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Type 1 diabetes (T1D) arises from autoimmune-mediated destruction of insulin-producing β-cells leading to impaired insulin
secretion and hyperglycemia. T1D is accompanied by DNA damage, oxidative stress, and inflammation, although there is still
scarce information about the oxidative stress response and DNA repair in T1D pathogenesis. We used the microarray method
to assess mRNA expression profiles in peripheral blood mononuclear cells (PBMCs) of 19 T1D patients compared to 11
controls and identify mRNA targets of microRNAs that were previously reported for T1D patients. We found 277 differentially
expressed genes (220 upregulated and 57 downregulated) in T1D patients compared to controls. Analysis by gene sets (GSA
and GSEA) showed an upregulation of processes linked to ROS generation, oxidative stress, inflammation, cell death, ER stress,
and DNA repair in T1D patients. Besides, genes related to oxidative stress responses and DNA repair (PTGS2, ATF3, FOSB,
DUSP1, and TNFAIP3) were found to be targets of four microRNAs (hsa-miR-101, hsa-miR148a, hsa-miR-27b, and hsa-miR-
424). The expression levels of these mRNAs and microRNAs were confirmed by qRT-PCR. Therefore, the present study on
differential expression profiles indicates relevant biological functions related to oxidative stress response, DNA repair,
inflammation, and apoptosis in PBMCs of T1D patients relative to controls. We also report new insights regarding microRNA-
mRNA interactions, which may play important roles in the T1D pathogenesis.
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1. Introduction

Type 1 diabetes (T1D) or insulin-dependent diabetes melli-
tus (IDDM) is a polygenic disorder possibly triggered by
environmental factors that results from a T cell-mediated
autoimmune attack against the insulin-producing β-cells
localized in the pancreatic islets of Langerhans [1]. The typi-
cal pathological lesion is a destructive immune cell infiltrate
(insulitis), affecting insulin-producing β-cells at several levels
and impairing insulin synthesis as a consequence [2]. During
this process, islet-infiltrating mononuclear cells release pro-
inflammatory cytokines and specific biochemical markers
in the serum of patients, which have been exploited as poten-
tial markers for the pathogenesis of T1D. In fact, the levels of
inflammatory markers have been significantly upregulated in
T1D patients compared to healthy human subjects [3].

The hallmark of T1D is a decreased insulin secretion that
is subsequently succeeded by chronic hyperglycemia, which
has been implicated in long-term complications affecting
several organs, including the kidneys, eyes, heart, nerves,
and blood vessels [4]. Chronic hyperglycemia induces the
production of reactive oxygen species (ROS), which in excess
can overwhelm the antioxidant system and lead to oxidative
stress [5, 6]. There is evidence that oxidative stress can
increase the release of proinflammatory cytokines, subse-
quently leading to inflammation and β-cell destruction, con-
tributing to T1D progression [7]. Nevertheless, studies have
reported that T1D patients present elevated oxidative stress
markers [8–10] and decreased antioxidant capacity [7, 9,
11]. Besides, T1D patients have shown higher levels of
DNA damage and oxidative DNA damage than controls
[12, 13], indicating that DNA repair mechanisms may be
compromised in those patients. However, there is still scarce
information about molecular signaling pathways and genes
implicated in biological processes related to oxidative stress
responses and DNA repair in T1D.

Moreover, there are reports that point out to mRNA-
microRNA interactions that might be involved in T1D path-
ogenesis [14, 15]. In fact, since microRNAs act as gene
expression regulators, they might play some roles in the
pathogenesis of human diseases. The miR-21 increased β-
cell apoptosis through degradation of mRNA BCL2 tran-
script in mouse models of T1D and human cells [16]. By
inhibiting GLP-1 expression, the miR-192 inhibits insulin
secretion [17]. Other differentially expressed microRNAs
have been implicated in β-cell dysfunction, apoptosis [18],
insulin secretion impairment [19], and inflammatory pro-
cesses [20] through mRNA interactions. Some microRNAs
are found consistently upregulated (miR-24-3p, miR-148a-
3p, miR-181a-5p, miR-210-5p, and miR-375) or downregu-
lated (miR-146a-5p, miR-150-5p, miR-342-3p, miR-1275,
and miR-100-5p) in T1D patients compared to nondiabetic
controls [14]. Still, there is much to clarify about the role
of microRNAs in T1D development.

