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An intranasal stringent response
vaccine targeting dendritic cells
as a novel adjunctive therapy
against tuberculosis
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Darla Quijada1,2, Kaitlyn Comstock3, Avinaash K. Sandhu3,
Aakanksha R. Kapoor1,2, Yinan Hui3, Samuel K. Ayeh1,2,
Rokeya Tasneen1,2, Stefanie Krug1,2, Carina Danchik1,2,
Tianyin Wang3, Courtney Schill 3, Richard B. Markham3*†

and Petros C. Karakousis1,2*†

1Division of Infectious Diseases, Department of Medicine, The Johns Hopkins Hospital, Baltimore,
MD, United States, 2Center for Tuberculosis Research, Department of Medicine, Johns Hopkins
University School of Medicine, Baltimore, MD, United States, 3W. Harry Feinstone Department of
Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health,
Baltimore, MD, United States, 4Division of Hematological Malignancies, Department of Oncology,
Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Hospital, Baltimore, MD,
United States
Lengthy tuberculosis (TB) treatment is required to overcome the ability of a

subpopulation of persistent Mycobacterium tuberculosis (Mtb) to remain in a

non-replicating, antibiotic-tolerant state characterized by metabolic

remodeling, including induction of the RelMtb-mediated stringent response.

We developed a novel therapeutic DNA vaccine containing a fusion of the

relMtb gene with the gene encoding the immature dendritic cell-targeting

chemokine, MIP-3a/CCL20. To augment mucosal immune responses,

intranasal delivery was also evaluated. We found that intramuscular delivery

of the MIP-3a/relMtb (fusion) vaccine or intranasal delivery of the relMtb (non-

fusion) vaccine potentiate isoniazid activity more than intramuscular delivery of

the DNA vaccine expressing relMtb alone in a chronic TB mouse model

(absolute reduction of Mtb burden: 0.63 log10 and 0.5 log10 colony-forming

units, respectively; P=0.0002 and P=0.0052), inducing pronounced Mtb-

protective immune signatures. The combined approach involving intranasal

delivery of the DNA MIP-3a/relMtb fusion vaccine demonstrated the greatest

mycobactericidal activity together with isoniazid when compared to each

approach alone (absolute reduction of Mtb burden: 1.13 log10, when

compared to the intramuscular vaccine targeting relMtb alone; P<0.0001), as

well as robust systemic and local Th1 and Th17 responses. This DNA vaccination

strategy may be a promising adjunctive approach combined with standard
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therapy to shorten curative TB treatment, and also serves as proof of concept

for treating other chronic bacterial infections.
KEYWORDS

Mycobacterium tuberculosis, tuberculosis DNA vaccines, persistence, stringent
response, immunotherapy, intranasal route, T cells
Introduction

Tuberculosis (TB) is a major cause of morbidity, and the

second leading infectious killer after COVID-19 worldwide (1).

The current six-month regimen, consisting of isoniazid (INH),

rifampin, pyrazinamide and ethambutol, has high efficacy

against drug-sensitive TB, but its length and complexity

contributes to treatment interruptions that jeopardize cure

and promote drug resistance (2, 3). Although novel,

treatment-shortening antibiotic regimens have shown

promising results in international clinical trials (4, 5), the

resources required for direct observation of daily treatment

and the associated costs may still pose barriers to their

implementation in TB-endemic countries. Recent work has

focused on adjunctive, host-directed strategies to simplify and

shorten the course of TB therapy (6).

The need for prolonged TB treatment is believed to reflect

the unique ability of a subpopulation of Mycobacterium

tuberculosis (Mtb) bacilli within the infected host to remain in

a nonreplicating, persistent state (7) characterized by tolerance

to first-line anti-TB drugs, like INH, which more effectively

targets actively dividing bacilli (8–11). One of the key bacterial

pathways implicated in antibiotic tolerance is the stringent

response, which is regulated by the (p)ppGpp synthase/

hydrolase, Rv2583c (RelMtb) (12, 13). RelMtb deficiency results

in defective Mtb survival under nutrient starvation (14) and in

mouse lungs (15) and mouse hypoxic granulomas (16), reduced

virulence in guinea pigs (17) and C3HeB/FeJ mice (18), and

increased Mtb susceptibility to INH in mouse lungs (18),

rendering RelMtb an attractive target for novel antitubercular

therapies, including for drug-resistant TB (13).

