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Abstract  
Septic encephalopathy is a frequent complication of sepsis, but there are few studies examining the role of microRNAs (miRs) in its patho-
genesis. In this study, a miR-219 mimic was transfected into rat hippocampal neurons to model miR-219 overexpression. A protective 
effect of miR-219 was observed for glutamate-induced neurotoxicity of rat hippocampal neurons, and an underlying mechanism involving 
calmodulin-dependent protein kinase II γ (CaMKIIγ) was demonstrated. miR-219 and CaMKIIγ mRNA expression induced by glutamate 
in hippocampal neurons was determined by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). After 
neurons were transfected with miR-219 mimic, effects on cell viability and apoptosis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-di-
phenyltetrazolium bromide (MTT) assay and flow cytometry. In addition, a luciferase reporter gene system was used to confirm CaMKIIγ 
as a target gene of miR-219. Western blot assay and rescue experiments were also utilized to detect CaMKIIγ expression and further verify 
that miR-219 in hippocampal neurons exerted its effect through regulation of CaMKIIγ. MTT assay and qRT-PCR results revealed obvi-
ous decreases in cell viability and miR-219 expression after glutamate stimulation, while CaMKIIγ mRNA expression was increased. MTT, 
flow cytometry, and caspase-3 activity assays showed that miR-219 overexpression could elevate glutamate-induced cell viability, and 
reduce cell apoptosis and caspase-3 activity. Moreover, luciferase CaMKIIγ-reporter activity was remarkably decreased by co-transfection 
with miR-219 mimic, and the results of a rescue experiment showed that CaMKIIγ overexpression could reverse the biological effects of 
miR-219. Collectively, these findings verify that miR-219 expression was decreased in glutamate-induced neurons, CaMKIIγ was a target 
gene of miR-219, and miR-219 alleviated glutamate-induced neuronal excitotoxicity by negatively controlling CaMKIIγ expression. 
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Graphical Abstract   

Does miR-219 inhibit glutamate-induced neuronal excitotoxicity?

miR-219 mimic was transfected into 
hippocampal neurons to overexpress miR-219

Hippocampal neuron cells were induced by glutamate

Quantitative real-time reverse transcription-
polymerase chain reaction was used to detect the 
expression of miR-219

Effects of miR-219 on cell 
viability and apoptosis 
were measured by 
3-(4,5-dimethylthiazolyl-2)-2,5-
diphenyltetrazolium bromide  
assay and flow cytometry

Effect of miR-219 on the 
activity of intracellular 
caspase-3 was measured 
with Caspase 3 Assay Kit

A luciferase reporter 
gene system and rescue 
experiment were applied to 
validate that CaMKIIγ  was 
the target gene of miR-219
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Introduction 
Sepsis is a systemic inflammatory response syndrome 
caused by severe bacterial infection (Doyle and Forni, 2016; 
Matthay et al., 2017). In essence, it is an instinctive response 
of the body’s organs and tissues against infective factors. 
However, it can become a potentially life-threatening com-
plication of infections (Plante, 2016), as it triggers a cascade 
of physiological changes that can cause damage and failure 
in multiple organ systems (Long et al., 2017; Nishihara et al., 
2017; O’Brien et al., 2017). 

Bacteria that cause infection can seriously disturb the 
body’s functions, such as changing body temperature, heart 
rate, and blood pressure (Abir et al., 2017). In addition, 
sepsis may lead to complications of kidney, lung, brain, and 
heart tissues, and can result in death (Gomez and Kellum, 
2016; Trevelin et al., 2017). To improve chances for survival, 
early treatment of sepsis usually provides antibiotics and 
large amounts of intravenous fluids (Simpson et al., 2016; 
Wittayachamnankul et al., 2016; Girardot et al., 2017). 