In the present study, we applied the microarray method to
study the mRNA transcript expression profiles displayed by
peripheral blood mononuclear cells (PBMCs) of T1D patients
compared to healthy subjects. We also aimed to identify
potential mRNAs targets that are mainly associated with

responses to oxidative stress and DNA repair pathways and
those associated with differentially expressed microRNAs
(that were previously reported by Takahashi et al. [21]).

2. Material and Methods

2.1. Study Subjects. A total of 19 patients with type 1 diabetes
(7 women and 12 men, with age ranging from 18 to 37),
recruited while undergoing regular follow-up at the Outpa-
tient Endocrinology of the Clinical Hospital of the Faculty
of Medicine of Ribeirão Preto (HC/FMRP-USP), Brazil,
and 11 healthy subjects (control group) (6 women and 5
men, with age ranging from 20 to 31) participated in the
present study. The main characteristics of all participants
are described in Tables 1 and 2. All patients were receiving
treatment with human insulin, and those presenting recent
episodes of ketoacidosis and late diabetic complications were
excluded from the study. The study was conducted according
to the guidelines of the Declaration of Helsinki and approved
by the Local Ethics Committee of Clinical Hospital–Ribeirão
Preto Medical School, University of São Paulo (protocol code
no. 13314/2011 in November 23, 2011). Informed written
consent was obtained from all participants.

2.2. Sample Collection, Isolation of Peripheral Blood
Mononuclear Cells (PBMCs), and RNA Extraction. Peripheral
blood samples (20mL) were collected from all participants,
followed by isolation of PBMCs using Histopaque-1077
(Sigma-Aldrich, Inc., USA). Total RNA was extracted using
Trizol reagent (Invitrogen, Life Technologies, Carlsbad, CA,
USA) according to manufacturer’s instructions. The quality
and quantification of RNA samples were measured using the
NanoDrop ND-1000 Spectrophotometer (Uniscience, São
Paulo, Brazil). The integrity of RNA samples was evaluated
using Agilent RNA Nano 6000 chips onto the Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
RNA samples that were protein- and phenol-free, and RNA
integrity number ðRINÞ ≥ 7:0 were considered for the micro-
array and qRT-PCR analysis.

2.3. mRNA/miRNA Microarrays and qRT-PCR. The micro-
array technique and the expression data normalization and
statistical analysis were performed as previously described
[21, 22]. The microarray data from all samples used in this
study are publicly available in the ArrayExpress database
(http://www.ebi.ac.uk/arrayexpress) under the accession
numbers E-MEXP-3348 (T1D group) and E-MEXP-3963
(control group). The qRT-PCR method was used to validate
the expression results obtained for mRNA and microRNA
microarrays. For microRNA expression level analysis, 10ng
of total RNA was reverse transcribed using Taqman micro-
RNA Reverse Transcription kit (Applied Biosystems, Foster
City, CA). The qRT-PCR was performed using Taqman
Universal PCR Master Mix with AmpErase uracil N-
glycosylase (UNG) (Applied Biosystems) and Taqman Micro-
RNA Assays (Applied Biosystems) for the following
microRNAs: hsa-miR-101 (MIMAT0000099) (002253), hsa-
miR-148a (MIMAT0000243) (000470), hsa-miR-27b
(MIMAT0000419) (000409), hsa-miR-424 (MIMAT0001341)
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(000604), and RNU48 (001006). For mRNA expression levels,
one μg of total RNA was reverse transcribed using Superscript
III First-Strand Synthesis System (Invitrogen) after DNAse
(Invitrogen) treatment. The qRT-PCR was performed using
Taqman Universal PCR Master Mix with AmpErase uracil
N-glycosylase (UNG) (Applied Biosystems) and Taqman
Gene Expression Assays (Applied Biosystems) for ATF3
(Hs00231069_m1), TNFAIP3 (Hs00234713_m1), PTGS2
(Hs00153133_m1), UCP3 (Hs01106052_m1), DUSP1
(Hs00610256_g1), FOSB (Hs00171851_m1), GAPDH
(Hs02758991_g1), and HPRT1 (Hs02800695_m1). For both
microRNA and mRNA, the reactions were carried out in trip-
licate in 96-well plates, sealed with MicroAmp® Optical Adhe-

sive Film, and performed on a StepOnePlus Real-Time PCR
System (Applied Biosystems). The microRNA and mRNA
expression levels were obtained according to the 2−ΔΔCt
method [23]. To analyze the expression levels, both groups
of patients and controls were subjected to the normality
test D’Agostino-Pearson omnibus K2 followed by the
Mann–Whitney. The F-test was also used to test the group
variances, followed by the T-test for unpaired samples with
Welch’s correction. P values < 0.05 were considered statis-
tically significant in the comparisons.