We previously showed that intramuscular (IM) delivery of a

DNA vaccine expressing relMtb enhanced the mycobactericidal

activity of INH in a murine TB model (3, 19). In independent

studies, our group has shown the enhanced efficacy of vaccines

when the antigen of interest is fused to the gene encoding the

chemokine Macrophage Inflammatory Protein-3 alpha/C-C

Motif Chemokine Ligand 20 (MIP-3a/CCL20) (20–22). This

chemokine targets the antigen of interest to immature dendritic

cells (DCs) and, compared to vaccines without the MIP-3a
02
component, has shown enhanced immune responses in both

melanoma and malaria model systems (20–22). These earlier

studies have also demonstrated that no host immune response is

elicited to the autologous chemokine component of the vaccine

(20–22). Since T-cell immunity is required to control Mtb

infection (6), we hypothesized that fusion of relMtb to the

chemokine gene MIP-3a (yielding MIP-3a/relMtb or “fusion

vaccine”) would enhance the immunogenicity of the relMtb

vaccine and further potentiate the mycobactericidal activity of

INH in vivo.

Protection against pulmonary TB is associated with the

ability of anti-Mtb T cells to exit the pulmonary vasculature

and enter into the lung parenchyma and airways (23). Intranasal

(IN) vaccination has been shown to promote recruitment of

antigen-experienced T cells to these restricted lung

compartments in contrast to parenteral immunization (23).

Thus, we also hypothesized that IN administration of the

vaccine expressing relMtb alone or the fusion vaccine would

further augment T-cell responses within the lung, the primary

site of Mtb infection.

Here, we present our bacteriological and immunological

findings of a DNA vaccine expressing relMtb alone or the

fusion construct, administered by the IM or IN route, in a

murine model of chronic TB. Our results indicate that IM

delivery of the MIP-3a/relMtb fusion vaccine or IN delivery of

the relMtb vaccine yielded statistically equivalent improvement of

mycobacterial outcomes compared to IM delivery of the relMtb

vaccine. IN delivery of the MIP-3a/relMtb fusion vaccine

(“optimized vaccination strategy”) yielded the highest additive

therapeutic effect compared to each single novel approach alone.
Methods

Bacteria and growth conditions

Wild-type Mtb H37Rv was grown in Middlebrook 7H9

broth (Difco, Sparks, MD) supplemented with 10% oleic acid-

albumindextrose- catalase (OADC, Difco), 0.2% glycerol, and

0.05% Tween-80 at 37°C in a roller bottle (3).
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Antigen preparation

The previously generated relMtb expression plasmid, pET15b

[relMtb] (3, 19), was used for expression and purification of

recombinant RelMtb protein. Escherichia coli BL21 (DE3)

RP competent cells (Stratagene) were transformed with

pET15b[relMtb]. Transformed bacteria were selected with

ampicillin (100 mg/ml), and cloning was confirmed by DNA

sequencing. Protein expression was performed using standard

protocols and purification was performed using Ni-NTA

Agarose (Qiagen). Recombinant RelMtb protein (87 kDa) was

purified from the cell lysate using a Ni-NTA resin column. The

purity was confirmed by SDS-PAGE gel and immunoblot

analyses. The protein concentration was determined using a

BCA protein assay with BSA as the standard (Thermo Fisher).

Recombinant RelMtb has been shown previously to retain (p)

ppGpp synthesis and hydrolysis activities and can serve as an

antigen to measure RelMtb-specific T-cell responses ex vivo

(3, 19).
DNA vaccines

The plasmid pSectag2B encoding the full-length relMtb gene

was used as the relMtb DNA vaccine (19). The relMtb gene was

codon-optimized (Genscript) and fused to the mouse MIP-3a
gene. The fusion product was cloned into pSectag2B, serving as
Frontiers in Immunology 03
the MIP-3a/relMtb, or “fusion” vaccine (Figure 1A, detailed

