, which determines whether small populations

have a higher or lower net growth rate than large populations. A positive value implies that

small populations are selected against (positive FDS favoring existing frequent haplotypes),

while a negative value implies that small populations are selected for (balancing selection).

Model selection was performed using the Bayesian Information Criterion (BIC) measure

which incorporates both quality of fit and number of parameters—more parameters have a

higher penalty to avoid overfitting. Among the models above, the BDIM model had a signifi-

cantly better fit with the HLA haplotype frequency distributions, even when accounting for its

extra parameter by using BIC for model selection [39] (Fig 4A). The positive ΔBIC values for

BDIM minus Yule (which is better than Ewens) indicate that BDIM is produces a significantly

better model than any of the neutral models. The selection parameters in the BDIM model,

which can be interpreted as the net fitness disadvantage of rare haplotypes, were significantly

larger than 0 (Fig 4B). No significant advantage existed for either model in fitting the allele fre-

quency distributions. In order to estimate absolute fit of the BDIM model to the data, the allele

and haplotype frequency distribution was binned into 20 logarithmic bins, and the R^2 value

of the comparison between the predicted and observed distribution was computed for all pop-

ulations and all allele and allele combinations, as in Fig 4. The average coefficient of determina-

tion (R^2) value over populations, alleles and haplotypes (A, B, C, DR, DQ and 5 locus

haplotypes)was 0.75. and 0.68 for the Yule model.

Discussion

Applying several population genetic models, we find that frequent HLA haplotypes occur

more often than would be expected under a neutral evolutionary model in all studied US pop-

ulations, which suggests purifying selection. At the same time, we corroborated numerous pre-

vious studies showing that balancing selection may be operating at each individual HLA locus.

Taken together, the multiple complementary analyses, fitting the frequency distributions to

different evolutionary models, the Fnd measure of homozygosity deviation from a null model,

and linkage disequilibrium analysis, all suggest purifying selection at the haplotype level, and

that positive FDS provides a good fit for the haplotype frequency distribution. While we do

not explicitly simulate the diploid fitness-based selection models, theoretically both frequency-

dependent and non-frequency-dependent mechanisms could produce the same type of

distribution.

To our knowledge, this is the first time that explicit evolutionary population dynamics

models have been compared across such diverse populations at a scale of millions of individu-

als. While these models utilize the mechanism of frequency-dependent selection, they may be

a proxy for other purifying selection mechanisms. Indeed, many other researchers have found

that multiple disparate evolutionary mechanisms each capable of producing the same shape

for observed frequency distributions [40]. While we are unable to tease apart the exact mecha-

nisms involved, the main contribution of this paper is the identification of empirical data sug-

gesting that selection has an opposite impact on allele frequency versus haplotype frequency

distributions. Note that we have not explicitly modeled population structures. We will now

develop models combining population structure and selection to test their combined effect.

Multiple previous results suggest that HLA haplotype frequencies are shaped by selection.

The high levels of linkage disequilibrium observed among HLA alleles serve to limit the

amount of diversity in HLA haplotypes and multi-locus genotypes. Several different HLA hap-

lotypes have been maintained at high frequency in different populations over long periods of

time and have been termed “conserved extended haplotypes” or “ancestral haplotypes” [41]. If
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Fig 4. Comparison of frequency models. (A) The difference between Bayesian Information Criterion (BIC)

values of the maximum likelihood estimate (MLE) fit of the Yule model and the BDIM. The models were fitted

to frequency distributions of each allele separately, as well as to the full 5-locus haplotype frequency

distribution. The calculation was repeated for all 18 detailed race groups and 5 broad race groups (black dots).

The red line represents the median over the 23 populations, while the blue lines represent the other quantiles.

(B) The selection parameter δ of the MLE fit to the BDIM. This parameter represents the net reproductive
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the HLA system had lower linkage disequilibrium, more combinations of alleles at different

loci would be observed at higher frequency in populations. Finally, the amount of genetic

recombination between HLA loci does not correlate directly with genetic distance in the MHC

[42], indicating that selection may be shaping patterns of human MHC haplotype variation.

As the recombination rate between HLA loci is faster than the allele formation rate through

mutation or gene conversion, these two processes can be interpreted as two different time

scales in our evolutionary models. Over long time scales, new alleles are introduced within a

single locus. At shorter time scales, certain haplotypes are generated from existing alleles by

recombination. While new haplotypes continuously arise, the number of highly successful

haplotypes would be limited compared to the space of all possible combinations. These suc-

cessful conserved extended haplotypes may be maintained in populations. The fitness of spe-

cific haplotypes and multi-locus genotypes thereof may differ over time and among

populations [14].