2.4. Gene Set Analysis (GSA) and Gene Set Enrichment
Analysis (GSEA). The analysis of gene sets was performed

Table 1: Main clinical characteristics of type 1 diabetes (T1D) patients.

Patient
Age

(years)
Sex

Duration of T1D
(years)

Insulin
Fasting glucose levels

(mg/dL)
HbA1c
(%)

HLA-
DQB1

T1D_01 36 M 11 NPH 24 + 16 UI; regular 13 UI 213 10.8
∗0302
∗0602

T1D_021 23 M 13 Lanthus 28 UI; Lispro 4 + 2 + 2 UI 197 8.3
∗0301
∗0302

T1D_031 24 M 6 NPH 36 + 30 UI; regular 6 + 4 UI 260 10
∗0302
∗0501

T1D_041 18 M 8 NPH 28 + 24 UI; regular 10 + 10 UI 23 7.2
∗0201
∗0501

T1D_052 23 M 20
NPH 50 + 30 UI; regular 12 + 6 + 6

UI
178 10.1

∗0202
∗0501

T1D_061 21 F 8 Ultrafast 42 + 6 UI 223 7.8
∗0301
∗0501

T1D_071 29 M 2 NPH 20 + 12 UI; regular 6 UI 59 11.1
∗0301
∗0301

T1D_081 30 M 14 NPH 36 + 36 UI; regular 10 + 10 UI 47 8.9
∗0201
∗0501

T1D_091 21 M 16 NPH 54 + 10 UI; regular 8 + 10 UI 66 9
∗0301
∗0501

T1D_10 28 F 5 NPH 34 + 22 UI 193 12.5
∗0501
∗0605

T1D_11 29 M 3 NPH 24 + 12 UI; regular 4 UI 225 9.8
∗0302
∗0604

T1D_12 27 F 10 NPH 24 + 12 UI; regular 6 + 6 UI 257 10.4
∗0201
∗0302

T1D_13 37 F 7 Lanthus 44 UI; Aspart 4 + 5 + 2 UI 82 8.4
∗0501
∗0501

T1D_141 24 F 14 Lanthus 34 UI; regular 5 + 7 + 7 UI 293 8.5
∗0302
∗0501

T1D_15 22 F 13 NPH 40 + 20 UI 143 8.3
∗0303
∗0501

T1D_161 18 M 5
NPH 20 + 10 + 15 UI; regular 10 + 8

+ 8 UI
60 9.5

∗0301
∗0302

T1D_171,2 25 F 6 NPH 66+6 UI; regular 4 + 8 + 14 UI 85 10.5
∗0301
∗0402

T1D_18 23 M 11 Glagina 34 UI; Aspart 4 + 6 + 6 UI 123 10.3
∗0301
∗0602

T1D_191 25 M 8 Levemir 20 + 20 UI 162 7.7
∗0301
∗0501

1Patients whose samples were used in the microRNA expression study. It is noteworthy that all the 19 samples were used in the analysis of mRNA expression
data. 2Patients using metformin (850mg).
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using BRB-ArrayTools (developed by Richard Simon and
BRB-ArrayTools Development Team) to identify gene
groups with significant expression (GSA) and significantly
enriched gene sets (GSEA), according to Gene Ontology
(GO) terms. The LS/KS permutation test and Efron-
Tibshirani’s GSA maxmean test with random 1,000 permu-
tations were carried out with a threshold of 0.005 to filter
statistically significant (GSA) and significantly enriched
(GSEA) gene sets, respectively.

3. Results

After normalization and adjustment of data, the analysis
performed by rank products revealed 277 differentially
expressed genes (DEGs) in PBMCs of patients with T1D
compared to controls (220 upregulated and 57 downregu-
lated) (Table S1). Some of these genes have already been
widely described as associated with T1D, including those
related to inflammatory processes (Table 3).

