
Mapping the effects of drugs on the immune system

Brian A Kidd1,2,7, Aleksandra Wroblewska1,7, Mary R Boland3, Judith Agudo1, Miriam 
Merad4,5,6, Nicholas P Tatonetti3, Brian D Brown1,5, and Joel T Dudley1,2

1Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New 
York, New York, USA.

2Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 
New York, New York, USA.

3Department of Biomedical Informatics, Systems Biology and Medicine, Columbia University 
Medical Center, New York, New York USA.

4Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New 
York, USA.

5Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

6Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Abstract

Understanding how drugs affect the immune system has consequences for treating disease and 

minimizing unwanted side effects. Here we present an integrative computational approach for 

predicting interactions between drugs and immune cells in a system-wide manner. The approach 

matches gene sets between transcriptional signatures to determine their similarity. We apply the 

method to model the interactions between 1,309 drugs and 221 immune cell types and predict 

69,995 known and novel interactions. The resulting immune-cell pharmacology map is used to 

predict how 5 drugs influence 4 immune cell types in humans and mice. To validate the 

predictions, we analyzed patient records and examined cell population changes from in vivo 
experiments. Our method offers a tool for screening thousands of interactions to identify 

relationships between drugs and the immune system.

Pharmaceutical drugs of all types and classes influence the immune system
1–4

 but the 

mechanisms of these perturbations are often poorly understood. Some drugs target immune 
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cells specifically to treat immunological diseases, such as B-cell lymphomas (for example, 

rituximab
5
), whereas others have broad immunosuppressive or anti-inflammatory effects (for 

example, thalidomide
6
, leflunomide

7
 or sirolimus

8
). However, many drugs that were not 

developed to be immunomodulatory are nevertheless associated with mild to severe immune 

phenotypes. For example, several anti-infectives, anti-convulsants and anti-diabetic drugs are 

believed to induce the skin hypersensitivity reaction urticaria
9–11

, and psychoanaleptics such 

as respiridone, memantine and citalopram have the rare, but life-threatening side effect of an 

immune-complex hypersensitivity called Stevens-Johnson syndrome
1
. Our lack of 

understanding of the global interactions between pharmaceuticals and the immune system 

confounds drug development, conceals potentially serious side effects of marketed 

compounds
12–14

, and limits discovery of drugs that could be repurposed for immune 

diseases.

Published studies on effects of drugs on immune cells have mainly examined the 

consequences of administering one drug to a single cell type
15,16

. Even when high-

throughput screens were performed, they usually focused on a specific target or readout (for 

example, changes in select cell surface markers)
17–19

 and ignored other perturbations to the 

system. In the present report, we build on previous systems-level approaches that compare 

and integrate differential expression profiles of disease with drug perturbation profiles to 

discover potential new drug indications
20–22

. Recent large-scale collaborative efforts have 

produced compendia of molecular profiles for both pharmaceutical drugs
23

 and immune 

cells
24

. To our knowledge, a systematic integration and analysis of chemogenomic and 

immunogenomic data has not been performed.

We integrated drug perturbation data obtained with human cancer cells and gene expression 

data obtained from mouse immune cells. Our analysis quantifies the likelihood that a drug 

affects an immune cell state change in the form of an ‘immunemod score’. In total, we 

generated 304 immune cell state transitions from 221 immune cell types. We studied all 

combinations of 1,309 drugs and 304 immune cell state transitions, and found 69,995 

significant interactions (of 397,936 possible interactions). From these interactions, we 

constructed an immune-cell pharmacology (IP) map of predicted drug–immune cell 

connections, which includes both known and novel interactions. To address concerns about 

integrating data across species, predictions were examined in both mouse and humans. We 

performed in vivo experimental validation of 3 predictions and obtained 100% agreement. In 

addition, we found evidence in patient data that supported our predicted interactions 

between drugs and immune cells in two independent sets of electronic medical records. Our 

results suggest that integrative computational analysis can improve understanding of the 

effects of drugs on the immune system and provide a framework for rational manipulation of 

these effects.

RESULTS

Generating molecular signatures of immune cells

The Immunological Genome Project (ImmGen) is the largest publicly available 

compendium of genome-wide transcriptional expression profiles for more than 250 distinct 

immunological cell states in mice
25–27

. The data comprise 14 categories of immune cell 
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types collected from 25 tissue locations (Supplementary Fig. 1). These states reflect diverse 

stages of lineage differentiation, collected from various tissues, using an assortment of 

genetic variants, in response to stimulations with chemicals, bacteria, or viruses and at 

separate effector stages. One challenge with using ImmGen data for probing immune 

perturbations is that gene expression profiles were captured at a single state, which provides 

limited information on cellular response to external stimuli. Thus we created a data set that 

reflects immune cell responses to perturbations by generating differentially expressed gene 

signatures between two immunological states that differ by a single parameter (for example, 

cell types with identical surface markers isolated from separate tissues or two cell types that 

differ by one surface marker such as naïve vs. memory CD4+ T cells).

We compiled a set of 304 immune cell state change signatures from 221 unique cell types in 

the ImmGen compendium to explore how drug perturbations alter the immune system (Fig. 

1a, c Supplementary Table 1). The full ranked lists are provided in Supplementary Table 2. 

These signatures group by similar cell types when clustered by the Jaccard distance between 

sets of the extreme fold-change genes (Supplementary Fig. 2). The average Jaccard distances 

between related cell types exceed the overall average background distance (Supplementary 

Fig. 3) and showed significant differences between immune cell subsets (p-value = 6 × 

10−15, ANOVA).