sequence in Supplementary Appendix). Proper insertion was

confirmed by sequencing and the expression of target genes was

confirmed by transfection of 293T cells in lysates and

supernatants. Vaccination plasmids were selected by ampicillin

(100 mg/ml) and extracted from E. coli DH5-a (Invitrogen™

ThermoFisher Scientific, Waltham, MA) using Qiagen®

(Germantown, MD) EndoFree® Plasmid Kits and were diluted

with endotoxin-free 1xPBS.
Mtb challenge study in mice

Seven to ten male and female C57BL/6 mice (8-10-week-old,

The Jackson Laboratory) were aerosol-infected with ~100 bacilli

of wild-type Mtb H37Rv using a Glas-Col Inhalation Exposure

System (Terre Haute, IN). After 28 days of infection, the mice

received INH in a concentration of 10 mg/kg dissolved in total

volume of 100 ml of distilled water per mouse. INH was

administered by esophageal gavage once daily (5 days/week)

and mice were randomized to receive the relMtb vaccine or the

fusion vaccine by the IM or IN route. The mice were vaccinated

three times at one-week intervals. IM or IN delivery of each

plasmid followed adequate anesthesia of mice by vaporized

isoflurane. For IM vaccinations, each plasmid was injected

bilaterally into the quadriceps femoris muscle of the mice (50

mL in each quadriceps), followed by local electroporation using
A

B

C

FIGURE 1

IM delivery of the MIP-3a/relMtb fusion vaccine increases the mycobactericidal activity of INH in a murine model of chronic TB. (A) Vaccination
constructs; (B) Timeline of the Mtb challenge study; (C) Scatterplot of lung mycobacterial burden at 10 weeks after the primary vaccination per
vaccination group. Mtb, Mycobacterium tuberculosis; IM, Intramuscular; CFU, colony-forming units; INH, Isoniazid. ***P < 0.001, ****P <
0.0001.
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an ECM830 square wave electroporation (EP) system (BTX

Harvard Apparatus Company, Holliston, MA, USA), since EP

can increase the antigen uptake up to 1000 times (24). Each of

the two-needle array electrodes delivered 15 pulses of 72V (a 20-

ms pulse duration at 200-ms intervals) (19). For IN vaccinations,

each plasmid was administered into both nostrils (50 mL in each

nostril) and mice were monitored in the upright position until

complete recovery and vaccine absorption were assured. To

compensate for the anticipated reduced plasmid uptake

without EP, which cannot be used with the IN vaccination

route, we increased the dose of the vaccine 10-fold. The mice

were sacrificed 6 weeks and 10 weeks after treatment initiation.

The spleens and left lungs were harvested and processed into

single-cell suspensions. The cells were then filtered through a 70-

mm nylon filter mesh to remove undigested tissue fragments and

washed with complete RPMI medium.The right lungs were

homogenized using glass homogenizers. Serial tenfold

dilutions of lung homogenates in PBS were plated on 7H11

selective agar (BD) at the indicated time points. Plates were

incubated at 37°C and colony-forming units (CFU) were

counted 4 weeks later by at least 2 investigators (3, 19). All

procedures were performed according to protocols approved by

the Johns Hopkins University Institutional Animal Care and

Use Committee.
Immunogenicity studies in mice

Three to five male and female C57BL/6 mice (8-10-week-old,

Charles River Laboratory) were randomized to receive the relMtb

or the fusion DNA vaccine by the IM or IN route. The mice were

sacrificed 6 weeks after the primary vaccination. Spleens,

draining lymph nodes (LNs), lungs and peripheral blood

mononuclear cells (PBMCs) were collected and processed into

single-cell suspensions individually.
Intracellular cytokine staining, flow
cytometry analysis and fluorospot

Single-cell suspensions from spleens, draining LNs, lungs and

PBMCs were prepared. Each tissue was stimulated individually with

purified recombinant RelMtb protein at 37°C (3, 19) for various time

intervals, from 12 hrs (IFN-g, IL-17a, IL-2) to 24 hrs (TNF-a),
depending on the cytokine of interest. For Intracellular Cytokine

Staining (ICS), GolgiPlug cocktail (BD Pharmingen, San Diego, CA)

was added for an additional 4 hours after stimulation (total, 16 and 28

hours, respectively) and cells were collected using FACS buffer (PBS +

0.5% Bovine serum albumin (Sigma-Aldrich, St. Louis, MO), stained

with Zombie NIR™ Fixable Viability Kit (Biolegend Cat. No.:

423105) for 30 min, and washed with PBS buffer. Surface proteins

were stained for 20 min, the cells were fixed and permeabilized with

buffers from Biolegend intracellular fixation/permeabilization set
Frontiers in Immunology 04
following manufacturer protocols (Cat. No. 421002), intracellular

proteins were stained for 20 min, and samples were washed and

resuspendedwith FACS buffer. The following anti-mousemAbs were

used for ICS: PercPCy5.5 conjugated anti-CD3 (Biolegend Cat. No

100217), FITC-conjugated anti-CD4 (Biolegend Cat. No 100405),

Alexa700 conjugated anti-CD8 (Biolegend Cat. No. 155022), PECy7

conjugated anti-TNF-a, (Biolegend Cat. No. 506323), APC

conjugated anti-IFN-g, (Biolegend Cat. No. 505809), BV421

conjugated anti-IL-2, (Biolegend Cat. No 503825), PE conjugated

anti-IL-17a (Biolegend Cat. No 506903). The Attune™ NxT

(Thermo Fisher Scientific, Waltham, MA), and a BD™ LSRII flow

cytometer was used. Flow data were analyzed by FlowJo Software

(FlowJo 10.8.1, LLC Ashland, OR). Flow analysis included alive,

gated, total T lymphocytes, including CD4+ and CD8+ T-cell

subpopulations. For simplicity, the CD8+ subpopulation analysis is

not reported if no substantial population to allow comparisons was

detected (e.g., IL-17a). For FluoroSpot assays (Supplementary Data),

kits with pre-coated plates for enumeration of cells secreting IFN-g
and IL-17A were purchased fromMabtech (Cat. No. FSP-414443-2).

Spots were enumerated on an AID iSpot EliSpot/FluoroSpot Reader.
Statistics

Pairwise comparisons of group mean values for log10 CFU

(microbiology data) and flow cytometry data were made using

one-way analysis of variance followed by Tukey’s multiple

comparisons test. Prism 9.3 (GraphPad Software, Inc. San

Diego, CA) was utilized for statistical analyses and figure

generation. To illustrate the aggregate cytokine data per group

(Figure 4), fraction of total analysis was used and is displayed in

stacked bars. In Figure 6, cytokine data were normalized (the

total sum of all the experimental groups= 100%, total absolute

number of alive cells=30,000). All error bars represent the

estimation of the standard error of the mean, and all midlines

represent the group mean. A significance level of a ≤ 0.05 was set

for all experiments.
Results

Intramuscular administration of MIP-3a/
relMtb fusion vaccine increases the
mycobactericidal activity of INH and
elicits robust systemic Th1 responses in a
murine model of chronic TB

Four weeks after Mtb aerosol infection, C57BL/6 mice were

treated daily with human-equivalent doses of oral INH for 10

weeks (Figure 1B). TheMIP-3a/relMtb fusion vaccine [Figure 1A,

detailed sequences are available in the Supplementary

Appendix] was administered via the IM route weekly for 3

weeks. The original vaccination strategy (IM delivery of the
frontiersin.org
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relMtb vaccine), which previously demonstrated therapeutic

adjunctive activity together with INH (3, 19), served as our

baseline comparator in this study (“comparator” vaccine). One

negative control group received no treatment, while another

group received INH only. All vaccinated groups received INH in

addition to the tested vaccines. Since DNA vaccination alone did

not exhibit significant mycobactericidal activity in prior work

(19), this group was not included in the present study. At 10

weeks after primary vaccination via the IM route, greater

reduction in the lung mycobacterial burden was observed in

the group receiving the fusion vaccine along with INH compared

to that receiving the comparator vaccine with INH [absolute

reduction of mycobacterial burden: 0.63 log10 CFU (P=0.0001),

Figure 1C]. Relative to the relMtb vaccine, the MIP-3a/relMtb

fusion vaccine elicited substantially higher numbers of RelMtb-

specific, IFN-g-producing CD4+ and CD8+ T cells (P<0.0001

and P<0.0001, respectively; Figures 2A, B), TNF-a-producing
CD4+ T cells (P=0.0076, Figure 2C), and IL-2-producing CD4+

and CD8+ T cells (P=0.005 and P<0.0001, respectively; Figures

2E, F) in the spleens of Mtb-infected mice, indicating that the

fusion vaccine elicits more robust systemic Th1 responses

compared to the comparator vaccine.

