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Several genes on chromosome 1q21 region predict a high risk of multiple myeloma (MM); however, the underlying molecular
pathology remains elusive. Overexpression, amplification, or activation of SET Domain Bifurcated 1 (SETDB1), which is
located on 1q21, is closely associated with poor prognosis of many human solid malignancies. In our study, upregulation of
SETDB1 might indicate an unfavorable prognosis of MM using bioinformatics analysis from GEO databases and MMRF-
CoMMpass. Here, increased SETDB1 expression was observed in the plasma cells from newly diagnosed multiple myeloma
patients compared to those from the normal controls. Meanwhile, SETDB1 overexpression was the result of increased copy
numbers of SETDB1 gene. In MM patients, the Kaplan-Meier analysis was employed to demonstrate that increased SETDB1
expression was associated with shorter overall survival (OS) and event-free survival (EFS). Besides, we conducted multifactorial
cox regression analysis to state that SETDB1 expression was an independent biomarker for OS and EFS. MM patients with
higher SETDB1 expression showed higher levels of beta-2 microglobulin (β2M), lactate dehydrogenase (LDH), and bone
marrow biopsy plasma cells (BMPC) and lower levels of haemoglobin (HGB). Functional enrichment analysis suggested that
SETDB1 could promote cell cycle progression in myeloma. Finally, we observed that SETDB1 was distinctly correlated with
tumor immunity in MM. SETDB1 expression in myeloma cells was positively correlated with CD56dim natural killer cells but
negatively correlated with infiltrating levels of type17 T helper cells, effector memory CD8 T cells, activated dendritic cells, and
natural killer T cells from whole bone marrow (WBM) biopsies. Taken together, these results indicated that SETDB1 could be
used as a novel biomarker for predicting the prognosis of MM patients.

1. Introduction

Multiple myeloma (MM) is a malignant hematologic neo-
plasm characterized by the infiltration of malignant mono-
clonal plasma cells in the bone marrow (BM),
accompanying with CRAB features consisting of hypercalce-
mia, renal dysfunction, anemia, and bone disease [1, 2]. MM
is a genetically and clinically heterogeneous malignancy
caused by multiple genomic events, with the OS duration
ranging from a few months to more than a decade [3].
Despite the great advancement in treatment of multiple
myeloma due to the advent of several new drugs, most
MM patients progress and relapse frequently and remain
incurable ultimately. It is for this reason that the discovery
of new and promising biomarkers to estimate prognosis
and better monitor treatment is essential.

The multitude of genomic events and their concurrency
in different patients is the basis for biological heterogeneity
in multiple myeloma. It was shown in previous works that
cytogenetic abnormalities are regarded as a predictor of
prognosis in MM [4]. Gain/amplification of chromosome
1q21 (1q21 gain/amp) is a common and high-risk cytoge-
netic abnormality found in approximately 40% of newly
diagnosed multiple myeloma [5]. The chromosomal aberra-
tion of 1q21 locus is directly related with a poorer response
and shorter median progression-free survival [6]. Some of
the 1q21 genes, such as IL6R [7], ILF2 [8], MCL-1 [9],
ADAR1 [10], and CKS1B [11], were investigated and con-
sidered potential drivers of MM development and progres-
sion. However, many other candidate genes in this region
should also be considered for their role in the pathogenesis,
progression, or prognosis of myeloma [12].
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SETDB1 is mapped to human chromosome 1q21.3, one
of seventy-eight amplified or overexpressed 1q21 genes by
integrating GISTIC2 and expression data from 246 matched
MM samples [8]. Also, systems medicine dissection of
chr1q-amp identified 103 candidate genes, including
SETDB1, as adverse prognostic biomarkers combined geno-
mic, epigenomic, and transcriptomic data with genetic vari-
ables in MM [13]. Besides, the relationship between SETDB1
expression and its prognostic values in multiple myeloma
has not been studied. Great efforts of high-throughput
sequencing have revealed that overexpression, amplification,
or activation of SETDB1 plays an oncogenic effect in malig-
nant cancers, including hepatocellular carcinoma [14], mel-
anoma [15], and glioblastoma [16]. Even though an exact
mechanism of action of SETDB1 in cancer has not been

revealed, recent reports have established that SETDB1 is
involved in gene silencing [17], methylation of Akt [18],
suppression of tumor-intrinsic immunogenicity [19], and
so on. Hence, SETDB1 possibly acts as an immunosuppres-
sive epigenetic modulator in multiple cancers. Here, we ana-
lyzed multiple GEO databases to determine the prognostic
effects of SETDB1 expression on MM and its possible action
pathways by integrating gene expression and clinical data.
Our study found that high expression of SETDB1 is an
adverse prognostic marker in MM.