Generating drug chemogenomic profiles

The Connectivity Map (CMap) is a data repository of genome-wide transcriptional 

expression profiles collected from 6,100 experimental conditions of 1,309 unique 

compounds applied to human cell lines
23

. Each perturbation is represented by a list of 

differentially expressed genes that we ranked based on fold-change. To capture the 

consensus profile of a compound across conditions, we merged multiple experiments (i.e. 

different drug concentrations or cell lines) for the same compound into a single Prototype 

Ranked List (PRL), using a hierarchical majority-voting scheme
28,29

 (Fig. 1a). The 

collection of PRLs created a comprehensive resource for developing a systematic screening 

tool to look for connections between drug perturbations and immunological states 

(Supplementary Table 3).

IP map construction

We created a system-wide interaction map between drugs and immune cells by matching the 

1,309 drug perturbation profiles in CMap to the 304 immune cell state changes we curated 

from the ImmGen compendia. Our matching algorithm evaluates the similarity between two 

transcriptional expression patterns by comparing the top and bottom ranked genes from both 

profiles
20,21

 (Fig. 1b, Supplementary Fig. 4, and methods). Specifically, we tested the 

similarity between the immunological state change profiles (state B vs. state A) to each of 

the drug perturbation profiles (treated vs. untreated) by computing an immunemod score 

based on the overlap of the top- and bottom-ranked genes in each profile. A positive 

immunemod score indicates the specific drug treatment profile is similar to immune cell 

state B and suggests the drug biases the immune cell toward state B, whereas a negative 

score signals the drug treatment shifts the cell toward state A (Fig. 1b, d).
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To evaluate the significance of our predicted drug-cell interactions, we generated random 

drug perturbation profiles for each compound and repeated the analysis 1,000 times for each 

immune cell state change (Supplementary Fig. 4a and methods). A complete computational 

integration of the CMap and ImmGen data sets produced 397,936 potential connections 

between drugs and immune cell state changes. To assess whether a predicted connection was 

robust, we varied the set size of the top- and bottom-ranked genes used for the matching 

algorithm and recalculated all ~400,000 immunemod score-p-value pairs. The proportion 

each drug-cell interaction was significant amongst all gene set sizes provided a relative 

weight for each predicted interaction (Supplementary Fig. 4b, c). Larger weights indicate a 

given drug-cell interaction depends less on the set size chosen to calculate the immunemod 

score and signifies a robust connection. This selection process enabled discovery of 

previously unknown interactions while minimizing spurious connections (Supplementary 

Fig. 5).

Using the significant and robust interactions, we made connections between drugs and 

immune cell state changes to generate a comprehensive IP map. The IP map contains 69,995 

connections (Supplementary Table 4) that are significant at an FDR less than 5% and that 

appear in > 85% of gene set sizes. Although every drug showed a significant association 

with at least one of the 304 immunological state changes, the most frequent number of state 

transitions is 26, and 144 drugs influence 100 or more state changes (Supplementary Fig. 6). 

Drugs predicted to influence the largest number of immune cell state transitions include 

potent immunomodulators, many of which induce significant immunosuppression (Table 1). 

Drugs with immunomodulatory activity (for example, anti-inflammatory agents, anti-

histamines, and immunosuppresants) show a significant enrichment for immune cell 

interactions (E = 1.5, P = 0.002, E = 1.4, P = 0.04, E = 2.1, P = 0.02, respectively, and 

Supplementary Table 5).

Global properties of the IP map

To examine the global landscape of the IP map, we used the immunemod score as a 

similarity metric and organized the complete set of drug and immune cell interactions 

through unsupervised hierarchical clustering (Fig. 2a). We found that drugs with similar 

therapeutic classes cluster together. For example, anti-psychotics (clozapine, loxapine, 

haloperidol, and fluphenazine) formed a cluster, as did purine analogs (mercaptopurine and 

tioguanine), and calcium channel blockers (dexverapamil, bepridil, and perhexiline). These 

three clusters are predicted to interact with the largest number of immune cell subset 

transitions. Drug clusters also showed enrichment for the same molecular target. For 

example, the anti-diabetic drugs troglitazone and rosiglitazone both target PPARG and 

ACSL4 as part of their mechanism of action for reducing blood glucose. Based on their 

immunemod scores, these drugs are predicted to influence naïve CD4+ T cells and NK cells, 

providing a potential explanation for the therapeutic benefits observed in patients with 

autoimmune disease
32,33

.

We identified 28 drugs associated with later stages of lineage development across multiple 

cell types (for example, stem/progenitor and pre-B cells; Fig. 2a, Supplementary Table 6). 

These drugs include compounds used to treat diseases of metabolism and the nervous, 
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musculo-skeletal and respiratory systems, or are anti-infectives. Moreover, these 28 drugs 

are enriched for (i) agents with immunosuppressant, anti-psoriatic, and dopaminergic 

activity, and (ii) compounds that target the chromatin-associated enzyme PARP1, which is a 

key regulatory molecule for differentiation and proliferation
34,35

. By contrast, 17 

compounds influence immature hematopoietic cell subsets (Fig. 2a, Supplementary Table 7). 

These compounds aren’t associated with a single therapeutic class, yet their molecular 

targets are enriched for processes associated with oxidoreductase activity and alkylation 

repair, both of which are important for differentiation and maintaining stem cell 

integrity
36,37

.