Septic encephalopathy, also known as sepsis-associated 
encephalopathy, is the most common complication of sep-
sis (Gao et al., 2017; Tauber et al., 2017). Patients suffering 
from septic encephalopathy show brain dysfunction, such 
as cognitive impairments and disturbance of consciousness, 
caused by systemic inflammation or sepsis (Lu et al., 2016; 
Savio et al., 2016; Zhu et al., 2016). Excitatory amino acids 
are also excitatory neurotransmitters, and the excitotoxicity 
of excitatory amino acids plays a role in septic encephalopa-
thy (Chaudhry and Duggal, 2014; Tauber et al., 2017). Even 
though great progress has been made for treatment of septic 
encephalopathy, the lack of effective therapeutic strategies 
remains an important social problem (Lyu et al., 2015; Wang 
et al., 2015; Kaur et al., 2016). Therefore, it is necessary to 
develop more useful treatments for septic encephalopathy. 

MicroRNA (miR) is a class of small non-coding RNA that 
suppress target gene expression by complementary binding 
to the messenger 3′-untranslated region (UTR) (Li and Tang, 
2016; Gradilone, 2017). Previous studies have focused on 
roles of miRNAs as key regulators in neuronal development 
and nervous system diseases (Chang et al., 2017; Fang et al., 
2017; Molasy et al., 2017). miR-219, an evolutionarily con-
served type of miRNA, is generally expressed throughout 
rodent and human brain tissues (Murai et al., 2016), and 
reportedly participates in various physiological and patholog-
ical processes (Pan et al., 2014). It has been implicated in reg-
ulation of circadian rhythm, development and progression of 
Alzheimer’s disease and schizophrenia (Shi et al., 2013; Denk 
et al., 2015; Zhang et al., 2015), and is necessary for oligoden-
drocyte differentiation and myelination (Dugas et al., 2010; 
Pusic and Kraig, 2014; Diao et al., 2015). Furthermore, miR-
219 was identified to be anti-oncogenic and down-regulated 
in various tumor types, such as respiratory, digestive, and 
nervous system tumors (Xiong et al., 2015; Garufi et al., 2016; 
Zhi et al., 2016). However, biological roles of miR-219 in glu-
tamate-induced neurotoxicity are unknown.

This study examined effects of miR-219 on protecting pri-
mary hippocampal neurons against glutamate-induced neu-

rotoxicity. First, miR-219 and CaMKIIγ mRNA expression 
were detected in glutamate-treated hippocampal neurons. 
Second, miR-219 was overexpressed to examine its influ-
ence on the viability and apoptosis of neurons treated with 
glutamate. Third, potential mechanisms of miR-219 for alle-
viating glutamate-induced neurotoxicity were investigated. 
Above all, this research provides a practical basis to examine 
the potentially beneficial effects of miR-219 as a reagent for 
the treatment of septic encephalopathy.
  
Materials and Methods   
Cell culture
Animal experiments strictly abided to the Institutional 
Animal Care Guidelines of Nantong University of China 
(20150304-007). All Sprague-Dawley rats were purchased 
from the Laboratory Animal Center at Nantong University 
[SYXK (Su) 2012-0031]. 

Pregnant rats at 18–19 days post-fertilization were de-
capitated, and whole brains were removed from embryos 
and carefully placed into a dish using sterile scissors. Hip-
pocampi were harvested in Hank’s Balanced Salt Solution 
(Gibco; ThermoFisher, Waltham, MA, USA) under a dis-
secting microscope. Hippocampal tissues were mechanically 
mixed and dissociated with 0.25% trypsin at 37°C for 15 
minutes into cell suspensions. After centrifugation, cells 
were resuspended in Dulbecco’s Modified Eagle’s Medium 
(DMEM) containing 10% fetal calf serum (Gibco), and cul-
tured in poly-L-lysine-coated six-well plates for 4 hours in a 
CO2 incubator. Following cell attachment to the bottom of 
plates, media were replaced with Neurobasal Plating Media 
supplemented with 2% B-27, 0.5 mM glutamine, 100 U/
mL penicillin, and 100 U/mL streptomycin (all components 
from Gibco). Cells were cultured for 7–8 days, which was 
necessary for the growth of hippocampal neurons to maturi-
ty, with half-renewal of media every 3 days.

Human embryonic kidney 293 (HEK293) cells were ob-
tained from the Shanghai Cell Bank of Shanghai Institutes 
for Biological Sciences of Chinese Academy of Sciences, and 
grown in DMEM containing 10% fetal calf serum. When 
HEK293 cultures achieved 70% to 80% density, cells were 
digested with 0.25% trypsin and subcultured. Cells in expo-
nential growth phase were harvested for following manipu-
lations. All cells were cultured in an incubator with 5% CO2 
and saturated humidity at 37°C, and growth was observed 
using an inverted microscope.