In addition, the GSA and GSEA analysis indicated 49
significantly expressed gene sets (p < 0:005) and 55 statisti-
cally enriched gene sets (p < 0:005) in PBMCs of T1D
patients compared to the control group. Biological processes
related to apoptosis (apoptotic signaling pathway, release of
cytochrome c from mitochondria), oxidative stress (regula-
tion of oxidoreductase activity), inflammatory processes
(interleukin-2 production), and cell death (positive regula-
tion of neuron death) were found significantly upregulated
in T1D patients. Pathways associated with endoplasmic
reticulum stress and unfolded protein response (response

to endoplasmic reticulum stress, cellular response to topo-
logically incorrect protein/unfolded protein), reactive nitro-
gen species (nitric oxide metabolic and biosynthetic
process), and DNA repair (double-strand break repair via
homologous recombination and recombinational repair)
were found statistically enriched for T1D patients
(Figures 1(a) and 1(b)). The complete list of significant and
statistically enriched gene sets can be found in Table S2.

Besides, to identify genes that were specifically related to
the biological processes “response to oxidative stress” (GO:
0006979) and “DNA repair” (GO: 0006281), the list of DEGs
was submitted to the gene prioritization tool Endeavor,
which allowed the integration of the results in several gene
databases. The 16 best ranked genes in each process and
the respective fold-change values are highlighted (Table 4).

We also verified whether any of those 277 DEGs were
included as possible targets for the 44 differentially
expressed microRNAs (AUC ≥ 0:90), which were previously
reported for the same group of patients [21] using the
VENNY tool. We found 144 (52%) genes that may be poten-
tially regulated by the differentially expressed microRNAs.
Of these, 75 are possibly regulated by the upregulated micro-
RNAs, seven by the downregulated microRNAs, and 62 by
both up- and downregulated microRNAs (Table 5). Interest-
ingly, among the possible targets, nine and thirteen genes
belong to “response to oxidative stress” and “DNA repair”
biological processes, respectively, such as UCP3, PTGS2,
ATF3, FOSB, DUSP1, and TNFAIP3 genes.

To confirm the expression of some mRNAs, we selected
six genes (UCP3, PTGS2, ATF3, FOSB, DUSP1, and

Table 2: Main characteristics of healthy individuals (control group).

Controls Sex Age (years) Fasting glucose levels (mg/dL) HLA DQB1

CO_011 M 28 92
∗03:01
∗03:02

CO_021 F 25 86
∗02:01
∗02:02

CO_031 F 27 88
∗03:01
∗03:02

CO_041 F 26 90
∗04:02
∗06:04

CO_051 M 25 94
∗02:02
∗03:01

CO_061 F 29 82
∗02:02
∗03:01

CO_071 M 20 87
∗02:01
∗06:03

CO_081 F 20 87
∗03:01
∗03:01

CO_091 M 26 81
∗03:01
∗03:03

CO_10 M 22 97
∗05:01
∗06:03

CO_11 F 31 93
∗03:01
∗03:02

1Controls whose samples were used for the study of microRNA expression profiles. All 11 samples were used in the analysis of mRNA expression data.
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Table 3: List of differentially expressed genes, which have been widely related to T1D in the literature, in peripheral blood mononuclear cells
(PBMCs) of T1D patients compared to the control group.

Gene Gene name Functions1 FC2 FDR3 p

IL1B Interleukin 1, beta
Immune and inflammatory response, upregulation of

T cell proliferation
2.60 0:00E + 00 0:00E + 00

TNF Tumor necrosis factor
Humoral and inflammatory immune response,

activation of MAPK activity
2.30 2:21E − 02 5:00E − 05

CXCL2 Chemokine (C-X-C motif) ligand 2 Inflammatory and immune response, chemotaxis 2.22 0:00E + 00 0:00E + 00
CCL20 Chemokine (C-C motif) ligand 20 Inflammatory and immune response, chemotaxis 1.70 7:00E − 04 0:00E + 00

PTX3 Pentraxin 3, long
Inflammatory response, phagocytosis and biosynthetic

process of nitric oxide upregulation
1.62 0:00E + 00 0:00E + 00

PTGS2
Prostaglandin-endoperoxide synthase 2

(prostaglandin G/H synthase and
cyclooxygenase)