To further characterize the drug-immune cell interactome, we performed unsupervised 

hierarchical clustering with multiscale bootstrap resampling
38

. Out of the 143 cell type 

changes, 119 fit into one of 25 stable cell clusters (P < 0.05, multiscale bootstrap analysis) 

(Supplementary Table 8). Almost half (13 / 25) of the stable cell clusters exhibited a 

significant over enrichment (E > 2, P < 0.05) for one or more cell types (Supplementary 

Table 9). By comparison, 1,089 drugs out of the 1,309 in total fell into one of 409 stable 

drug clusters (P < 0.05, multiscale bootstrap analysis) (Supplementary Table 10). Almost 

87% (356 / 409) of the stable drug clusters showed a significant over enrichment (E > 4, P < 

0.05) for one or more therapeutic class (ATC classification levels 1–3) or a molecular target, 

Supplementary Table 11). For example, 88 drug clusters showed significant enrichment for 

at least one Anatomical Therapeutic Chemical (ATC) Classification System level 1 

description. The enrichments are driven by an abundance of anti-thrombotic agents or 

vitamin K and other hemostatics (B), contrast agents or diagnostic radiopharmaceuticals (V), 

and alkylating agents, cytotoxic ant-biotics, hormone antagonsits, or immunosuppressants 

(L) (Supplementary Fig. 7).

To examine the features of stable clusters in greater detail, we identified 53 drug clusters 

enriched for a therapeutic class and molecular target, and intersected these clusters with the 

13 cell clusters enriched for one or more cell type (Fig. 2b). The intersecting clusters 

revealed that specific immune cell subsets (for example, pre-lymphocytes, monocytes, NKT 

cells, and gamma-delta T cells) overlap with multiple drug categories, whereas other subsets 

(for example, B cells and macrophages) intersect with a couple categories. A few drug 

clusters (for example, cl195, cl335) influenced multiple cell types, whereas other clusters 

(for example, cl2, cl48, cl49, cl97) influenced a single cell type. The drug cluster with the 

greatest overlap across immune cells (cl195) was enriched for anti-neoplastic drugs that are 

cytotoxic antibiotics (for example, doxorubicin and mitoxantrone).

We discovered a strong positive association between the number of molecular targets for a 

given drug and the number of interactions predicted to influence immunological state 

transitions (P = 1.7 × 10−5, linear regression). When we examined adverse drug interactions 

using the Side Effect Resource (version 2)
1
, we found no relationship between the reported 

number of side effects for a drug and the number of immune cell interactions (P = 0.8, linear 

regression). However, since side effect data have a broad frequency distribution and are 

difficult to measure accurately
2
, this lack of correlation may reflect the variation inherent in 

the bias of capturing and reporting side effects.
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Connections and sub-structures in the IP map

To examine possible immunological outcomes that might result from connections in the IP 

map, we focused on immune cell state changes between cell subsets or tissues. Drugs and 

cell state transitions were organized by therapeutic class and category of immune cell state 

transition (e.g., within a subset or between tissue) to provide an overview of all the predicted 

connections that are statistically significant (Fig. 3a, Supplementary Fig. 8). We identified 

promiscuous drugs by their interactions with a large number of subset transitions (Table 2). 

Given the uneven cell type distribution within the subset state changes (Supplementary Table 

1), we defined drug hubs based on interactions with the greatest number of cell types, which 

we hypothesize could have the largest influence on the immune system. By contrast, drug 

islands were defined on the basis of interacting with the fewest number of cells (Fig. 3b).

Hubs were enriched for anti-neoplastic drugs (E = 13.8, P < 1 × 10−5) (Supplementary Fig. 

9), which could be expected given the influence these compounds have on immune cells
1,2. 

Hubs were also enriched for nervous system compounds such as the selective serotonin 

reuptake inhibitor zimeldine (E = 1.3, P < 0.04), which was pulled off the market due to a 

rare, but severe adverse reaction leading to the autoimmune condition known as Guillain-

Barre syndrome
39

, and the anti-seizure drug topiramate, which was shown to be an effective 

treatment for inflammatory bowel disease in a pre-clinical model
21

 (Supplementary Fig. 

10a). By contrast, drug islands were enriched for metabolic drugs that included the anti-

diabetic compounds gliquidone and metformin (Supplementary Fig. 10b). This metabolic 

island we identified in the IP map mirrors the low connectivity found in metabolic diseases 

in the human disease network
40

.

To explore drugs predicted to influence a portion of the adaptive immune system, we 

identified a subnetwork based on the largest magnitude immunemod scores for T cell subsets 

and tissues (Supplementary Fig. 11). This subnetwork includes more than one thousand 

compounds predicted to influence CD4+ or CD8+ subsets, with 113 and 202 compounds 

unique to each group respectively. The top immunemod score for this subnetwork is between 

CD4+FoxP3+ T cells and guanfacine (Supplementary Figs. 12, 13a). Guanfacine is an α2A 

receptor (ADRA2A) agonist used for lowering blood pressure and treating ADHD
41

.

To verify that the immunemod score identifies a drug’s influence on a specific cell subset, 

we administered the anti-hypertensive drug guanfacine to mice and measured the 

percentages of regulatory T cell subsets isolated from spleens. Based on the immunemod 

score direction, we reasoned the frequency of regulatory T cells should increase following 

treatment with guanfacine. In comparison to untreated mice, the treated mice showed 5% 

increase in the average frequency of CD62L+ cells within the CD4+FoxP3+ T cell 

compartment (42.0% vs. 37.0%: n = 15 treated vs. n = 14 untreated, P = 0.01, 

Supplementary Fig. 13b).