Cell treatment
The excitotoxicity of primary hippocampal neurons was 
accomplished by previously reported protocols (Chen et al., 
2008; Zhou et al., 2008). Briefly, hippocampal neurons were 
exposed to glutamate by replacing Neurobasal Plating Media 
with Lock’s solution containing 10 μM glycine and a certain 
concentration of glutamate (Sigma-Aldrich, St. Louis, MO, 
USA), and incubating for 15 minutes in a CO2 incubator. 

The experiment was divided into four groups (n = 6 per 
group). Neurons in three groups were treated with 62.5, 125, 
or 250 μM glutamate, respectively. The remaining group was 
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used as a normal control without any treatment. After exci-
totoxicity was induced, cells were washed with Lock’s solu-
tion to remove any remaining glutamate and then cultured 
in Neurobasal Plating Media for indicated time periods. 
To investigate the effects of miR-219 on hippocampal neu-
rons induced by glutamate, the experiment was divided into 
three groups. Neurons in two groups (n = 6 per group) were 
treated with 125 μM glutamate and transfected with miR-
219 mimic (miR-219 mimic + 125 μM glutamate) or mimic 
control (mimic control + 125 μM glutamate). The remaining 
group was used as a normal control without any treatment.

3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyltetrazolium 
bromide (MTT) assay
An MTT assay was performed to examine cell viability ac-
cording to the manufacturer’s protocol (Sigma-Aldrich). 
Primary hippocampal neurons (5 × 106/mL) were seeded 
into 96-well plates and subjected to glutamate treatment at 
various concentrations for 15 minutes. Afterwards, 10 μL 
of MTT solution was added to each well and the plate was 
incubated at 37°C for 4 hours. Next, 150 μL of 20% dimethyl 
sulfoxide was added to each well to dissolve the formazan 
for 20 hours. An Epoch™ Microplate Spectrophotometer 
(Bio-Tek Instruments, Winooski, VT, USA) was used to 
read optical density values at 490 nm. The experiment was 
repeated in triplicate.

Quantitative real-time reverse transcription-polymerase 
chain reaction (qRT-PCR)
To analyze miR-219 expression, cells were transfected with 
either miR-219 mimic or mimic control for 48 hours using a 
riboFECT™ CP transfection kit according to the manufactur-
er’s protocol (RiboBio, Guangzhou, China) before extracting 
total RNA from neurons using a mirVana miRNA Isola-
tion kit (Thermo Fisher, Waltham, MA, USA). To analyze 
CaMKIIγ mRNA expression, total RNA was extracted from 
neurons using Trizol reagent (Invitrogen). A NanoDro-
pND-1000 spectrophotometer (NanoDrop Tech, Wilming-
ton, DE, USA) was used to measure RNA concentrations. 
One μg of RNA was reverse transcribed into cDNA using a 
PrimeScript RT Reagent Kit (TaKaRa, Dalian, China). 

Expression of miR-219 was examined using qRT-PCR 
with a Bulge-Loop miRNA qRT-PCR kit (RiboBio) and 
miR-219–specific primers. qRT-PCR parameters were as 
follows: 95°C for 10 seconds, 40 cycles of 95°C for 5 seconds 
and 60°C for 20 seconds. Primers used for qRT-PCR (syn-
thesized by Sangon Biotech, Shanghai, China) of CaMKIIγ 
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
mRNA are listed in Table 1. The experiment was repeated 
in triplicate. Expression of miR-219 was calculated as rel-
ative expression to internal reference U6, while expression 
of CaMKIIγ mRNA was calculated as relative expression to 
internal reference GAPDH. The 2−ΔΔCt method was utilized 
to analyze data (Yu et al., 2012). 