2. Methods

2.1. Data Source. Supplemental Table 1 shows the clinical
details of the multiple gene expression profiling (GEP) and
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Figure 1: Different expression patterns of SETDB1 in multiple myeloma. (a) SETDB1 expression of plasma cells from the healthy control
(n = 6) and newly diagnosed myeloma patients (n = 170) in GSE39754 database (p < 0:01, Wilcoxon test). (b) Heatmap was illustrating
SETDB1 copy number variation in 67 NDMM samples. The right y-axis represents MM samples and the scale color bar indicates
normalized log ratios obtained from LogRatio in raw data, calculated by Log10(rProcessedsignal/gProcessed signal). Patient with Log10
copy number ratio ≥ 0:15 were considered as gain and ratio ≥ 0:3 were considered amplification. (c) Comparison of SETDB1 mRNA
levels at HC, MGUS, 1q21 diploid MM patients, and 1q21 gain/amplification MM samples. (d) Comparison of SETDB1 expression at
different levels of 1q21 copy numbers. The x-axis represents different groups, and the y-axis represents gene expression (p < 0:01,
ANOVA test). SETDB1 gene expression was measured as log2.
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array comparative genomic hybridization (aCGH) datasets
from GEO and MMRF-CoMMpass in this research. GEO
databases were retrieved and obtained from the Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)
in the National Center for Biotechnology Information
(NCBI). In this present study, clinical information and
gene expression profiling microarray were from GSE39754
[20], GSE5900 [21], GSE2658 [22], GSE124435 [23],
GSE31161 [24], GSE9782 [25], GSE24080 [26], GSE136337
[27], and GSE136324 [27]. Copy number analysis was
conducted to identify genomic regions that are repeated
from aCGH data (GSE33685 [28]and GSE26863 [29]). We
also integrated and analyzed datasets from the Multiple
Myeloma Research Foundation (MMRF) CoMMpass
(Clinical Outcomes in MM to Personal Assessment of
Genetic Profile) study, which were generated as part of the
Multiple Myeloma Research Foundation (MMRF)
Personalized Medicine Initiatives (https://research.themmrf
.org and http://www.themmrf.org).

We found five MM samples from GSE24080, which were
outlier cases based on MAQC’s consensus outlier-voting
results and should be excluded from model development.

2.2. Gene Copy Number Assay. To investigate whether the
aberrant expression of SETDB1 was the result of its copy
number variation, we finally analyzed 245 patients from
GSE26863 who had both copy number and expression
values of SETDB1. We performed circular binary segmenta-
tion (CBS) of log2ratio values ordered according to their
corresponding probes’ chromosomal positions and deter-
mined each segment’s copy number aberration status [10].
Segments mean log2ratio values are above 0.137 and are

tagged as gain of SETDB1 copy numbers. Therefore, we
could separate these patients into wild type (WT) and copy
number gain groups and then compare SETDB1 expression
values between these two different groups.

2.3. DEG and Functional Enrichment Analysis. Gene expres-
sion profile data were downloaded and processed by R and
Bioconductor packages. Based on the quartiles of SETDB1
mRNA expression from GSE136337, MM patients were cat-
egorized into SETDB1high and SETDB1low groups, with 106
cases in each group. Then, the “limma” package in R (ver-
sion 3.6.3) [30] was performed to screen for differentially
expressed genes (DEGs). Adjusted p value < 0:05 and ∣log2
Fold Change ∣ >0:5 were used as the cut-off criteria. In order
to visualize DEGs, volcanic maps and heat maps were drawn
using the R package “ggplot2” and “pheatmap.”

Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, Gene Ontology (GO) terms, and Gene Set Enrich-
ment Analysis (GSEA) were all analyzed by “clusterProfiler”
package using DEGs to identify biological states and path-
way processes affected by SETDB1 [31]. Gene set enrich-
ment analysis was performed using the Broad Molecular
Signatures Database (MSigDB v6.0) set H (hallmark gene
sets, 50 gene sets) [32]. Nominal p < 0:05 was considered
the cut-off criterion.

2.4. Tumor-Infiltrating Immune Cell (TIC) Proportions and
CIBERSORT Algorithm. Based on the clinical and molecular
information from GSE136324 and GSE136337, we selected
324 pre-treatment MM samples that had two different gene
expression data. These data were produced from whole bone
marrow (WBM) biopsies and CD138+-selected myeloma
plasma cells using the Affymetrix Human Genome U133
Plus 2.0 Array (Thermo Fisher Scientific) chips. The expres-
sion scores of 27 cell types (22-leukocyte signature matrix
and five myeloma-specific cell types) [27] per patient were
determined using mRNA expression data of myeloma
WBM biopsy samples from GSE156326 dataset through
the CIBERSORT [33] algorithm in R (version 3.6.3). We
classified MM samples into two groups on the basis of the
SETDB1 optimal cut-off value of myeloma cells and then
performed immunoinfiltration analysis on these corre-
sponding WBM biopsy samples from GSE156326. We per-
formed Mann–Whitney U test to explore differences in
fractions of immune-related cells between the SETDB1high

and SETDB1low groups.