In an independent immunogenicity study using

uninfected animals (Supplementary Figure 2), we also tested

IFN-g secretion in mouse spleens using Fluorospot

(Supplementary Figures 2B, C). We found significantly

higher secretion of RelMtb-specific IFN-g in the spleens of

mice receiving IM delivery of the IM fusion vaccine relative to
Frontiers in Immunology 05
those receiving IM delivery of the comparator vaccine

(P=0.036). We also tested the T-cell responses in additional

murine tissues, including PBMCs, across the experiment. The

percentage of TNF-a-producing CD4+ T cells in the PBMC

population starting at day 28 (P=0.036) and peaking at day 42

(P=0.018) after primary vaccination was significantly higher

in the group receiving IM vaccination with the fusion vaccine

vs. that receiving IM vaccination with the comparator vaccine

(Supplementary Figure 2D).

In summary, IM delivery of the fusion vaccine demonstrated

enhanced adjuctive mycobactericidal activity compared to IM

delivery of the comparator vaccine and the former vaccination

strategy was associated with increased systemic Th1 cytokines.
Intranasal delivery of the MIP-3a/relMtb
fusion vaccine showed the greatest
mycobactericidal activity in combination
with INH, eliciting both robust local and
systemic Th1/Th17 responses in a murine
model of chronic TB

Next, we investigated to what extent the IN route of

vaccination could further enhance the adjuctive therapeutic

activity of each vaccine compared to IM delivery. IN

vaccination with the relMtb vaccine significantly enhanced the

mycobactericidal activity of INH compared to IM vaccination

with the same vaccine (“comparator vaccination strategy”)
A

B

C

D

E

F

FIGURE 2

T-cell responses in murine spleens 6 weeks after Mtb challenge: IM vaccination with MIP-3a/relMtb elicits higher systemic Th1 response
compared to IM vaccination with relMtb. RelMtb-specific IFN-gproducing CD4+ T cells (A) and CD8+ T cells (B); RelMtb-specific, TNF-a-
producing CD4+ T cells (C) and CD8+ T cells (D); RelMtb-specific IL-2-producing CD4+ T cells (E) and CD8+ T cells, (F) Flow cytometry-
intracellular staining. IM, Intramuscular; IN, Intranasal. Y-axis scales are different among cytokines and between tissues in order to better
demonstrate differences between groups where cytokine expression levels were lower. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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(absolute reduction of mycobacterial burden: 0.52 log10 CFU

(P=0.0052); Figure 3]. IN vaccination with the MIP-3a/relMtb

fusion vaccine (hereafter referred to as the “optimized

vaccination strategy”) showed the greatest additive therapeutic

effect in combination with INH relative to any other

experimental group (Figure 3). The optimized vaccination

strategy resulted in an absolute reduction in lung bacillary

load of: 1.81 log10 relative to the INH group, 1.13 log10 relative

to the comparator vaccination strategy (P<0.0001); 0.5 log10
relative to IM delivery of the MIP-3a/relMtb fusion vaccine

(P=0.0058; Figure 3); and 0.61 log10 relative to IN delivery of

the relMtb vaccine (P<0.0001; Figure 3). At 10 weeks post-

primary vaccination, the optimized vaccination strategy

resulted in the greatest reduction in normalized mean lung

weight, which serves as a proxy for total lung inflammation,

relative to the INH only group (relative reduction in normalized

lung weight= 42.4%; P<0.0002) and untreated control group

(relative reduction in normalized lung weight= 66.3%; P<0.0001)

(Supplementary Figure 1A). All the individual comparisons

among the different experimental groups with respect to study

endpoints are listed in Supplementary Table 1. Mean lung

mycobacterial burdens at implantation (-4 weeks), initiation of

treatment (0 weeks), and at 6 weeks and 10 weeks after the

initiation of treatment for each experimental group are shown in
Frontiers in Immunology 06
Supplementary Figure 1B. Gross pathology photographs of

representative lungs per experimental group are available in

Supplementary Figure 1C.