Flow cytometry assay
The role of miR-219 in glutamate-induced cell apoptosis 

was measured by flow cytometry with an Annexin V-FITC 
Apoptosis Detection Kit (Roche, New York, NY, USA). In 
brief, after 48-hour treatment, neurons were harvested via 
trypsinization, washed twice with cold phosphate-buffered 
saline (PBS), and stained with Annexin V-FITC and propid-
ium iodide (PI) staining solution. The staining reaction was 
conducted in darkness for 15 minutes. FITC+/PI– cells were 
considered to be early apoptotic cells. Cell apoptosis was 
measured using a flow cytometer and analyzed with flow cy-
tometry software (BD Bioscience, Franklin Lakes, NJ, USA). 
All samples were filtered with a filter screen.  

Caspase-3 activity assay
Intracellular caspase-3 activity was measured with a colori-
metric Caspase-3 Assay Kit (ab39401; Abcam, Cambridge, 
UK). Treated cells were exposed to 125 μM glutamate for 
12 hours, while control cultures were concurrently carried 
out without induction. Rat hippocampal neurons were fur-
ther maintained in Neurobasal medium (Invitrogen) for 6 
hours at 37°C. Subsequently, cells were suspended in 50 μL 
of cold lysis buffer and incubated on ice for 10 minutes. Pro-
tein concentration was measured and adjusted to 100 μg of 
protein per 50 μL of cell lysis buffer for each sample. Next, 50 
μL of 2× reaction buffer containing 10 mM DTT and 200 μM 
DEVD-p-NA substrate was added to the lysate. The reaction 
was incubated at 37°C for 60–120 minutes. An ElX-800 ab-
sorbance spectrophotometer (Bio-Tek Instruments) was then 
applied to measure optical density values at 400–405 nm.

Luciferase reporter assay
HEK293 cells were cultured at a density of 3 × 105 cells/mL 
(100 μL per well) in a 96-well plate for 24 hours. After cells 
reached 70% confluence, the culture medium was removed 
and cells were transfected using Lipofectamine 2000 (In-
vitrogen). Wild-type 3′-UTR of CaMKIIγ, mutant 3′UTR 
of CaMKIIγ, or their respective negative controls were 
co-transfected into HEK293 cells with miR-219 mimic or a 
mimic negative control. After 48 hours of incubation, lucif-
erase was assayed with a Bio-Tek Synergy Microplate Reader 
(Bio-Tek Instruments) (Nicolas, 2011).

Vector construction and rescue experiment
Based on the CaMKIIγ sequence (GenBank: NM_133605), 
the 3′-UTR sequence of CaMKIIγ was amplified and in-

Table 1 Primer sequence for quantitative real-time reverse 
transcription-polymerase chain reaction

Gene Sequence (5′–3′)
Product size 
(bp)

CaMKIIγ Forward: CCT CGT GTT TGA CCT TGT T 122 
Reverse: GGA TGT GGT TGA CGC TCT

GAPDH Forward: ATC CCA GAG CTG AAC GGG A 104
Reverse: ATC ACG CCA CAG CTT TCC

CaMKIIγ: Calmodulin-dependent protein kinase II γ; GAPDH: 
glyceraldehyde-3-phosphate dehydrogenase. 
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serted into the luciferase reporter vector pGL3 (Promega, 
Madison, WI, USA) at an appropriate restriction enzyme 
cleavage site. Sequences of wild-type and mutant 3′-UTR 
were confirmed by DNA sequencing. Using specific primers, 
different products of PCR amplification of CaMKIIγ 3′-UTR 
were inserted into pGL3 vectors.

Primers used for PCR-based construction of recombinant 
expression vector pcDNA3.1-CaMKIIγ, are listed in Table 2. 
Primers were synthesized by Shanghai Invitrogen Corpora-
tion. Total RNA was extracted from rat cells with Trizol re-
agent and reverse transcribed into cDNA using reverse tran-
scriptase (Invitrogen). cDNA was PCR amplified with the 
above primers, and products were cloned into a pGEM-T 
vector. After sequencing, the fragment was subcloned into 
pcDNA3.1 (Invitrogen).