2.5. Tumor-Infiltrating Immune Cell (TIC) Level and Single-
Sample Gene Set Enrichment Analysis (ssGSEA) Algorithm.
Besides the immune cell proportions, the ssGSEA was
implemented to calculate infiltration degrees of 28 immune
cell subtypes in above 324 MM samples using the genome
variation analysis (GSVA) package [34]. Spearman’s correla-
tion analysis was performed to confirm the correlation
between SETDB1 expression of myeloma cells and immune
infiltration level. According to Jia et al. [35], 12 of 28
tumor-infiltrating immune cells carry out antitumor immu-
nity, like activated CD4 T cells, activated CD8 T cells, central
memory CD4 T cells, central memory CD8 T cells, effector
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Figure 2: SETDB1 copy number variation and mRNA level. Box
plot based on the dataset GSE26863 shows that increased
SETDB1 expression was the result of upregulated SETDB1 gene
copy numbers (WT, n = 186, Gain, n = 159, p < 0:01, Wilcoxon
test). The x-axis represents SETDB1 copy number gain or not,
and the y-axis represents gene expression. SETDB1 gene
expression was measured as log2.
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memory CD4 T cells, effector memory CD8 T cells, type 1T
helper cells, type 17T helper cells, activated dendritic cells,
CD56bright natural killer cells, natural killer cells, natural
killer T cells, and protumor immune cell types included reg-
ulatory T cells, type 2T helper cells, CD56dim natural killer

cells, immature dendritic cells, macrophage, MDSCs, neu-
trophils, and plasmacytoid dendritic cells.

2.6. Survival Analysis. We downloaded clinical and prognos-
tic information from GSE24080 and then performed the
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Figure 3: SETDB1 expression in different disease stages and treatment response. (a) SETDB1 expression was increased in the relapsed group
(n = 347) in comparison with the baseline group (n = 127) in the TT2 group from GSE31161 (p < 0:05, Wilcoxon test), but there was no
difference in the TT3 group. (b) SETDB1 expression was different in MM patients with the response (n = 28) and no response (n = 42)
in the DEX treatment group from GSE9782 (p < 0:05, Wilcoxon test), and there was no difference in the PS341 treatment group. The x
-axis represents different groups, and the y-axis represents gene expression. SETDB1 gene expression was measured as log2.
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Figure 4: Continued.
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Figure 4: Survival analysis of the SETDB1high and SETDB1low groups. (a and b) The Kaplan–Meier survival curves show that high SETDB1
expression predicts poor OS time and EFS time in MM sample from GSE24080 according to the SETDB1 optimal cut-off value (p < 0:01 and
p < 0:01, respectively, log-rank test). (c and d) The Kaplan–Meier survival curves show that high SETDB1 expression predicts poor OS time
and EFS time in the MM sample from GSE9782 according to the SETDB1 optimal cut-off value (p < 0:01 and p < 0:05, respectively, log-rank
test). (e and f) The Kaplan-Meier analysis on the overall survival of MM patients from GSE2658 with and without 1q21 gain/amplification
group (p < 0:01 and p < 0:01, respectively, log-rank test). The x-axis represents time, and the y-axis represents survival probability.
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Kaplan–Meier (K-M) survival analysis to assess the prognos-
tic role of SETDB1 in myeloma patients. We also performed
the K-M survival analysis on GSE9782 to verify SETDB1
expression was indeed related to prognosis. Univariate
and multivariate cox regression models were used to ana-
lyze the correlation of SETDB1 expression with OS and
EFS in myeloma patients from GSE24080. Besides,
GSE136337 and MMRF-CoMMpass data were used for
validation. The MM samples were assigned into high and
low expression groups based on the optimal cut-off value
of SETDB1 expression, which was determined by the
‘surv_cutpoint’ algorithm in the R package “survminer”
in these datasets.

2.7. Statistical Analysis. When the data were normally dis-
tributed, two-tailed unpaired t-test and one-way analysis of
variance (ANOVA) test were used to compare the mean
values of the two and three groups, respectively. The Chi-
square test and Wilcoxon test were performed to compare
clinical and pathological features between the SETDB1high

and SETDB1low groups. Chi-square test was performed for
comparison of categorical data, while Wilcoxon test was
used for comparison of numerical data. Correlations
between the two variables were estimated by Spearman’s
correlation. The GraphPad Prism 8 or R software (version
3.6.3) were utilized to conduct all the statistical analyses in
this paper. p < 0:05 was considered statistically significant.

Table 1: Multivariate analysis for EFS and OS in MM patients from GSE24080.