Within the HLA region, the most significant deviation from neutrality was observed in hap-

lotypes composed of Class I haplotypes, while no such deviation was observed in the Class II

haplotypes. This evidence for Class I selection is in good agreement with the effect of Class I

variation on survival in the presence of different pathogens [43,44], and also may be correlated

with the interaction between HLA Class I and KIR [45]. Note that the functions of Class I and

Class II alleles and haplotypes can have epistatic effects that may impact how selection operates

on the overall HLA system. Moreover, differences in migration rate in class I and class II could

explain the difference between the two regions, However, such differences cannot explain the

difference between alleles and haplotypes.

A possible caveat is the sample used. In theory, the NMDP cohort may not be representative

of the general population. However there are no obvious recruitment practices that would lead

significant systematic HLA genetic bias within donor populations. Thus it is common practice

for registry and blood bank donors to be used as controls in disease association studies (e.g.

the Wellcome Trust Case Control Consortium used blood bank donors). Moreover, there are

no obvious reasons that such a misrepresentation would affect the difference between alleles

and haplotypes.

Multiple evolutionary mechanisms may explain purifying selection for HLA Class I haplo-

types. HLA alleles found along the same haplotype may have complementary peptide reper-

toires across loci to present multiple epitopes from a single viral protein simultaneously. In the

case of SIV in monkeys, there has been selection for certain combinations of HLA Class I

alleles across loci that control SIV and its escape variants [46]. If pathogens require multiple

mutations to achieve immune escape from all HLA alleles in an individual, the likelihood of

escape is minimized. Haplotypes containing alleles with redundant recognition capabilities

may be preferentially selected for fitness in individuals, while haplotypes without complemen-

tary repertoires would be eliminated. Alternatively, haplotypes may need to present epitopes

from multiple different viruses. We have shown that the number of epitopes presented by dif-

ferent HLA alleles can vary over many orders of magnitude [11,47]. Haplotypes with more

limited epitope repertoires may be detrimental, and selected against. Finally, as mentioned,

interactions with KIR proteins on natural killer cells may determine the capacity of the

immune system to mount a response [48], requiring specific HLA allele combinations to

ensure adequate response.

disadvantage of the rare frequencies. Thus, positive values suggest a disadvantage to rare alleles/

haplotypes.

https://doi.org/10.1371/journal.pcbi.1005693.g004
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A possible unified selection model for the patterns of diversity observed in both HLA alleles

and haplotypes has been proposed by van Oosterhout called Associative Balancing Complex

(ABC) selection provides an explanation for how linkage disequilibrium between HLA alleles

could be maintained by epistasis in the MHC region [49]. Under this model mutations in

MHC haplotype blocks accumulate under a sheltered load near HLA genes. Recombination in

HLA haplotypes would expose low fitness homozygous genotypes. Epistatic selection operates

against this recombination and increase linkage disequilibrium. Purifying selection against

deleterious recessive mutations is weak because recombination is low. Frequent HLA haplo-

types are maintained and increase divergence from one another over time. While we do not

model ABC selection explicitly, our data is consistent with this model of balancing selection

on HLA alleles, epistatic selection that limits recombination, and purifying selection in HLA

haplotypes.

HLA genes are distributed throughout the MHC throughout a large ~4-megabase region of

Chromosome 6. Because the distance between HLA loci can be as much as 1 megabase, HLA

haplotype phase cannot be experimentally determined with current classic HLA typing meth-

ods. HLA alleles were phased into haplotypes computationally using the expectation-maximi-

zation (EM) algorithm rather than experimentally. The EM algorithm attempts to find a

maximum likelihood estimate wherein all HLA unphased genotypes are explained using a

minimal set of HLA haplotypes. We have here shown that while the EM produces a non-negli-

gible level of allele classification and phasing errors, these errors have a minimal effect on the

shape of the resulting haplotype frequency distribution. Population substructure in HLA-

typed cohorts can cause excess homozygosity which would confound the selection model

results, however we find that our consistent results across populations, along with differing

forces at Class I versus Class II rules out the possibility that population substructure could

explain our findings. The HLA-DP locus has not been included in our analysis due to the his-

torical absence of typing information in the registry and subsequent haplotype frequency data-

sets. We recognize that extending this analysis to include this locus will be challenging due to

the relatively higher rate of recombination between HLA-DP and the other HLA loci in this

study [50–52].

The here described opposite selection types and alleles and haplotype levels may be a gen-

eral evolutionary principle combining the introduction and novelty and the maintenance of

high fitness combination. We now plan to further study theoretically and experimentally the

presence of such mechanisms in other genomic regions and organisms.

Methods

Population haplotype frequency estimates

Five-locus high resolution HLA A~C~B~DRB1~DQB1 haplotype frequencies were estimated

using the expectation-maximization (EM) algorithm for over six million donor HLA typings

from the National Marrow Donor Program registry (USA) published by Gragert et al [14,53].