When we examined the CD8+ subsets, the top immunemod score was to the anti-

parkinsonian drug trihexyphenidyl. One molecular target for trihexyphenidyl is the 

muscarinic acetylcholine receptor M1 (CHRM1). When the gene that encodes for this 

molecular target is knocked out in a mouse model, CD8+ cells from these mice exhibit 

defective cytotoxic capability
42

.

Kidd et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2016 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Validation of drug-immune cell interactions in humans

Immune cell data were collected from mice and drug perturbation data were gathered from 

human cancer cell lines. One concern with integrating these data is whether the findings 

from mice translate to humans. We tested whether interactions predicted by the IP map 

could be observed in humans by examining immune cell counts of patients administered 

drug versus untreated patients. To compare patient populations, we examined complete 

blood counts for more than 2.3 million electronic medical records in the Mount Sinai 

Hospital System and selected individuals who were treated and had blood cell counts 

collected within one month of receiving drug.

Given the constraints of routine clinical lab tests found in electronic medical records, we 

restricted IP map predictions to two common drugs predicted to influence monocytes and 

neutrophils. The IP map predicted the general anesthetic propofol and the anti-hypertensive 

spironolactone, would increase neutrophils and monocytes respectively (Fig. 3c). Propofol 

increased neutrophil counts by 2,500 cells / mm3, and spironolactone increased monocyte 

frequencies 1.6% (Fig. 3d). Although the cell population changes were small, both shifts 

were significant (P < 1 × 10−100, Wilcoxon rank sum). Furthermore, the neutrophil increase 

shifted most patients beyond the upper normal range. To validate these observations, we 

examined the same drug-immune cell pairings in the electronic medical records of Columbia 

University Medical Center. This independent data source showed the same direction and 

significance for both drugs and their predicted influence on immune cells (Supplementary 

Table 12).

Validation of clioquinol influencing neutrophil migration

To assess the accuracy and specificity of a predicted interaction in the IP map, we 

experimentally validated the influence of the drug clioquinol on neutrophil migration from 

the bone marrow to the blood. This hypothesis emerged from a prediction with a top 

immunemod score (Fig. 4a), as well as the desire to identify a drug that could modify 

immune system dynamics between tissues and would be straightforward to evaluate with an 

abundant cell type in vivo. Moreover, neutrophil regulation plays a critical role in health and 

disease so new drugs that modify their kinetics might have therapeutic potential
43–45

.

We selected two drugs for the experiment on the basis of their immunemod scores and p-

values. These statistical metrics identified the highest immunemod score, and the 

corresponding lowest p-value, for the predicted pairing between neutrophils and clioquinol 

(Fig. 4a). Clioquinol is an anti-fungal and anti-protozoal drug without a known mechanism 

of action, but the compound has been tested in a pre-clinical model for Alzheimer’s 

disease
46,47

. As a control, we selected the anti-viral and anti-parkinsonian drug amantadine 

as a control drug because our algorithm predicted an immunemod score of zero for the 

amantadine-neutrophil interaction (Fig. 4b). Based on the immunemod scores, we reasoned 

that clioquinol would influence neutrophil migration from the bone marrow to the blood, 

whereas amantadine would have no influence on neutrophil migration (Fig. 4b).

To evaluate the predicted influence of clioquinol on neutrophils in vivo, we injected 

C57BL/6 mice with clioquinol or vehicle control (n = 8 treated and n = 8 untreated). 
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Following the treatment with clioquinol, but not the control, neutrophils were recruited to 

the peritoneal cavity (Fig. 4c, d, Supplementary Fig. 14). In mice treated with clioquinol, 

more than 70% of the hematopoietic cells in the cavity were neutrophils, whereas in mice 

treated with vehicle alone, less than 5% were neutrophils, similar to untreated mice. This 

recruitment coincided with neutrophil mobilization from bone marrow to blood (Fig. 4c, d, 

Supplementary Fig. 14). Moreover, qPCR analysis of collected tissue samples revealed 

increased abundance of transcripts of neutrophil-specific chemokines such as Cxcl1, Cxcl2 
and Cxcl5 (Fig. 4e). We also detected Cxcr2 transcript, which suggests infiltration of 

neutrophils in the analyzed samples.

As predicted, in mice treated with amantadine there was no significant change in the 

frequencies of neutrophils in blood, bone marrow or peritoneal cavity (Fig. 4d). To survey a 

broader array of immune cell changes following treatment, we performed mass cytometry 

(CyTOF) using a panel of 19 markers to evaluate cell differences in the spleens of mice 

treated with clioquinol or vehicle control. Consistent with what we observed by flow 

cytometry, neutrophil numbers increased (Ly6G+CD11b+ cells) after treatment with 

clioquinol (Fig. 4f). Furthermore, when we examined the complete set of markers using 

SPADE trees
48

, we found an increase in naïve CD8+ cells 

(CD45+CD3+CD4–CD8+Thy1.2+TCRb+CD62LhiCD44lo) (Supplementary Fig. 15), which 

was also prediction by our algorithm albeit with a lower immunemod score (Fig. 4a).