Having established that IM vaccination with the MIP-3a/
relMtb fusion vaccine induces enhanced systemic Th1 responses

relative to the comparator vaccine (Figure 2), we next sought to

investigate the effect of IN delivery of each vaccine on immune

responses in the lungs, i.e., at the point of entry of Mtb. The

optimized vaccination strategy group induced substantially

greater numbers of RelMtb-specific, IFN-g-producing CD4+

and CD8+ T cells (P=0.003 and P<0.0001, respectively; Figures

4A, B) and IL-17A-producing CD4+ T cells (P<0.0001; Figure

4C) in the lungs of Mtb-infected mice compared to IM delivery

of the fusion vaccine.

In the context of superior local production of Th-1 and Th-

17 pathway-related cytokines induced by the optimized

vaccination strategy, we proceeded to compare the effect of IN

delivery of the fusion vaccine on systemic Mtb-protective Th1

responses relative to IM administration of the same vaccine. We

found that the IN delivery of the fusion vaccine (optimized

vaccination strategy) elicits similarly high levels of RelMtb-

specific, IFN-g-producing CD4+ and CD8+ T cells (Figures

5A, B) and IL-2-producing CD4+ and CD8+ T cells (Figures

5C, D) in Mtb-infected spleens compared to the IM delivery of
FIGURE 3

Fusion of relMtb with MIP-3a and intranasal (IN) delivery increase the mycobactericidal activity of INH in a murine model of chronic TB. The
greatest therapeutic effect is demonstrated after IN delivery of the MIP-3a/relMtb fusion vaccine. Scatterplot of lung mycobacterial burden at 10
weeks after the primary vaccination per vaccination group: Mtb, Mycobacterium tuberculosis; IM, Intramuscular; IN, Intranasal; CFU, colony-
forming units; INH, Isoniazid. All statistically significant P values are available in Supplementary Table 1. **P < 0.01, ***P < 0.001, ****P < 0.0001,
ns, non-statistically significant.
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the same vaccine. Of interest, the percentage of RelMtb-specific,

TNF-a-producing CD4+ and CD8+ T cells derived from spleens

was significantly higher following IN vs. IM delivery of the

fusion vaccine (P<0.0001 and P<0.0001, respectively; Figures 5E,

F). Furthermore, the number of IL-17A-producing CD4+ T cells

in the spleens of mice receiving IN vaccination with the fusion

vaccine was also significantly higher compared to those of mice

receiving the IM vaccination with the same vaccine (P<0.0001;

Figure 5G).

In an independent immunogenicity study using uninfected

animals (Supplementary Figure 2A), we also tested the RelMtb-

specific, IL-17A secretion in mouse spleens using Fluorospot

(Supplementary Figures 3A, B). We confirmed the significantly

higher production of the RelMtb-specific IL-17A in the tissues of

mice vaccinated with the optimized vaccination strategy

compared to those receiving the fusion vaccine via the IM

route (P=0.0079). The percentage of RelMtb-specific, IL-17A-

producing CD4+ T cells in the PBMCs was significantly higher

in the optimized vaccination strategy group vs. the IM fusion

vaccination group (Supplementary Figure 3C). We also tested

the T-cell responses in additional murine tissues, including

draining LNs (inguinal vs. mediastinal). The percentage of

RelMtb-specific, IL-17A-producing CD4+ T cells in the LNs of

mice vaccinated with the optimized vaccination strategy was

significantly higher compared to those vaccinated with the

fusion vaccine via the IM route (Supplementary Figure 3D).

Taken together, the optimized vaccination strategy, which

was shown to have the most favorable microbiological outcomes

relative to any other tested vaccination approach (Figure 3), was

also found, in parallel, to be associated with significantly

increased production of multiple cytokines associated with

Mtb control, both systemically and locally in the lungs, i,e., at

the site of infection (Figures 4 and 5). More specifically,
Frontiers in Immunology 07
compared to any other approach, the aggregate percentage of

RelMtb-specific CD4+ and CD8+ T cells producing IL-17A, TNF-

a, IFN-g, or IL-2 in the spleens and lungs of Mtb-infected

animals was significantly greater in the recipients of the

intranasally administered fusion vaccine (Figures 6A–C,

Supplementary Table 2).
Discussion

The development of novel immunotherapeutic regimens

that synergize with antibiotics to accelerate curative TB

treatment is an attractive strategy for improving medical

adherence and treatment completion rates, and for reducing

costs (25). In the current study, we show thatMIP-3a fusion and

the IN route of delivery individually enhance the therapeutic

adjunctive activity of a DNA vaccine targeting an Mtb

persistence antigen in a murine model of chronic TB.