Characteristics Total
Overall survival Event-free survival

HR p value 95% CI HR p value 95% CI

SETDB1 N = 554 1.384 <0.05 1.052-1.819 1.273 <0.05 1.014-1.597

CREAT N = 551 1.138 <0.01 1.042-1.243 1.193 <0.01 1.099-1.296

LDH N = 554 1.005 <0.01 1.003-1.007 1.004 <0.01 1.002-1.006

ALB N = 554 0.640 <0.01 0.507-0.807 0.775 <0.05 0.633-0.949

MRI N = 517 1.014 <0.01 1.005-1.023 1.008 <0.05 1.000-1.016

Cyto.Abn N = 554 1.951 <0.01 1.416-2.688 1.593 <0.01 1.221-2.078

Table 2: The association of SETDB1 expression and clinical characteristics in MM samples from GSE24080.

Characteristics Total High expression Low expression p value

Sex

Female
N = 554 117 103

0.224#
Male 160 174

ISOTYPE

Light chain

N = 536

42 41

<0.05#IgA 80 52

IgG 144 167

Other 2 8

MRI (numbers of magnetic resonance imaging (MRI)-defined focal lesions spine) pelvis))

≥ 3
N = 517 148 153

0.694#<3 110 106

Cyto.Abn (An indicator of the detection of cytogenetic abnormalities)

Yes
N = 554 114 90 <0.05#

No 163 187

Age (years)(mean(range)) N = 554 57.81 (29.7-75.94) 56.61 (24.83-76.5) 0.099†

β2M (mg/l)(mean(SD)) N = 553 5.205 (5.8479) 4.166 (4.6239) <0.01†

CRP (mg/l)(mean(SD)) N = 550 11.398 (21.5856) 11.843 (24.5054) 0.746 †

CREAT (mg/dl)(mean(SD) N = 551 1.359 (1.3162) 1.272 (1.2187) 0.315†

LDH (U/l)(mean(SD)) N = 554 177.69 (68.69) 165.34 (61.346) <0.05†

ALB (g/l)(mean(SD)) N = 554 4.015 (0.6326) 4.089 (0.5222) 0.509†

HGB ((g/dl)(mean(SD)) N = 554 11.070 (1.8093) 11.445 (1.7988) <0.05†

ASPC (%) (mean(SD)) N = 526 43.858 (25.2960) 41.235 (23.1060) 0.274†

BMPC (%) (mean(SD)) N = 539 49.390 (26.723) 43.380 (25.5590) <0.01†
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3. Results

3.1. SETDB1 Was Overexpressed or Amplified in MM
Patients. There is no clear recognition of the pivotal driver
oncogenes in the 1q21 amplicon until now and more 1q21
cancer-relevant genes need to be identified as potential ther-
apeutic targets. Marchesini et al. [8] found seventy-eight
1q21 genes either amplified or overexpressed by integrating
246 matched MM samples. Also, 103 candidate genes,
located in chromosome 1q, were identified as prominent
drivers of chr1q-amp multiple myeloma [13]. As a result,
twenty-eight genes were both detected, including MCL1,
ILF2, ADAR, CKS1B, and SETDB1 (supplemental
Figure 1A). Then, we searched for the functions of these
genes and whether they had been studied in myeloma. Few
studies have been done on the relationship between
SETDB1 and multiple myeloma, and we supposed that
SETDB1 could act as a novel poor prognostic biomarker.

Firstly, we calculated the mRNA expression of SETDB1
of plasma cells from the healthy controls (HC, n = 6) and
newly diagnosed myeloma patients (NDMM, n = 170) in
GSE39754 database. The result showed that there were sub-
stantial differences of SETDB1 expression between multiple
myeloma cells (MMCs) and normal plasma cells (NPCs)

(Figure 1(a),p < 0:01, Wilcoxon test). Besides, subsequent
analysis of GSE33685, an array-based comparative genomic
hybridization (aCGH) data including 67 NDMM samples,
demonstrating that amplification of the SETDB1 gene was
detected in 39 of 67 (58%) MM patients (Figure 1(b)). There
was no statistically significant difference in expression levels
among the healthy control (HC, n = 12), monoclonal gam-
mopathy of unknown significance (MGUS, n = 44), and
1q21 diploid MM patients (n = 134); however, compared
with the healthy control and 1q21 diploid MM patients,
SETDB1 expression in the 1q21 gain/amplification MM
samples was significantly increased (n = 114) (Figure 1(c),
p < 0:01, unpaired t-test; p < 0:01, Wilcoxon test). Notably,
expression of SETDB1 elevated with increasing copy num-
bers of 1q21 in the GSE2658 MM sample set (Figure 1(d),
p < 0:01, Kruskal-Wallis). We next assessed whether overex-
pression of SETDB1 was cooccurrent with detecting translo-
cations or copy number changes from MMRF-CoMMpass.
The NDMM patients were separated into seven groups
based on the cytogenetic abnormalities (1q21 gain/n = 119,
17p del/n = 17, t(8; 14)/n = 37, t(4; 14)/n = 33, t(14; 16)/n
= 8, t(11; 14)/n = 87, and normal karyotype/n = 196). Over-
expression of SETDB1 was observed only in the MM
patients with 1q21 gain or t(11; 14) than the normal
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Figure 5: Different expression genes (DEGs) and functional enrichment analysis. (a) Volcano plot of the DEG expression between
SETDB1high and SETDB1low from GSE136337. The y-axis displays the -log10 adjusted p value for each gene, while the x-axis displays
the log2 fold change for that gene relative to SETDB1 expression. (b) KEGG results for upregulated genes. (c) GO results for upregulated
genes. (d) GO results for downregulated genes. (e) The correlation coefficient between SETDB1 and CKS1B, EZH2, PHF19, E2F8,
AURKA, and RRM2. (f) The correlation coefficient between SETDB1 and MCL1, CKS1B, ILF2, IL6R, ADAR, ARNT, and PSMD4. (g)
GSEA analysis shows that many genes positively correlated with SETDB1 are involved in four different pathways.
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Figure 6: Continued.
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karyotype group. Meanwhile, SETDB1 expression was
increased in 1q21 gain MM patients than all other six groups
(supplemental Figure 1B, all p < 0:01, unpaired t-test).