For the rescue experiment, hippocampal neurons were 
divided into four groups. Neurons in three groups were 
treated with 125 μM glutamate and transfected with vector 
control (vector control + 125 μM glutamate), recombined 
vector pcDNA3.1-CaMKIIγ (pcDNA3.1-CaMKIIγ + 125 
μM glutamate), or pcDNA3.1-CaMKIIγ and miR-219 mim-
ic (pcDNA3.1-CaMKIIγ + miR-219 mimic + 125 μM gluta-
mate). The remaining group was used as a normal control 
without any treatment.

Western blot assay
After transfection with miR-219 mimic or mimic negative 
control for 48 hours, cells were washed with pre-cooled PBS 
and lysed in cell lysis buffer containing protease inhibitors. 
Next, total proteins were quantified with a Bradford Protein 
Assay Kit (Promega). Cell lysis buffer, protease inhibitors, 
and Bradford Protein Assay Kit were all obtained from Bey-
otime Biotechnology (Jiangsu, China). Protein blotting was 
performed using standard protocols. Briefly, blotted poly-
vinylidene fluoride membranes were blocked with blocking 
buffer for 1 hour at room temperature and then washed 
three times in Tris-buffered saline containing Tween 20. 
Membranes were then reacted with a rabbit anti-CaMKIIγ 
polyclonal antibody (1:2000; Abcam) and mouse anti-β-ac-
tin monoclonal antibody (1:5000; Sigma-Aldrich) overnight 
at 4°C. Afterwards, membranes were reacted with appro-
priate horseradish peroxidase-conjugated secondary goat 
anti-rabbit or goat anti-mouse antibodies (1:2000; Abcam) 
for 2 hours at room temperature. Immunoreactive proteins 
were visualized by an enhanced chemiluminescence reagent 
(Pierce, Rockford, IL, USA). Relative CaMKIIγ contents are 

shown as the gray scale of CaMKIIγ relative to β-actin, with 
the gray scale being measured using Quantity One software 
(Bio-Rad, Hercules, CA, USA).

Statistical analysis
All data are expressed as the mean ± standard deviation (SD) 
of three independent experiments (each in duplicate). Student’s 
t-test and one-way analysis of variance followed by a Scheffe 
post-hoc test were used for statistical analysis with SPSS 19.0 
software (IBM, Armonk, NY, USA) and GraphPad Prism 6 (La 
Jolla, CA, USA). A value of P < 0.05 was considered statistically 
significant.

Results
Expression of miR-219 and CaMKIIγ mRNA in 
glutamate-induced primary cultured hippocampal 
neurons
Previous studies reported dose-dependent excitotoxicity 
induced by glutamate (0.1–1000 μM) in cultured cortical 
neurons (Perrella and Bhavnani, 2005) and hippocampal 
neurons (Chen et al., 2008); so we chose glutamate (62.5–
250.0 μM) to induce neuronal cell injury in the following 
experiments. The results of MTT assay reflected decreased 
cell viability induced by glutamate (Figure 1A). Compared 
with normal controls, the cell viability of the 125-μM gluta-
mate-treated group decreased significantly (P < 0.01). There-
fore, treatment with 125 μM glutamate for 15 minutes was 
used to induce excitotoxicity in subsequent experiments. 

To characterize expression of miR-219 and CaMKIIγ 
mRNA in glutamate-induced hippocampal neurons, qRT-
PCR for miR-219 (relative to U6 snRNA) and CaMKIIγ 
(relative to GAPDH) was performed. As illustrated in Fig-
ure 1B, expression of miR-219 gradually declined after treat-
ment with 62.5–250.0 μM glutamate compared with normal 
control (P < 0.05). However, expression of CaMKIIγ mRNA 
was increased and continued to be up-regulated during 
62.5–250 μM glutamate treatment. These results suggested 
that miR-219 and CaMKIIγ played essential roles in causing 
glutamate-induced damage.

Effect of miR-219 on glutamate-induced cell viability 
To determine whether miR-219 could alleviate gluta-
mate-induced neurotoxicity, an MTT assay was performed 
in primary cultured hippocampal neurons. Neurons were 
transfected with miR-219 mimic or mimic control by trans-
fection reagent, and qRT-PCR was used to detect miR-219 
after 48 hours. As shown in Figure 2, miR-219 expression 
was significantly up-regulated (four-fold compared with 
other hippocampal neurons) after 48-hour transfection with 
miR-219 mimic. Moreover, MTT results showed that miR-
219 overexpression effectively rescued the decreased viabili-
ty of cells induced by 125 μM glutamate in normal or mimic 
controls (P < 0.05; Figure 3).