Cell cycle regulation, response to cytokine stimulation
and oxidative stress, biosynthetic process of

prostaglandin
1.57 0:00E + 00 0:00E + 00

TNFAIP3
Tumor necrosis factor, alpha-induced

protein 3

Antiapoptosis, negative regulation of NF-κB
transcription factor activity, TNF production, and

inflammatory response
1.44 0:00E + 00 0:00E + 00

ATF3 Activating transcription factor 3 Transcription regulation 1.40 3:40E − 03 5:00E − 05

DUSP2 Dual specificity phosphatase 2
Inactivation of MAPK activity, regulation of the

apoptotic process
1.38 0:00E + 00 0:00E + 00

IL6 Interleukin 6 (interferon, beta 2)
Humoral immune response, regulation of cell

proliferation
1.37 4:00E − 04 0:00E + 00

BCL2A1 BCL2-related protein A1 Antiapoptosis 1.27 3:00E − 04 0:00E + 00

GZMB
Granzyme B (granzyme 2, cytotoxic T-
lymphocyte-associated serine esterase 1)

Cytolysis, proteolysis, apoptotic process 1.22 5:40E − 03 0:00E + 00

IFNG Interferon, gamma
Humoral and adaptive immune response, response to

unfolded proteins of the endoplasmic reticulum,
apoptotic process

1.17 2:87E − 02 3:00E − 04

GZMH
Granzyme H (cathepsin G-like 2,

protein h-CCPX)
Cytolysis, proteolysis, apoptotic process 1.16 1:60E − 03 0:00E + 00

CD69 CD69 molecule
Lymphocyte proliferation, signal transmission

receptor
1.14 3:16E − 02 4:00E − 04

HLA-
DQB1

Major histocompatibility complex, class
II, DQ beta 1

Immune response, upregulation of antigen processing
and presentation

0.90 5:80E − 03 5:00E − 05
1The functions of all genes were obtained by the SOURCE tool (2000) (http://puma.princeton.edu/cgi-bin/source/sourceResult); 2FC: fold change; 3FDR: false
discovery rate.
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Figure 1: Biological processes that were found as differentially expressed/enriched in peripheral blood mononuclear cells (PBMCs) of T1D
patients compared to the control group. (a) Gene set analysis (GSA) showing the first 15 biological processes related to significantly
expressed genes in T1D patients compared to controls. (b) Gene set enrichment analysis (GSEA) showing the first 15 biological
processes linked to significantly enriched genes in T1D patients compared to the controls. Only biological processes with p < 0:005
are shown.
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Figure 2: Relative expression of genes associated with oxidative stress response and DNA repair in PBMCs of T1D patients compared to the
control group, evaluated by qRT-PCR. For all genes, the assay was performed for 19 T1D samples and 10 control samples. For FOSB (d), two
controls were excluded (Co_01 and Co_11). These samples were the same used for the microarray method. Two endogenous genes were
used to normalize the expression values: GAPDH and HPRT1. For the UCP3 (a), PTGS2 (b), ATF3 (c), FOSB (d), and DUSP1 (e), bars
represent the median and interquartile range. For the TNFAIP3 (f), bars represent the mean ± standard deviation. ∗ indicates statistically
significant values for p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001; ns: not significant.
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Figure 4: Relative expression of microRNAs evaluated by qRT-PCR, whose predicted targets are associated with oxidative stress response
and DNA repair processes in PBMCs of T1D patients compared to the control group. The assay was performed for 11 samples of T1D
patients and nine controls, which were the same used for the microarray method. Expression values of (a) hsa-miR-101, (b) hsa-miR-
148a, (c) hsa-miR-27b, and (d) hsa-miR-424 were normalized by the endogenous RNU48 gene. The bars represent the mean ± standard
deviation. ∗∗ indicates statistically significant values for p < 0:01; ∗∗∗p < 0:001.
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TNFAIP3) to perform analysis by qRT-PCR. Five genes,
except UCP3, were significantly upregulated in T1D patients
compared to the controls, similarly as we have found in the
microarray experiments. UCP3 expression was not signifi-
cantly different between patients and controls
(Figures 2(a)–2(f) and 3).