From GSE124435, this research found SETDB1 expres-
sion from circulating clonal plasma cells (CTC) was posi-
tively correlated with expression from bone marrow clonal
plasma cells (BMPC) (Supplemental Figure 1C, r = 0:45, p
< 0:05). SETDB1 expression of CTC was also increased in
relapsed multiple myeloma compared to NDMM patients
(supplemental Figure 1D, p < 0:05). Thus, the combined
analysis of multiple public data sources demonstrated that
SETDB1 was remarkably upregulated in MM cases.

3.2. Increased SETDB1 Copy Numbers Contributed to the
Overexpression of SETDB1. As SETDB1 mRNA levels were
strikingly upregulated in multiple myeloma, we would like
to explore the potential mechanisms underlying this phe-
nomenon. Amplification of 1q21 locus is observed in 40%
of NDMM patients and SETDB1 gene is located within
chr1q21. We then examined the relationship between DNA
copy number changes and SETDB1 gene expression in
GSE26863 dataset, which contained 304 GEP and 254 aCGH
of purified myeloma cells from NDMM patients. 245 sam-
ples with both Affymetrix gene expression microarray and
the Agilent CGH microarray data were included in the
follow-up analysis. Segment mean log2ratio values are above
0.137 which are tagged as gain of SETDB1 copy numbers.
Therefore, we separated these patients into wild type (WT)
and copy number gain groups. Then, we compared SETDB1

expression values between the two groups. Notably, an
increase in SETDB1 gene copy numbers was linked to over-
expression of SETDB1 in the GSE26863 sample set
(Figure 2, p < 0:01, Wilcoxon test). The finding suggested
that increased SETDB1 copy numbers greatly contributed
to the abnormal expression of SETDB1.

3.3. Increased SETDB1 Expression Was Linked to Disease
Relapse and Worse Clinical Outcomes in Different
Treatment Protocols. Since SETDB1 was upregulated in
NDMM patients, we want to explore whether SETDB1
expression would be altered after treatment and different
treatment protocols would change the prognosis in high
expression patients. To figure out this problem, we analyzed
SETDB1 mRNA level variations under different situations in
two public datasets. In GSE31161 sample set, increased
SETDB1 expression was observed in relapsed MM patients
when compared to baseline expression in the TT2 group;
however, there was no difference in the TT3 group
(Figure 3(a), TT2 p < 0:05; TT3 p = 0:94, Wilcoxon test).
The main difference between TT2 and TT3 was that TT2
contained thalidomide and TT3 contained bortezomib. Sim-
ilarly, according to the last response of MM patients from
GSE9782, we considered patients whose clinical outcome
superior to partial response (PR) to be responders; mean-
while, progressive disease (PD) and relapse represented non-
response. SETDB1 expression was slightly elevated in the
response group in comparison to the no-response group
when treatment was dexamethasone (Dex), but there was
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Figure 6: The association of SETDB1 expression of myeloma cells and immune cell infiltration levels. (a) The Violin plot showed the
proportion of 27 kinds of cell types in the high (n = 104) and low (n = 222) SETDB1 expression groups in MM samples. (b) The Scatter
plot showed the associations between SETDB1 mRNA levels and infiltrations of immune cells in multiple myeloma WBM biopsies. (c)
The Boxplot showed the distribution of immune checkpoint markers between the high- and low-expression of SETDB1 in myeloma
samples. p < 0:05 as statistically significant. GPRC5D: G protein-coupled receptor class C group 5 member D; CD274: Programmed Cell
Death 1 Ligand 1; VTCN1: V-Set Domain-Containing T Cell Activation Inhibitor 1; PDCD1LG2: Programmed Cell Death 1 Ligand 2;
TNFRSF17: TNF Receptor Superfamily Member 17.
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Figure 7: SETDB1 indicated poor prognosis in the other two validation databases. (a) Forest plot of the multivariate cox regression analysis
for OS in GSE136337. (b and c) The Kaplan-Meier survival curve for OS in two validation datasets MMRF-CoMMpass and GSE136337
(p < 0:01 and p < 0:01, respectively).
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no difference in the bortezomib (PS341) treatment group
(Figure 3(b), p < 0:05, p = 0:66, respectively, Wilcoxon test).
To sum up, SETDB1 high expression was related to disease
relapse and worse clinical outcomes in different treatment
protocols.