Effect of miR-219 on glutamate-induced cell apoptosis
To investigate whether miR-219 could inhibit glutamate-in-
duced cell apoptosis, flow cytometry was performed. The 

Table 2 Primer sequence for polymerase chain reaction 

Restriction enzyme 
cutting site Sequence (5′–3′)

Product size 
(bp)

Eco RI Forward: CG GAATTC ATG GCC 
ACC ACC GCC ACC TG 

1587 

Bam HI Reverse: 5 ′-CG GGATCC CTG 
CAG CGG TGC AGC AGG GG 

The cutting sites are underlined.
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Figure 1 Cell viability and expression of miR-219 and CaMKIIγ mRNA in primary hippocampal neurons induced by glutamate in a 
dose-dependent manner. 
(A) Cell viability was tested using MTT assay. (B) Expression of miR-219 and CaMKIIγ mRNA were detected by quantitative real-time reverse 
transcription-polymerase chain reaction. *P < 0.05, **P < 0.01, vs. normal control group (mean ± SD, n = 6, one-way analysis of variance followed 
by Scheffe post-hoc test). Glutamate 62.5, 125 and 250 μM group: Hippocampal neurons were treated with 62.5, 125 or 250 μM glutamate, respec-
tively. Normal control group: without any treatment. Experiment was conducted in triplicate. CaMKIIγ: Calmodulin-dependent protein kinase II γ.
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Figure 3 Effect of miR-219 on cell viability in hippocampal neurons 
treated with glutamate.
Cell viability was measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-di-
phenyl-2-H-tetrazolium bromide assay after transfection. *P < 0.05, 
**P < 0.01, vs. normal control group (mean ± SD, n = 6, one-way 
analysis of variance followed by Scheffe post-hoc test). #P < 0.05. miR-
219 mimic group, miR-219 mimic + 125 μM glutamate; mimic control, 
mimic control + 125 μM glutamate; normal control group, without any 
treatment. Experiment was conducted in triplicate. 
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219 mimic after treatment with 125 μM glutamate compared 
with similarly treated mimic control group neurons (P < 
0.01; Figure 4). 

Effect of miR-219 on caspase-3 activity in glutamate-
induced cells
Kim et al. (2016) reported that activation of pro-apoptotic 
proteins including caspases was involved in glutamate-in-
duced neurotoxicity. Caspase-3 activity was increased four-
fold in neurons after a 15-minute exposure to 125 μM glu-
tamate compared with the normal control group. However, 
glutamate-induced caspase-3 activity was decreased by half 
in neurons transfected with miR-219 mimic compared with 
mimic control (Figure 5).

CaMKIIγ is a direct target gene of miR-219
To explore potential targets for miR-219, the online miR-
NA target prediction algorithm TargetScan (http://www.
targetscan.org/) was applied. Results of this analysis showed 
that CaMKIIγ, a central regulating protein in Ca2+ signaling 
cascade mediated by N-methyl-D-aspartic acid (Aow et al., 
2015), was a possible target gene of miR-219. A dual-lucif-
erase reporter gene assay was applied to analyze interactions 
between miR-219 and CaMKIIγ. The recombined CaMKIIγ 
3′UTR (wild-type or mutant) reporter gene plasmid and the 
miR-219 mimic (or mimic control) were co-transfected into 
HEK293 cells. We found that luciferase activity was signifi-
cantly decreased by co-transfection of the vector containing 
CaMKIIγ 3′UTR (wild-type) and miR-219 mimic compared 
with similarly co-transfected mimic control (Figure 6). The 