Regarding the expression of microRNAs, we confirmed
the microRNA expression (obtained in the microarray anal-
ysis) by performing the qRT-PCR for the following four
microRNAs: hsa-miR-101, hsa-miR148a, hsa-miR-27b, and
hsa-miR-424. All of them were significantly upregulated in
T1D patients compared to the controls, compatible with
the results obtained by the microarray method [21]
(Figures 4(a)–4(d) and 5).

4. Discussion

The exact cause of T1D has not yet been elucidated, thus
requiring a search for potential disease biomarkers and their
possible functions related to the molecular mechanisms
associated with the disease, providing new insights towards
their application in clinical practice.

Among the 277 differentially expressed genes, it is
important to note that we found some genes (HLA-DQB1,
CD69, and TNFAIP3) that have been reported to be implica-
ted in the pathogenesis of T1D [24]. While HLA-DQB1 was
downregulated, CD69 and TNFAIP3 were found upregu-
lated. In addition, a series of genes highlighted in this study
are involved in molecular and cellular events associated with
T1D (IL1B, TNF, IFNG, GZMB, and GZMH) [25, 26] and
inflammatory processes (IL1B, IFNG, IL6, PTX3, CCL20,
CXCL2, and DUSP2) [3, 27], endorsing other studies in the
literature. Interestingly, our results indicated differential
expression of genes related to T1D even years after diagno-
sis, such as CCL3L3, CCL4, CXCL1, CXCL3, and IL8 genes.

In addition, the analysis by gene sets (GSA and GSEA)
revealed an upregulation of biological processes related to
ROS generation, oxidative stress, inflammation, cell death,
ER stress, and DNA repair, among others. The excessive

generation of reactive species (derived from oxygen or nitro-
gen) leads to a redox imbalance in the organism. Conse-
quently, oxidative stress disturbs endoplasmic reticulum
(ER) homeostasis and activates the unfolded protein
response (UPR). Oxidative stress can also increase DNA
damage, which may activate DNA repair and, depending
on the scenario, may also lead to apoptosis [28, 29]. Other
studies have described upregulation of DNA repair, inflam-
mation, ER-stress response, and apoptosis pathways in
T1D patients [30, 31]. There is also evidence that oxidative
stress and inflammation occur even several months before
the onset of T1D in children, favoring the autoimmunity
and induced cellular damage in β-cells [32].

In this study, the high expression levels of DUSP1,
PTGS2, TNFAIP3, ATF3, and FOSB genes in T1D compared
with the control group were identified by the microarray
analysis and confirmed by the qRT-PCR method. DUSP1
(dual-specificity protein phosphatase-1), also known as
MKP1, encodes a phosphatase protein that dephosphory-
lates and inactivates MAPKs (mitogen-activated protein
kinases), playing an essential role in cell proliferation, cellu-
lar growth, inflammation, cell cycle arrest, innate immune
function, and cellular response to oxidative damage [33].
In fact, it has been shown an upregulation of DUSP1 under
stress conditions that lead to apoptosis [34]. The gene
PTGS2 (prostaglandin synthase cyclooxygenase 2) encodes
cyclooxygenase 2 (COX2) that generates prostaglandin E2
(PGE2). Stress conditions such as hyperglycemia and ROS
induce the expression of PTGS2 increasing PGE2 levels,
which further stimulate ROS production [35, 36]. Elevated
expression of PTGS2 is commonly observed in many chronic
inflammatory diseases, and high COX2 levels are also associ-
ated with microvascular complications of diabetes, including
endothelial dysfunction and renal injuries [37].

TNFAIP3 (tumor necrosis factor (TNF) α-induced pro-
tein-3) encodes a zinc finger protein (A20), which inhibits
NFKB signaling, decreases NO production, and has demon-
strated a critical role in protecting β-cells from apoptosis
[38–40]. Interestingly, we found an upregulation of NFKB
Inhibitor Alpha (NFKBIA) and NFKB Inhibitor Zeta
(NFKBIZ) genes, both with inhibitory functions upon
NFKB, which may be related to the high level of inflamma-
tion in T1D patients [41]. TNFAIP3 has also been indicated
as a candidate gene for T1D [42]. Some authors suggest that
the SNP rs2327832 of TNFAIP3 may help to predict glyce-
mic control and disease progression in T1D children [39].