Given typing ambiguities, a large number of very low probability haplotypes emerge from the

EM. The frequency distribution of such rare haplotypes and genotypes is a mere artifact of the

EM. We removed low probability haplotypes by assigning each person in the sample a single

pair of their most probable haplotypes with the remainder of their haplotype pair probability

distribution discarded. The population haplotype frequencies were thus recalculated with a

single haplotype pair assigned for each individual. Allele frequencies were derived as marginal

sums of the haplotype frequencies.

In order to confirm the accuracy of these haplotype frequency estimates, we performed two

validation experiments in which the most likely high resolution HLA genotype was imputed
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for individuals that had HLA typing ambiguity [25]. The first validation dataset, intended to

confirm the accuracy of high resolution HLA allele identification, consisted of 38,715 registry

donors who had high resolution confirmatory typing performed on behalf of a patient, allow-

ing for comparison of the imputed high resolution allele with the true high resolution allele

determined experimentally. The second validation set, intended to confirm accuracy in haplo-

type phase assignment, consisted of a cohort of 4,235 cord blood units where the cord mother

was also HLA typed, and therefore haplotype phase was known by pedigree and could be com-

pared with the results of imputation.

We computed frequency distributions for two-locus and three-locus haplotypes by sum-

ming over the frequencies at the other loci (i.e. produce the marginal distributions). For exam-

ple, to compute the two-locus A~B haplotype frequencies, we merged all extended

A~C~B~DRB1~DQB1 haplotypes with a given A~B combination into a single reduced A~B

haplotype. We computed haplotype distributions for five different combinations of loci (A~B,

A~C, B~C, A~B~C, DRB1~DQB1) in this manner.

Ewens-Watterson test for deviation from neutral evolution

In the Ewens-Watterson test, one calculates the hypothetical F1 homozygosity following ran-

dom mating (the sum of squared allele frequencies) of the sample, and compares it to the

expected homozygosity of a sample with the same attributes (sample size and total number of

alleles) from the Ewens sampling formula. The expected homozygosity and the p-value of the

test are usually obtained using Slatkin’s method [54]. The test parameters are limited by the

numerical calculation of Ewens’ sampling formula so that the maximal number of alleles in a

sample is currently limited to a thousand and the maximal sample size to a few thousand. In

order to perform such tests for extremely large samples such as ours, a representative subsam-

ple must be taken.

We randomly sampled 1,200 haplotypes from each US subpopulation and performed the

EW test on the subsample, using either the Arlequin [55] or PyPop [56] software packages

with similar results. We calculated Fnd values for each sample (Fnd = (Fobs − Fexp)/Var
(Fexp)1/2), where Fobs is the observed homozygosity of the sample, and Fexp is the expected

homozygosity for a population with the same parameters calculated using random samples,

which also provided an estimate for the variance.

Evolutionary models for frequency distributions

We fit the Yule model and a Birth, Death and Innovation Model (BDIM) detailed in Table 1 to

the relative frequency distributions of haplotype/alleles populations by maximum-likelihood

estimation, using a global optimization algorithm for the numerical maximization [57]. The

normalizing constant C was determined by the equality:C ¼
XNmax

i¼1

pðiÞ, where Nmax is the abso-

lute frequency of the most abundant haplotype. This normalization is equivalent to fitting the

model conditioned on the event that the maximal number of haplotypes is Nmax.

Table 1.

Model name probability function p(x) Parameters Comments Reference

Yule CB(x, 1 + v) v C is a constant and B is the beta function. [37]

BDIM C GðxþaÞ
Gðxþ1þbÞ

a, b C is a constant and Γ is the Gamma function. In Fig 4,: δ = b − a [38]

https://doi.org/10.1371/journal.pcbi.1005693.t001
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Linkage disequilibrium computation

We computed the linkage disequilibrium using the normalized approach proposed by Lewon-

tin [58]. In short, the value of Dij’ for each pair of alleles is normalized by the theoretical maxi-

mum for the observed allele frequencies. The Dij’ value was computed for each pair of alleles i
and j (e.g. given HLA A and HLA-B alleles), and binned across all haplotypes with similar fre-

quency. Note that in this context a haplotype is either treated as a pair of alleles, or as a pair of

haplotypes treated as alleles (e.g. a class I haplotype and a class II haplotype).

Statistical analysis

A two-sided T-Test was used for comparing Fnd values and Dij’ values for each population size

bin to the neutral drift, and also testing evolutionary model fit. For the Fnd values, we treated

each sample as an independent observation. In the Dij’ analysis, each haplotype was treated as

an independent sample. For the evolutionary model fit, each population was treated as an

independent sample. Where relevant (e.g. where values were computed separately for each

population) a Benjamini—Hochberg procedure to adjust for multiple tests using false discov-

ery rate (FDR) was performed.
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