Importantly, the combined, optimized approach, i.e., IN

immunization with a DNA fusion vaccine expressing MIP-3a/
relMtb, was accompanied by additive Th1/Th17 responses, both

systemically and at the site of infection. This novel optimized

vaccination strategy may be a promising adjunctive therapeutic

approach in combination with standard anti-TB therapy.

Although a functional immunological signature predictive of

adequate TB control is still lacking, it is clear that CD4+ and

CD8+ T cells are critical in developing immunity against Mtb

(26–30). T-cell immunity to TB is likely mediated by a variety of

T cells, especially those mediating Th1 and Th1/Th17-like

responses (31). Chronic antigenic stimulation drives antigen-

specific CD4+ T-cell functional exhaustion during murine Mtb

infection (32), with important implications for TB vaccine

design. Thus, subdominant Mtb antigens during chronic Mtb
A B C

FIGURE 4

IN vaccination with the MIP-3a/relMtb fusion vaccine yields the most robust local Th1 and Th17 responses compared to all experimental groups.
RelMtb-specific IFN-g-producing CD4+ T cells (A) and CD8+ T cells (B), RelMtb-specific, IL-17A-producing CD4+ T cells (C) as assessed by flow
cytometry. IM, Intramuscular; IN, Intranasal. Y-axis scales are different among cytokines and between tissues in order to better demonstrate
differences between groups where cytokine expression levels were lower. All statistically significant P values are available in Supplementary
Table 2. *P < 0.05, ***P < 0.001, ****P < 0.0001.
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infection, including RelMtb, which is induced during

antitubercular treatment (3), may represent promising targets

for therapeutic vaccines in an effort to “re-educate” the immune

system to tailor host anti-TB responses. Notably, our group has

also studied a therapeutic vaccine targeting ESAT-6, another key

Mtb antigen, in two chronic TB animal models. We found that

the vaccination group receiving the relMtbDNA vaccine and INH

showed a significant reduction in mycobacterial burden in the
Frontiers in Immunology 08
lungs of C57BL/6 mice and guinea pigs compared to the groups

receiving esat6 DNA vaccine and INH, which did not differ from

the control group (3). In the current study, we chose to focus on

optimizing the efficacy of the relMtb DNA vaccine by boosting

RelMtb-specific T-cell responses through enhanced engagement

with immature DCs.

Immature DCs are critical for the activation of adaptive

immunity, and, eventually, mature DCs trigger antigen-specific
A

B

C

D

E

F

G

FIGURE 5

IN vaccination with the the MIP-3a/relMtb fusion vaccine yields robust systemic Th1 responses. RelMtb-specific IFN-g-producing CD4+ T cells (A)
and CD8+ T cells (B), RelMtb-specific IL-2-producing CD4+ T cells (C) and CD8+ T cells (D),RelMtb-specific TNF-a-producing CD4+ T cells (E)
and CD8+ T cells (F), RelMtb-specific, IL-17A-producing CD4+ T cells (G) as assessed by flow cytometry. IM, Intramuscular; IN, Intranasal. Y-axis
scales are different among cytokines and between tissues in order to better demonstrate differences between groups where cytokine expression
levels were lower. All statistically significant P values are available in Supplementary Table 2. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
A B C

FIGURE 6

IN vaccination with the MIP-3a/relMtb fusion vaccine increases the simultaneous production of multiple cytokines associated with Mtb control,
systemically and at the site of infection. Aggregate production in stack bars of IL17-A, TNF-a, IFN-g, or IL-2-producing CD4+ and CD8+ T cells
in the spleens and lungs of Mtb-infected animals in total CD3 population (A), in CD4+ (B) and in CD8+ (C) subpopulations. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001.
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naïve T cells (33). Of note, only a small minority of DCs are