3.4. High SETDB1 Expression Predicted Poor Survival in MM
Patients. To explore the predictive value of SETDB1, we
divided 554 MM patients from GSE24080 into two different
groups on the ground of the optimal cut-off value of
SETDB1 expression. The SETDB1high group was strongly
related to adverse survival in MM, while the SETDB1low

group showed a better survival (Figure 4(a), OS, p < 0:01;
Figure 4(b), EFS, p < 0:01, log-rank test). Similarly, shorter
overall survival and progress-free survival (PFS) were
observed in the SETDB1 high expression group than the
low expression group from GSE9782 (Figure 4(C), OS, p <
0:01; Figure 4(d), PFS, p < 0:05, log-rank test). Since
SETDB1 expression may correlate with 1q21 gain/amp, we
analyzed the prognosis value of SETDB1 in two groups with
and without 1q21 gain/amp from GSE2658. The findings
proved that high SETDB1 expression patients presented
with worse survival (Figure 4(e), p < 0:01; Figure 4(f), p <
0:01, log-rank test). Multivariate cox regression analysis
was also performed to assess the predictive value of SETDB1
(Table 1), and these findings indicated that high SETDB1
expression in multiple myeloma was an independent unfa-
vorable prognostic factor for OS and EFS (p < 0:05). In con-
clusion, these data suggested high expression of SETDB1
was an adverse prognosis factor in multiple myeloma.

HR: hazard ratio; CI: confidence interval; CREAT: creat-
inine, mg/dl; LDH: lactate dehydrogenase, U/l; ALB: albu-
min, g/l; HGB: haemoglobin, g/dl; MRI: numbers of
magnetic resonance imaging- (MRI-) defined focal lesions
(the skull, spine, and pelvis); Cyto.abn: an indicator of the
detection of cytogenetic abnormalities.

3.5. SETDB1 Expression Was Related to Clinical
Characteristics. Since SETDB1 was aberrantly upregulated
in MM samples and identified as an independent unfavor-
able prognostic factor, we subsequently examined clinical
significance of SETDB1 expression in MM samples from
GSE24080 dataset. We separated these patients into high
and low groups depending on the median SETDB1 expres-
sions and then tested them in predicting the distribution of
clinicopathological features. By utilizing multiple clinical
characteristics, we found different distributions between
the two subgroups in GSE24080 MM patients (Table 2).
Between the two groups, SETDB1 expression was linked
with clinical parameters like myeloma isotype and cytoge-
netic abnormalities (p < 0:05, Chi-squared test). Addition-
ally, MM patients with high SETDB1 expression were
more likely to obtain higher β2M (beta-2 microglobulin),
LDH (lactate dehydrogenase), BMPC (bone marrow biopsy
plasma cells), and lower HGB (haemoglobin), which were
all essential biomarkers in MM prognosis (all p < 0:05, Wil-
coxon test).

Age: age at registration (years); B2M: beta-2 microglob-
ulin, mg/l; CRP: c-reactive protein, mg/l; CREAT: creatinine,

mg/dl; LDH: lactate dehydrogenase, U/l; ALB: albumin, 35 g/
l; HGB: haemoglobin, g/dl; ASPC: aspirate plasma cells (%);
BMPC: bone marrow biopsy plasma cells (%); MRI: num-
bers of magnetic resonance imaging- (MRI-) defined focal
lesions (the skull, spine, and pelvis); Cytogenetic abnormal-
ity: an indicator of the detection of cytogenetic abnormali-
ties; no: number of patients. #Chi-squared test, †Wilcoxon
test.