Figure 5 Effect of miR-219 on intracellular caspase-3 activity in 
glutamate-induced hippocampal neurons.
Intracellular caspase-3 activity was analyzed with a Caspase-3 Activity 
Assay Kit after transfection. **P < 0.01, vs. normal control group (mean 
± SD, n = 6, one-way analysis of variance followed by Scheffe post-hoc 
test). ##P < 0.01. miR-219 mimic group, miR-219 mimic + 125 μM 
glutamate; mimic control, mimic control + 125 μM glutamate; normal 
control group, without any treatment. Experiment was conducted in 
triplicate.
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calmodulin-dependent protein kinase II γ.
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Figure 7 Effect of miR-219 on CaMKIIγ expression in hippocampal 
neurons.
Relative protein expression of CaMKIIγ examined using western blot 
assay after transfection shown in gray scale relative to β-actin. **P < 
0.01, vs. normal control and mimic control (mean ± SD, n = 6, one-
way analysis of variance followed by Scheffe post-hoc test). miR-219 
mimic group, miR-219 mimic + 125 μM glutamate; mimic control, 
mimic control + 125 μM glutamate; normal control group, without any 
treatment. Experiment was conducted in triplicate. CaMKIIγ: calmod-
ulin-dependent protein kinase II γ.

results of flow cytometry indicated a significantly higher 
percentage of apoptotic neurons in the 125 μM gluta-
mate-treated group (P < 0.01) compared with the normal 
control group. However, a significantly lower ratio of apop-
totic cells was observed in neurons transfected with miR-
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Figure 8 Rescue experiment verified the role of miR-219 in neurons 
to be specific for regulation of the target gene CaMKIIγ. 
(A) CaMKIIγ expression was detected by western blot assay after trans-
fection. Relative protein expression of CaMKIIγ is shown in gray scale 
relative to β-actin. (B) Cell viability was measured using MTT assay 
after transfection. **P < 0.01, vs. normal control group (mean ± SD, n 
= 6, one-way analysis of variance followed by Scheffe post-hoc test). §P 
< 0.05, §§P < 0.01. miR-219 mimic group, miR-219 mimic + 125 μM 
glutamate; mimic control, mimic control + 125 μM glutamate; normal 
control group, without any treatment. Experiment was conducted in 
triplicate. I: Normal control; II: Vector control; III: pcDNA3.1-CaM-
KIIγ; IV: pcDNA3.1-CaMKIIγ+miR-219 mimic. MTT: 3-(4,5-Dimeth-
yl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; CaMKIIγ: 
calmodulin-dependent protein kinase II γ.

results verified that the forecasted target location of miR-219 
was in the CaMKIIγ 3′UTR.

Western blot assay was performed to confirm the role of 
miR-219 in regulating CaMKIIγ expression. The results of 
western blot assay indicated suppression of CaMKIIγ in 
neurons overexpressing miR-219 compared with normal 
and mimic control groups (P < 0.01; Figure 7). These results 
demonstrated that miR-219 suppressed CaMKIIγ expres-
sion in a post-transcriptional manner.

Finally, to ensure that the role of miR-219 in neurons was 
specific to regulation of the target gene CaMKIIγ, a rescue 
experiment was performed. A recombinant CaMKIIγ vector 
was constructed to investigate the effect of CaMKIIγ over-

expression on cell survival of glutamate-induced neurons 
transfected with miR-219 mimic. Western blot assay results 
demonstrated that CaMKIIγ expression doubled after trans-
fected with pcDNA3.1-CaMKIIγ compared with untrans-
fected and vector controls (P < 0.01; Figure 8A). CaMKIIγ 
expression was expected to be significantly reduced when 
pcDNA3.1-CaMKIIγ and miR-219 mimic were co-trans-
fected. As shown in Figure 8B, decreased cell viability was 
observed in glutamate-induced neurons transfected with 
pcDNA3.1-CaMKIIγ compared with normal and vector 
controls (P < 0.05). Combined with results shown in Fig-
ure 3, this finding indicated that CaMKIIγ and miR-219 
co-overexpression treatment inhibited the role of single 
miR-219 overexpression in rescuing cell viability of gluta-
mate-induced neurons. 