DISCUSSION

We describe an integrative computational approach to map the effects of drugs on immune 

function. We compared chemogenomic and immunogenomic profiles and created an 

immunemod score to quantify the likely influence of a drug perturbation on an immune cell 

based on the overlap of their transcriptional profiles. Although the complete set of 

interactions between drugs and immune cells is larger than what we have modeled here, our 

systematic examination of almost 400,000 potential interactions is a step toward mapping 

this massive space. In vivo experiments to confirm one prediction—that the selective 

alpha-2A adrenergic receptor agonist guanfacine increases the proportion of regulatory T 

cells—suggested that a drug used to treat hypertension and anxiety might be repurposed to 

promote peripheral tolerance. To examine the utility of using the IP map to identify drugs 

with the highest immunemod scores for a given immunological state transition, we predicted 

that the change in neutrophil proportions between the blood and bone marrow would be 

most influenced by the drug clioquinol. This inference is supported by the proportions of 

neutrophils collected from blood and bone marrow and the pattern of neutrophil-specific 

genes expressed in various tissues. A previous study that used compounds to manipulate 

Cxcr2 and Cxcr4 expression levels showed neutrophil mobilization patterns similar to what 

we observed
49

. Although clioquinol has neurotoxic effects, these findings imply its potential 

use as a short-term neutrophil booster in certain contexts. Additionally, this finding suggests 

that our approach could enable the discovery of compounds that control neutrophil kinetics 

to resolve inflammatory responses
50

.

A limitation of the IP map is that it combines data sets from mouse and human, and 

therefore the predicted connections might not translate to human immune cells. Several 
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recent studies have shown both similarities and differences between the transcriptional 

profiles of immune cells in mice and humans
51–54

. However, both of our predictions were 

confirmed in electronic medical records at Mount Sinai and in an independent data set from 

Columbia University. Taken together, our computational analyses and experimental results 

suggest that the IP map captures immune responses in both humans and mice.

Another limitation is that the CMap drug profiles were generated on a limited set of cancer 

cell lines using whole-genome transcriptional profiling. Although the efforts of the LINCS 

project (http://www.lincsproject.org) will greatly expand the number of compounds and 

include more cell lines, it is likely worthwhile to generate immune-specific CMap signatures 

on at least a subset of immune cell types to further evaluate and improve the immunemod 

scoring method. Efforts such as the extensive transcriptional profiling of human cell lineage 

differentiation
55

 must be extended for a more comprehensive picture of human immunity, 

which will help to better understand how the ImmGen data will translate across species. We 

did not use chemical structure information, and we acknowledge that incorporating 

structural information and data other than transcriptional profiles
56,57

 would provide a more 

complete picture of the complexity of drug effects on the immune system.

The statistical bioinformatics method we used for systematically exploring drug-immune 

cell interactions follows a Kolmogorov–Smirnov (KS) approach similar to that used by 

numerous other studies
20,23,58

. This method has been useful at identifying numerous 

biological connections that have been subsequently validated by experimentation. However, 

a limitation of the traditional KS approach using transcriptional data is an assumption of 

statistical independence among transcripts. Others have recently proposed potential solutions 

for this limitation
59–62

. When we implemented a PCA-based approach
59

 into our methods, 

the p-values did rise as expected. Under this alternative null model, the number of significant 

interactions decreases by about a factor of 3 from the independent shuffling method 

(Supplementary Fig. 5). However, it appears that PCA-based correction may be overly 

pessimistic at low FDR thresholds
59

. This observation seems to be reflected in our own 

analysis where we find that all of the experimentally tested and validated interactions fall 

above the significance threshold subsequent to PCA-adjusted permutation. To our 

knowledge, there has not yet been a systematic analysis of the various proposed 

independence-corrected gene set based enrichment analysis methods on chemogenomic 

data. Systematic evaluation of permutation and expression de-correlation approaches for 

large-scale chemogenomic connectivity mapping is a fruitful area for future studies, 

especially as the chemogenomics community embraces reduced probe set arrays using the 

L1000 platform.

The apparently unknown interactions identified in the IP map may include many that 

warrant experimental follow-up. Other possible applications of our data include studying the 

contribution of immune cells to adverse drug reactions, the role of immune cell subsets in 

cancer and other diseases, and combination drug therapies. Moreover, global trends 

extracted from our data could provide guidelines and specific predictions on how to 

manipulate immune cells, uncover drug mechanisms of action, and select alternative 

compounds from the same therapeutic category with fewer immune cell side effects.
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METHODS

Drug and immune cell gene expression data

Drug-induced transcriptional profile changes determined from human cancer cell lines were 

obtained from the Connectivity Map (CMap) database
23

. We processed and analyzed version 

2, which included 6,100 experiments using 1,309 compounds. Preprocessing and 

normalization steps were performed as described previously
23

. To make cross-platform 

comparisons compatible, we standardized gene identifiers from microarray-specific probe 

identifiers to NCBI GeneID identifiers, selecting the maximum across individual probe 

expression values. To create a single rank-ordered expression profile for each of the 1,309 

compounds, we merged multiple experiments for the same compound into a single Prototype 

Ranked List (PRL) following the processing described previously
28,29

. The final data set 

included 13,071 differential gene expression values for each of the 1,309 compounds.

Immune cell gene expression data collected from steady-state profiling of 249 distinct cell 

types were obtained from the ImmGen
24

. Preprocessing and normalization were performed 

as described previously
64

. Since cell profiles were collected at steady-state, we selected 221 

unique cell types and created 304 differential state signatures from the difference between 

two steady-state profiles (Supplementary Table 13). To make cross-species and cross-

platform comparisons reasonable, we standardized gene identifiers from microarray-specific 

probe identifiers to NCBI GeneID identifiers, mapped mouse GeneID identifiers to their 

human ortholog, and selected the maximum across individual probe expression values. 

Finally, we converted differential state profiles to ranked lists ordered by differential 

expression values, creating a data set with 11,153 differential gene expression values for 

each of the 304 immunological state changes.