3.6. SETDB1 May Exert an Important Role in the Cell-Cycle
Progression of MM. To further determine the molecular
mechanisms underlying protumorigenic effect of SETDB1
in myeloma cells, we firstly performed differential gene
expression analysis between the SETDB1high (N = 106)
and SETDB1low (N = 106) groups from GSE136337 [27].
All told there were 364 differential genes identified in the
two groups by bioinformatics analysis, among which 170
genes were upregulated and 194 genes significantly down-
regulated in the SETDB1high group (∣log 2FC ∣ >0:5,
adjusted p < 0:05) (Figure 5(a)). We then utilized DEGs to
analyze the KEGG pathways and GO terms to illuminate
the biorole of SETDB1. In the result of KEGG and GO anal-
ysis, SETDB1 is highly associated with cell cycle, DNA rep-
lication, and mitotic nuclear division (Figures 5(b)–5(d),
adjusted p < 0:05). Furthermore, we selected 3286 genes that
were most relevant to SETDB1 (Spearman’s correlation
value > 0:3 or <−0.3, p < 0:05) in MM samples from
GSE136337. SETDB1 was a highly positive correlation with
CKS1B, EZH2, PHF19, E2F8, AURKA, and RRM2, which
are involved in the cell cycle (Figure 5(e)). SETDB1 high
expression myeloma cells exhibited increased expression of
those cell cycle-related genes (supplemental Figure 2A).
Also, we found SETDB1 was positively correlated with
common pathogenic 1q21 genes with r values from 0.24 to
0.59 (Figure 5(f)). Then, we performed gene set
enrichment analysis (GSEA) using the MSigDB hallmark
gene sets, which revealed that genes positively correlated
with SETDB1 were enriched in “HALLMARK_G2M_
CHECKPOINT”, “HALLMARK_MYC_TARGETS_V1”,
“HALLMARK_DNA_REPAIR”, and “HALLMARK_E2F_
TARGETS” (Figure 5(g), adjusted p < 0:05). In addition,
we found proliferation index was elevated in MM patients
of high SETDB1 expression from MMRF-CoMMpass
(supplemental Figure 2B). Thus, we supposed that SETDB1
might act as an oncogene, which exerts an important role
in the cell cycle progression of MM.

3.7. SETDB1 Was Correlated with Tumor-Infiltrating Cells in
MM. Previous researches have illustrated a point that TICs
(Tumor-infiltrating immune cells) influence disease progres-
sion and clinical outcomes in MM [36]. Figure 5(d) shows
that high SETDB1 expression might influence cell differenti-
ation and regulation of the immune effector process. To
explore the association between SETDB1 and tumor micro-
environment (TME), we utilize the CIBERSORT algorithm
to compute the proportions of TICs in MM samples. Then,
we implemented the analysis between the expression of
SETDB1 and TIC abundance. Based on the optimal cut-off
value of SETDB1 expression from GSE136337, we divided
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these 326 myeloma plasma samples into two groups. We
then performed immunoinfiltration analysis on these 326
WBM biopsy samples from GSE136324. We found that
SETDB1 high expression myeloma samples exhibited higher
percentages of memory B cells and MM plasma cells while
lower percentages of resting NK cells and neutrophils
(Figure 6(a), all p < 0:05, Wilcoxon test). For validation,
the ssGSEA algorithm was utilized to investigate the correla-
tion between SETDB1 expression of myeloma cells and
immune infiltrating levels (Figure 6(b)). Results further indi-
cated that SETDB1 was positively correlated with CD56dim
natural killer cells (r = 0:14, p < 0:01) but negatively corre-
lated with infiltrating levels of type17 T helper cells
(r = −0:19, p < 0:01), neutrophils (r = −0:16, p < 0:01), effec-
tor memory CD8 T cells (r = −0:15, p < 0:01), activated den-
dritic cells (r = −0:15, p < 0:01), and natural killer T cells
(r = −0:12, p < 0:05). Gabriel et al. [19] verified that SETDB1
amplification in human tumors was involved in immune
evasion and resistance to immune checkpoint blockade.
We observed that immune checkpoint markers, consisting
of PD-L1, VTCN1, and PDCD1LG2, were remarkably
downregulated in SETDB1 high expression MM patients
(Figure 6(c), all p < 0:01, Wilcoxon test). The evidence con-
firmed that SETDB1 was related to immune infiltrating cells
and played a key role in tumor immune escape in multiple
myeloma.

3.7.1. Validation Using Independent External Databases. We
made further validation of the reproducibility and accuracy
of SETDB1 expression in the prognostic impact of myeloma
patients by analyzing two additional independent and large
sample datasets, consisting of MMRF-CoMMpass and
GSE136337. Multivariate cox analysis was applied to assess
that upregulated SETDB1 expression further was an inde-
pendent unfavorable prognostic biomarker for OS in
GSE136337 database (Figure 7(a), HR = 2, p < 0:01). More-
over, in these two validation sets, the K-M survival analysis
revealed that MM with increased SETDB1 expression was
remarkably associated with decreased OS (Figures 7(b) and
7(c), p < 0:01 and p < 0:01, respectively, log-rank test).
Hence, SETDB1 was a potential biological marker to predict
the prognosis of MM cases.