Discussion
Sepsis is a systemic inflammatory response caused by in-
fection. Septic encephalopathy is a severe complication of 
sepsis, and the pathogenesis of this disease is still unclear 
(Moskowitz et al., 2016; Warren et al., 2017). Oxidative 
stress, changes in blood-brain barrier permeability, and in-
creased cytokine production are involved in septic encepha-
lopathy. Excitatory amino acids, which also act as excitatory 
neurotransmitters, play an excitotoxic role in septic enceph-
alopathy (Chaudhry and Duggal, 2014; Tauber et al., 2017). 
Increased concentrations of glutamate in neural cells, as 
well as increased expression of glutamate-activated N-meth-
yl-D-aspartic acid receptors, after treatment with endotoxin 
(lipopolysaccharide) lead to neuronal injury (Yousef and 
Lang, 1994). In fact, the brain dysfunction observed during 
septic encephalopathy is probably the consequence of co-ac-
tion of numerous factors (Ziaja, 2013). 

Glutamate, the most abundant excitatory amino acid in 
the brain, takes a central part in nerve generation in the 
embryo, as well as various excitatory synaptic transmission 
processes and synaptic plasticity in adulthood (Galvan and 
Gutierrez, 2017). Glutamate concentration increases rapidly 
in brain tissue after cerebral ischemia, leading to excessive 
activation of glutamate receptors (especially N-meth-
yl-D-aspartic acid receptor) in the postsynaptic membrane 
and extracellular Ca2+ influx (Song et al., 2016). Excessive 
stimulation of glutamate receptors induced excitotoxicity, 
and participated in nerve injury and septic encephalopathy 
(Ziaja, 2013). 

To provide a new therapy for septic encephalopathy, we 
measured the expression of miR-219 and CaMKIIγ mRNA 
by qRT-PCR in glutamate-induced hippocampal neurons. 
We observed an obvious change of miR-219 and CaMKIIγ 
mRNA in glutamate-treated neurons, indicating that miR-
219 and CaMKIIγ may be involved in septic encephalopathy.

An overdose of glutamate induced nerve injury in neu-
ronal cultures (Zhang et al., 2017). Overdose of glutamate 
caused decreased cell viability in a dose-dependent manner. 
During septic encephalopathy, signs of apoptosis could be 
observed in neurons, which exhibited shrunken nuclei and 
damaged cell membranes (Fang et al., 2014). Thus, reducing 
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apoptosis in neurons is key to treating septic encephalop-
athy. Effects of miR-219 overexpression on cell survival/
viability and apoptosis were detected by MTT assay and 
flow cytometry. miR-219 overexpression could promote cell 
survival, attenuate glutamate-induced apoptosis, and inhibit 
caspase-3 activity. These data support a positive protective 
role of miR-219 as an antagonist of glutamate-induced exci-
totoxicity in primary hippocampal neurons. 

Our TargetScan results predicted that CaMKIIγ could be 
a target gene of miR-219. CaMKII, an important protein 
kinase in the brain, is an abundantly expressed protein in 
neurons (Wang and Peng, 2016). Many studies have iden-
tified regulatory roles for CaMKII across multiple neural 
cell systems, including equilibrium and dynamics of calci-
um ions, cellular transport, cellular morphology, neurite 
growth, long-term synaptic plasticity, and learning and 
memory consolidation (Rosen et al., 2015; Marcelo et al., 
2016; Mauger et al., 2016). Moreover, CaMKII plays an im-
portant role in the pathogenesis of neuronal diseases such as 
cerebral ischemia, Alzheimer’s disease, and Parkinson’s dis-
ease, which made CaMKII a new drug target for neuropro-
tection or myocardiac protection (Cheng et al., 2010; Tan 
et al., 2012; McCullough et al., 2013). Use of a fluorescence 
reporter gene system and rescue experiments confirmed that 
CaMKIIγ was regulated by miR-219 for neuroprotective 
attenuation of neurotoxicity. CaMKIIγ expression was re-
pressed by miR-219, providing a compensatory mechanism 
to maintain N-methyl-D-aspartic acid receptor function 
during excessive glutamate stimulation. The effects of miR-
219 on calmodulin or calcium-dependent upstream factors 
were not reported previously. However, we may do some 
researches about this in the future. 

In conclusion, miR-219 may exert a neuroprotective effect 
on glutamate-induced hippocampal neurons by inhibiting 
caspase-3 activity and regulating CaMKIIγ. The positive 
protective effect of miR-219 might be applied in the future 
as an antagonist of excitotoxicity for septic encephalopathy. 
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