IP map construction

We constructed a matrix of predicted interactions between each of the 1,309 drugs and 304 

immunological state changes using a rank-based, pattern-matching strategy described 

previously
20

. Briefly, for each trio of drug, cell, and gene set size (d, c, s), we calculated an 

Immunemod Score (ImS) based on the degree of overlap between drug and immune cell 

gene sets at the extremes of the two ranked signatures. To obtain a measure of significance 

for the immunemod score, we shuffled the genes in the drug rank signature and calculated a 

permuted Immunemod Score (ImS*) for each drug, cell, and gene set triplet [ImS*(di, cj, 
sk)]. We calculated the p-value for each ImS by counting the number of randomized scores 

ImS*(di, cj, sk) that were greater than or equal to the absolute value of the actual scores 

ImS(di, cj, sk) and dividing by the number of permutations (nperms = 1,000). This 

permutation strategy sets the lower bound for p-values at 0.001, which yields a biased 

estimate for the number of false positives given the number of hypotheses under 

consideration. To provide accurate p-values at the lower range while containing the 

computational cost, we used the generalized Pareto distribution to model the p-value 

distribution and calculated improved estimates for low p-values (counts < 1 / 100) based on 

the distribution of permuted immunemod scores
30

. We adjusted the p-values
65

 and selected 

an FDR of 5% as the cutoff for significance. To control for spurious interactions based on 

the size of the gene set used for matching, we varied the size of the matching set between 
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100 and 250 genes for each of the top and bottom extremes and recalculated all immunemod 

score, p-value pairs for every drug-cell interaction. The proportion of times each drug-cell 

interaction was significant amongst all sizes of gene sets provides a relative strength for any 

given interaction. A predicted interaction was considered to be strong and stable if it was 

significant for 85% or more of the set sizes.

Data analysis

To assess the similarity between expression profiles of immune cell subsets, we calculated 

the Jaccard distance amongst all pairs of extreme fold-change genes, and used an ANOVA to 

evaluate the differences between immune cell subsets. We investigated a series of diagnostic 

plots and did not find significant deviations that would violate the assumptions of normality 

or homoscedasticity.

To organize the drugs and immune cells in an unbiased manner, we applied hierarchical 

clustering to the full interaction matrix using the computed Pearson correlation coefficient as 

a distance metric between immunemod scores and complete linkage clustering to 

agglomerate drugs or cells. We used the pvclust R package
38

 to compute a bootstrap analysis 

of the clusters and identified a significant cluster if the approximately unbiased probability 

was > 95%.

To determine the enrichment of an anatomical therapeutic class category, we calculated the 

fold-change and p-value. Fold-change enrichment (E) was calculated as a ratio of ratios E = 

(a / b) / (c / d), where a is the number of drugs with a particular category (for example, “L”) 

in the cluster of interest, b is the number of drugs with that category in the overall data set, c 

is the total number of drugs in cluster, and d is the total number of drugs overall. We used 

the hypergeometric distribution to calculate the p-value and assess the significance of each 

enrichment calculation.

To examine the association between chemical features (for example, molecular targets and 

drug side effects) and number of immune cell interactions, we implemented a simple linear 

regression model. Chemical features followed a skewed distribution so we log-transformed 

the data, which adjusted the values so they followed a normal distribution. Based on 

diagnostic plots of the transformed data, we did not find deviations that violated the 

assumptions of normality and homoscedasticity that are central to regression models.

To test whether drug treatment with clioquinol or amantadine produced any difference in 

neutrophil cell frequencies in various tissue compartments, we used an ANOVA model to 

compare the treatment groups. Multiple group testing and p-values were evaluated using 

Tukey’s honest significant difference. For all ANOVA tests, we generated a series of 

diagnostic plots to examine: (i) the residual errors for outliers, (ii) the QQ plots for 

normality, and (iii) the square root of the standardized residuals for heteroscedasticity. In all 

cases, we did not find significant deviations that would violate the assumptions used in the 

ANOVA model. For comparison, we evaluated the treatment and control groups directly via 

the Wilcoxon rank sum test and found the median differences between treatment 

(Clioquinol, Amantadine) and controls (PEG400, PBS) to follow the exact same pattern 

obtained using the ANOVA, with a similar maximum p-value for significant differences (P ≤ 
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0.01). To test whether guanfacine influence regulatory T cell frequencies, we used a meta-

analysis strategy
63

 to combine experimental conditions and groups, which allowed us to 

ascertain whether the overall differences from each independent experiment were robust and 

significant.

Electronic medical records

We pulled all patient entries from the Mount Sinai Electronic Medical Records that 

contained complete blood count information on neutrophils and monocytes (more than 2.3 

million entries in total). To determine if either propofol or spironolactone were associated 

with a change in cell counts, we identified patient entries that had lab values measured 

within 30 days of drug administration versus patient entries that never received drug. We 

tested for group-level differences using the non-parametric Wilcoxon rank sum test. The 

findings were validated using the Electronic Medical Records of Columbia University 

Medical Center, where we employed the same criteria for patient selection and performed a 

Wilcoxon rank sum test for group differences.

Visualization

Circos plots created using the circlize R package (version 0.0.7 https://github.com/jokergoo/

circlize). Network diagrams produced using Cytoscape
66

 and SPADE trees generated with 

CytoSPADE
67

. All other plots created using the R statistical package.