attracted to sites of immunization (33), and, in the case of HIV

and TB infections, a proportion of the attracted DCs may be

dysfunctional (34). Fusion of the antigen of interest to the

chemokine MIP-3a (or CCL20) targets the antigen to

immature DCs (35). It has been shown that following naked

DNA vaccination, epidermal cells secrete the antigen of interest-

MIP-3a fusion construct (20, 36). The secreted fusion construct

is taken up and internalized by skin Langerhans cells via the

receptor for this chemokine, which is termed C-C Motif

Chemokine Receptor 6 (CCR6) (36). The complex is then

processed and presented in draining LNs to elicit efficient

cellular and humoral responses (36). Enhanced efficacy has

been shown compared to antigen-only vaccines in various

systems (20–22). In a mouse melanoma model, our group has

demonstrated that IM immunization with a DNA vaccine

containing a fusion of MIP-3a with the tumor antigen gene

gp100/Trp2 elicited greater numbers of tumor antigen-specific T

cells and offered greater therapeutic benefit compared to the

cognate vaccine lacking theMIP-3a fusion (20, 21). Importantly,

MIP-3a has also been shown to play a key role in driving DC

recruitment to the nasal mucosa (37). Indeed, we found that IM

vaccination with the MIP-3a fusion construct corresponded to

increased antigen-specific systemic Th1 responses (IFN-g, TNF-
a, Il-2 in the spleens and TNF-a in PBMCs), relative to the

relMtb alone construct. Interestingly, although this vaccination

strategy, i.e., IM vaccination with the MIP-3a/relMtb, fusion

construct, yielded improved microbiological outcomes when

combined with INH compared to the non-fused relMtb vaccine,

no Th1 response was observed in the lungs, the primary site of

the infection.

Compelling evidence suggests that protection against

respiratory pathogens, such as Mtb, is dependent on the

presence of pathogen-specific immune cells at the primary site

of infection (25, 38, 39). Pre-clinical studies have shown that

parenteral immunization with TB vaccines can drive robust

antigen-specific T-cell responses in the periphery, but these

cells are unable to rapidly enter the restricted lung mucosal

compartments and largely fail to restrictMtb replication (40). In

contrast, respiratory mucosal immunization generates a long-

lasting population of tissue-resident T cells expressing homing

molecules to allow preferential migration and residence in the

airway lumen and lung parenchyma (39–41). These immune

cells generate an important line of defense by establishing

pathogen-specific immunity at the site of entry, providing

markedly enhanced control against pulmonary Mtb infection

(39–41). Importantly, after IN vaccination, these antigen-

experienced, lung-resident, T-cells have been shown to

produce IL-17A in addition to IFN-g, expanding the known

signature panel that may confer enhanced TB immunity (42–

45). In the current study, we have shown for the first time that IN

delivery of a vaccine expressing relMtb enhances the bactericidal

activity of an antitubercular drug (INH) relative to IM delivery
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of the same vaccine. Importantly, the optimized approach of

MIP-3a fusion and the IN route of immunization yielded the

greatest additive adjunctive mycobactericidal activity with INH

in murine lungs, resulting in an approximate 100-fold reduction

in lung bacterial burden compared to INH alone. The optimized

approach was associated with more robust Th1 (IFN-g, TNF-a,
IL-2) and Th17 responses (IL-17A) systemically (spleens and

PBMCs), but also in the lungs and draining LNs (IFN-g and IL-

17A), the primary site of infection.

There are limitations in our study. Although our cytokine

analysis allows us to make some initial associations between each

vaccination strategy and T-cell responses, future studies are

needed to elucidate in detail the mechanism of the tested

therapeutic vaccines, including the contribution of B cells.

Also, additional studies are needed to test the therapeutic

efficacy of these vaccines in other animal models which more

closely represent human TB pathology, such as guinea pigs and

non human primates (46).

In conclusion, we have shown that IN immunization with a

DNA vaccine expressing MIP-3a/relMtb generates strong,

additive Th1 and Th17 responses and significantly potentiates

the mycobactericidal activity of the first-line drug, INH. Further

studies are required to elucidate the relative importance of the

different effector mechanisms elicited by this immunization

strategy and to refine our understanding of the host-pathogen

interactions that result in the improved therapeutic effects. Other

formulations of this vaccine construct, including RNA platform,

will be also the subject of future studies. Ultimately, the potential

utility of this vaccination combination strategy must be

evaluated as an adjunctive therapeutic intervention in

shortening the duration of curative treatment for active TB in

relevant preclinical models.
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