ATF3 (activating transcription factor 3) gene is an
adaptive-response gene activated upon various stress stimuli,
including ROS, DNA damage, genotoxic agents, and cyto-
kines[43]. There is evidence that ATF3 silencing increases
apoptosis in β-cells, thus suggesting a protective role regard-
ing antiapoptotic effects [44]. ATF3 also represses inflamma-
tory responses (by inhibiting NFKB), several
proinflammatory cytokines, and NO synthesis [45].

Regarding FOSB (FosB Proto-Oncogene, AP-1 Tran-
scription Factor Subunit), this gene encodes leucine zipper
proteins that form dimers with other proteins (e.g., Jun
and ATF/CREB) to compose the AP-1 complex which plays
a crucial role in DNA repair mechanism [46]. Altogether,
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group), obtained by the microarrays and qRT-PCR methods, for
the selected differentially expressed microRNAs. The same
samples (11 T1D patients and nine controls) were used for both
methods.
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the upregulation of the aforementioned genes in T1D group
may indicate that T1D patients exhibit an adaptive response
activating cellular stress response and DNA repair genes
upon several conditions, such as ROS, DNA damage, oxida-
tive stress, and inflammation.

Moreover, microRNAs are important posttranscriptional
regulators of several biological processes in T1D patients.
Notably, it has been demonstrated that microRNAs show a
specific signature for each form of diabetes (T1D, type 2 dia-
betes, or gestational diabetes) [47] and may be implicated in
the pathogenesis and complications of diabetes [48]. There-
fore, we crossed our differentially expressed mRNAs with
the set of 44 differentially expressed microRNAs, which were
previously reported for the same group of T1D patients [21].
Our results indicated that 52% of differentially expressed
genes are predicted targets of the 44 microRNAs. Those tar-
get genes are related to inflammation, stress response, and
DNA repair, showing the importance of microRNA regula-
tion in these processes. In this study, we also confirmed
the expression of four microRNAs (hsa-miR-101, hsa-
miR148a, hsa-miR-27b, and hsa-miR-424) by qRT-PCR, all
of them being upregulated in PBMCs of T1D patients.

miR-101 has been found to regulate DNA-dependent
protein kinase (DNA-PKcs) and ATM (ataxia telangiectasia
mutated) gene, with roles in suppressing DNA repair pro-
cesses and sensitize cells to DNA damage induction [49].
Besides, there is evidence confirming that miR-101 targets
DUSP1, promoting the activation of MAPKs and stimulating
the production of proinflammatory cytokines [50]. On the
other hand, miR-101 targets PTGS2, decreasing the release
of proinflammatory cytokines [51]. miR-101 is also related
to cytokine-mediated defective insulin production [52], β-
cell dysfunction [52, 53], and increased apoptosis [52]. Inter-
estingly, upregulation of miR-101 has been found in indi-
viduals with normal glucose levels, but testing positive for
autoantibodies linked to T1D, suggesting that miR-101
precede the impairment of glucose homeostasis and may
represent a potential biomarker for the onset of T1D
[53]. In addition, miR-101 downregulation ameliorates
insulin release and protects β-cells from cytokine-induced
apoptosis [52].

Overexpression of miR-27b was found to inhibit NRF2
activation, a master regulator of antioxidant response [54],
and suppress NFKB activation [55]. Furthermore, mir-27b
upregulation has been associated with the onset of retinopa-
thy [56], while its downregulation has been implicated in
glucose tolerance impairment [57] and nephropathy [58].
The upregulation of mir-148a has been consistently found
in T1D patients [59, 60]. miR-148a has been described as a
regulator of autoimmunity, β-cell tolerance [18], and insulin
activity [61]. Recently, Tamara et al. [62] reported that
upregulation of miR-424 in T1D patients was associated
with increased levels of inflammatory cytokines and
increased risk of cardiovascular diseases.

Altogether, our results indicate specific mRNA and
microRNA expression profiles in PBMCs from T1D patients
relative to healthy nondiabetic individuals. In addition, we
have shown that a number of biological processes related
to oxidative stress response, DNA repair, inflammation,

and apoptosis are upregulated in T1D patients. Besides, we
provide new data regarding potential microRNA-mRNA
interactions in T1D, in particular involving genes associated
with responses to oxidative stress and DNA repair, which
might play relevant roles in the microRNA-target network
in T1D patients.
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