Mice and drug treatment

6–12 week old female C57Bl/c mice were obtained from Jackson Laboratories. Mice 

received intraperitoneal injections 3 times every 12 h with clioquinol, amantadine (both at 30 

mg/kg per dose, Sigma Aldrich) or appropriate controls. Dosing level and frequency were 

chosen based on previous experiments using clioquinol in mice
47,68

 and the drug half-life 

(11–14 h). Clioquinol was dissolved in 8% PEG400/PBS heated to 37 °C; amantadine was 

dissolved in PBS. Before injection, the solutions were shaken several times. Mice were 

sacrificed for tissue collection between 2.5 and 3 h after the last treatment. Blood collection 

was obtained from the tail. For guanfacine treatment, mice received initial injection of 5 

mg/kg of drug or vehicle control (PBS) on day 1, followed by two (experiment 1) or six 

(experiments 2–5) intraperitoneal injections at 2 mg/kg every 12 h starting on day 2. Mice 

were sacrificed for tissue collection 12 h after the last treatment. All animal procedures were 

done according to protocols approved by the Mount Sinai School of Medicine Institutional 

Animal Care and Use Committee.

Flow cytometry

Peritoneal cavity cells were collected by washing with cold PBS containing 4% FBS. Single-

cell suspensions of bone marrow were obtained by flushing femurs, followed by filtration 

through a 100-µm cell strainer (BD Biosciences). Red blood cells were lysed for 2 min at 

room temperature with RBC lysis buffer (eBioscience). Samples were stained with the 

following antibodies (all from eBioscience): allophycocyanin-eFluor780-conjugated CD45 

(30-F11), peridinin chlorophyll protein_cyanine 5.5-conjugated CD11b (M1/70), 

phycoerythrin-conjugated Ly6G (RE6-8C5), phycoerythrin-conjugated CD3 (145-2C11), 
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peridinin chlorophyll protein–cyanine 5.5-conjugated CD25 (PC61.5), fluorescein 

isothiocyanate-conjugated CD62L (MEL-14), allophycocyanin-conjugated FoxP3 

(FJK-16s), eFluor450-conjugated CD4 (GK1.5), allophycocyanin-eFluor780-conjugated 

CD8a (53–6.7), and allophycocyanin-conjugated CD44 (clone IM7, BD Pharmingen). DAPI 

was used to label dead cells. LSR Fortessa was used for sample acquisition and FlowJo 

software for data analysis.

RNA isolation and quantitative PCR

Total RNA was extracted from pieces of lung, liver, spleen and bone marrow cells using 

QIAzol Lysis Reagent (Qiagen) and glycogen blue (Ambion, Life Technologies) according 

to the manufacturer’s instruction. For cDNA synthesis, 2 µg total RNA was reverse-

transcribed for 1 h at 37 °C with an RNA-to-cDNA kit (Applied Biosystems). For 

quantitative PCR, SYBR green qPCR master mix 2° (Fermentas, Thermo Scientific) and the 

following primers were used: mouse Actb forward, 5′-CTAAGGCCAACCGTGAAAAG-3′, 

and reverse, 5′-ACCAGAGGCATACAGGGACA-3′; mouse Cxcl1 forward, 5′-

GTGTTGCCCTCAGGGCC-3′, and reverse, 5′-GCCTCGCGACCATTCTTG-3′; mouse 

Cxcl2 forward, 5′-ACGCCCCCAGGACCC-3′, and reverse, 5′-

CTTTTTGACCGCCCTTGAGA-3′; mouse Cxcl5 forward, 5′-

CTCGCCATTCATGCGGAT-3′, and reverse, 5′-CTTCAGCTAGATGCTGCGGC-3′; mouse 

Cxcr2 forward, 5′-CTTTGCCCTGACCTTGCCT-3′, and reverse, 5′-

GCACAGGGTTGAGCCAAAA-3′; mouse Cxcr4 forward, 5′-

TGGCCTTCATCAGCCTGG-3′, and reverse, 5′-TTGGCCTTTGACTGTTGGTG-3′.

Mass cytometry (CyTOF) analysis of mouse spleen

To obtain single-cell suspension, spleens were digested for 20 min at 37 °C in HBSS 

containing 8% FBS and 0.2 mg/ml collagenase IV (Sigma Aldrich). After filtration through 

a 100-µm cell strainer, red blood cells were lysed for 2 min at RT with RBC lysis buffer. 

Cells (5 × 106 per sample) were stained for the following surface markers: 141Pr-Ly6G, 

153Eu-PDCA1, 162Dy-Ly6C, 166Er-CD138 (all prepared in-house) and 142Nd-CD11c, 

147Sm-CD45, 148Nd-CD11b, 149Sm-CD19, 151Eu-CD25, 152Sm-CD3e, 156Gd-Thy1.2, 

160Gd-CD62L, 168Er-CD8, 169Tm-TCRb, 170Er-NK1.1, 171Yb-CD44, 172Yb-CD4, 

174Yb-MHCII and 176Yb-B220 (all from DVS Sciences). Cisplatin was added for the final 

5 min to label dead cells and samples were fixed using Fix and Perm buffer (DVS Sciences). 

Immediately before injection, EQ Four Element Calibration Beads were added and samples 

were run on CyTOF 2 mass cytometer (DVS Sciences) in three 10-min acquisitions rounds. 