4. Discussion

Despite significant advances in the treatment of MM
patients, drug resistance and recurrent relapses continue to
characterize the disease and ultimately lead to death from
the disease. Combination therapy and identification of pre-
dictive biomarkers are essential to improve treatment out-
comes in newly diagnosed and relapsed/refractory MM.
Integrating and analyzing multiple independent GEO data-
sets or MMRF-CoMMpass in this study for differential gene
expression analysis, survival analysis, and other bioinformat-
ics analysis methods, we revealed that SETDB1 was signifi-
cantly overexpressed and amplified in MM patients
compared with the healthy controls. Increased SETDB1 gene
copy numbers contributed significantly to the overexpres-
sion of SETDB1. In addition, high SETDB1 expression was

related to the adverse outcome of MM, indicating that it
may be a carcinogenic gene and prognostic biomarker.

In the last decade, researchers have intensively investi-
gated the impact of epigenetics on disease. It is well known
that epigenetic processes comprising DNA methylation, his-
tone modifications, and noncoding RNAs have an impact on
the pathogenesis and progression of MM [37, 38]. Some epi-
genetic markers have been going into clinical trials in multi-
ple myeloma [39, 40]. SETDB1 is aberrantly expressed in a
wide variety of human cancers, facilitating tumor develop-
ment and drug resistance. Through methylation of p53,
SETDB1 regulates the growth of hepatocellular carcinoma
cells [41]. It is also confirmed that SETDB1 could bind to
the promoter of p21 and silence its expression, promoting
the progression of human colorectal cancer [42]. SETDB1
also enhances the protein expression of c-MYC and CCND1
to promote breast cancer cell cycle progression. In turn, c-
MYC enhances SETDB1 transcription, indicating a positive
regulatory role between SETDB1 and c-MYC [43]. In addi-
tion to its primary function as a histone H3K9 methyltrans-
ferase, SETDB1 can act on the methylation of other proteins,
like maintaining the stability of the p53 protein [41], to play
its carcinogenic effect. While the role of SETDB1 in tumors
has not been completely delineated, most studies suggest
that SETDB1 has prooncogenic potential by regulating key
tumor-associated genes. These studies may provide a new
therapeutic target for the clinical treatment of human
cancers.

In our analysis, SETDB1 expression levels were signifi-
cantly upregulated in myeloma samples. SETDB1 is one of
seventy-eight amplified or overexpressed 1q21 genes by inte-
grating 246 matched MM samples [8]. Consistent with our
findings, a frequent amplification (58%) of the SETDB1 gene
was observed in MM samples from GSE33685. It is worth
noting that increased SETDB1 gene copy numbers greatly
promote the paradoxical SETDB1 expression. Moreover,
high expression of SETDB1 was related to a striking reduc-
tion of EFS, PFS, and OS time in MM samples. Like LDH
and ALB, SETDB1 could be regarded as an independent
prognostic factor for MM. Notably, we observed that
SETDB1 was distinctly correlated with tumor immunity in
MM. We discovered that SETDB1 expression of myeloma
cell was positively correlated with CD56dim natural killer
cells but negatively correlated with infiltrating levels of
type17 T helper cells, neutrophils, effector memory CD8 T
cells, activated dendritic cells, and natural killer T cells from
whole bone marrow (WBM) biopsies. Our data offered sup-
port for the possible involvement of SETDB1 in regulating
immune infiltration of myeloma tumor environment. Nev-
ertheless, clinical and experimental validation is needed to
investigate the functions and pathways of SETDB1 in tumor
immune infiltration of MM. Apart from that, we found that
SETDB1 may likely have far-reaching effects on the cell
cycle, DNA replication, and mitotic nuclear division in our
research. Yu et al. found that upregulation of SETDB1
enhanced the transcription of CCND1 and CDK6, thereby
promoting proliferation of colorectal cancer cells [44]. Shang
et al. observed that high SETDB1 expression may accelerate
cell proliferation through the ERG-CCND1/MMP9 axis,
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which was also associated with adverse prognosis in gastric
cancer [45]. Hence, it has been demonstrated that SETDB1
may regulate the cell cycle genes leading to disease progres-
sion in multiple myeloma.

Our study firstly revealed the prognostic function of
SETDB1 expression in multiple myeloma. However, the
role of SETDB1 gene has not been thoroughly investi-
gated. And more research and experiments need to be
done in the future to investigate the mechanism of
SETDB1 involvement in MM tumorigenesis, development,
and drug resistance.

5. Conclusions

This study firstly provided all-around evidence for the
expression of SETDB1 in myeloma and its potential as a bio-
target and prognostic predictor of MM. We have demon-
strated that increased SETDB1 gene copy numbers
contributed significantly to the aberrant SETDB1 expression
and high SETDB1 expression was an unfavorable prognostic
biomarker in myeloma patients. Notably, we observed that
SETDB1 was distinctly correlated with tumor immunity in
MM. Furthermore, we found that SETDB1 may exert an
important role in the cell-cycle progression of MM. How-
ever, the molecular mechanism of SETDB1 in MM has not
been fully certified. More research and experiments need to
be done to explore the mechanism of SETDB1 participating
in MM tumorigenesis, development, and drug resistance in
the future.
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