Data was normalized to EQ Beads and files concatenated using DVS software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Constructing the drug-cell interactome
(a) Schematic overview of the data integration and processing steps. (b) Schematic depiction 

of the matching algorithm and score distribution. (c) Summary of immunological cell state 

changes studied. (d) Cartoon diagram of the influence of drugs on immune cell state changes 

predicted by the sign of the immunemod score.
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Figure 2. Overview of the IP map
(a) Clustered heatmap of the drugs and immune cell state changes organized by the 

immunemod score. Venn diagrams reflect the number of drugs that shift immune cell states a 

specific or non-specific direction. (b) Two-dimensional heatmap of the stable cell and drug 

clusters with a significant enrichment for at least one cell type (rows) or a level 1 therapeutic 

class (columns). Therepeutic classes include: H = Systemic hormonal preparations, excl. sex 

hormones and insulins, V = Various, B = Blood and blood forming organs, P = Anti-

parasitic products, M = Musculo-skeletal system, L = Anti-neoplastic and 

immunomodulating agents, G = Genito urinary system and sex hormones, R = Respiratory 

system, A = Alimentary tract and metabolism, D = Dermatologicals, J = Anti-infectives for 

systemic use, S = Sensory organs, N = Nervous system, and C = Cardiovascular system. 

Areas of corresponding circles represent the number of cells or drug per cluster (2–14 cells, 

2–13 drugs). Gray colored squares indicate predicted interaction between at least one cell-

drug pair in the pairs of clusters.
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Figure 3. Predicting immune cell influence from the IP map
(a) Circular layout of the predicted connections between drugs and cell types (all 

connections statistically significant P < 0.05 with FDR < 5%, see methods). Line widths 

correspond to the number of interactions. The diagram has been organized by sorting the cell 

types counter-clockwise (drugs clockwise) in order of decreasing number of connections. 

Single letter codes for each drug follows the anatomical therapeutic classification system as 

described in Fig. 2. (b) Subnetwork showing the drug hubs and islands (square nodes in the 

center and periphery respectively), and their predicted interactions with immune cell subsets 

(circles). Each square node represents a single drug (for example, the four center nodes 

labeled L represent, counter clockwise from top, the drugs daunorubicin, azacitidine, 

vorinostat, and methotrexate). (c) Drugs identified in the IP map based on their immunemod 

score and predicted to increase neutrophil and monocyte frequencies in the blood. (d) 

Validation of drug prediction in immune cells from humans. Drug influence (+ = drug, − = 

no drug) on measured cell counts from lab values of patients in the Mount Sinai Electronic 

Medical Records (cell counts and frequencies). Bar heights represent median count 
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(neutrophil) or frequency (monocyte) values and bottom/top of the error bars reflect the 

inter-quartile ranges (25% to 75% of data respectively). Significance assessed via Wilcoxon 

rank sum test.
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Figure 4a
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Figure 4b

Figure 4. Influencing immune cell migration using the IP map
Immunemod scores for influencing immune cells between tissues using (a) clioquinol or (b) 

amantadine. Labels indicate the direction of influence for the drug to a cell type between 

tissues x -> y, and bar width is the magnitude of the immunemod score. Shown are the 

significant and robust drug-cell interactions. Orange arrows reflect predicted top interaction 

with clioquinol and non-interaction with amantadine. Purple arrows point to predicted 

interactions with additional experimental validation. (c) Representation biaxial flow 

cytometry plots of Gr-Ly6G+ and CD11b+ cells collected from various tissues of treated and 

untreated mice. Cells were gated on CD45+DAPI− population. (d) Frequencies of 

Ly6G+CD11b+ cells neutrophils collected from blood, bone marrow, and the peritoneal 

cavity (n = 8 per group). Black bars reflect the median expression of all samples in each 

condition and the bottom/top of the boxes represent the 25th and 75th percentiles 

respectively. Data are representative of three to four experiments. Significance assessed by 

ANOVA. (e) Quantitative analysis of neutrophil marker genes expression. The abundance of 

each transcript in spleen, liver, lung and bone marrow (BM) was calculated relative to the 

appropriate control (PEG400 for clioquinol or PBS for amantadine). Each experimental 

condition includes 8 samples. Significance assessed by ANOVA. (f) SPADE trees of CyTOF 

data collected from cells in spleen. Arrows highlight Gr-Ly6G+CD11b+ population increase 
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after clioquinol treatment. Horizontal color scales represent median intensity for marker 

indicated (blue = low, red = high).
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Table 1

Drugs predicted to influence largest number of immune state changes.

Drug State
changes

Status Drug class

Puromycin 138 Experimental Aminonucleoside antibiotic

Quinostatin 129 Experimental PI3K inhibitor

Deptropine 129 Approved Anti-histamine

Gliclazide 127 Approved Anti-diabetic

Fluspirilene 127 Approved Anti-psychotic

Irinotecan 127 Approved Topoisomerase inhibitor

Pyrvinium 126 Experimental Anti-helmintic

Bepridil 126 Approved Calcium channel blocker

Daunorubicin 126 Approved Anthracycline

Celastrol 125 Experimental Anti-inflammatory

Niclosamide 125 Approved Anti-helmintic

Pimozide 124 Approved Anti-psychotic
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Table 2

Drugs predicted to influence largest number of immune subset changes.

Drug Subset changes Status Drug class

Irinotecan 60 Approved Topoisomerase inhibitor

Puromycin 58 Experimental Aminonucleoside antibiotic

Deptropine 55 Approved Anti-histamine

Tyrphostin AG-825 54 Experimental Tyrosine kinase inhibitor

0175029-0000 54 Experimental Unknown

Daunorubicin 54 Approved Anthracycline

Medrysone 53 Approved Corticosteroid

Bepridil 52 Approved Calcium channel blocker

Etacrynic acid 52 Approved Loop diuretic

Alsterpaullone 52 Experimental Cyclin-dependent kinase inhibitor

Primaquine 51 Approved Aminoquinoline

Procaine 50 Approved Local anesthetic

Gliclazide 50 Approved Anti-diabetic

Cinchonine 50 Experimental Alkaloid

Piperidolate 50 Approved Anti-cholinergic
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