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Stroke is the second leading cause ofmortality worldwide, causingmillions of deaths annually, and is also amajor cause of disability-
adjusted life years. Hemorrhagic stroke accounts for approximately 10 to 27% of all cases and has a fatality rate of about 50% in the
first 30 days, with limited treatment possibilities. In the past two decades, the therapeutic potential of bone marrow-derived cells
(particularly mesenchymal stem cells and mononuclear cells) has been intensively investigated in preclinical models of different
neurological diseases, includingmodels of intracerebral hemorrhage and subarachnoid hemorrhage.More recently, clinical studies,
most of them small, unblinded, and nonrandomized, have suggested that the therapy with bone marrow-derived cells is safe and
feasible in patients with ischemic or hemorrhagic stroke. This review discusses the available evidence on the use of bone marrow-
derived cells to treat hemorrhagic strokes. Distinctive properties of animal studies are analyzed, including study design, cell dose,
administration route, therapeutic time window, and possible mechanisms of action. Furthermore, clinical trials are also reviewed
and discussed, with the objective of improving future studies in the field.

1. Introduction

Stroke is the second cause of death in the world, behind
ischemic heart disease [1]. About 10 to 27% of strokes are
hemorrhagic in presentation [2]. It has been estimated that in
2013 therewere a total of 6.5million deaths due to stroke (49%
from hemorrhagic strokes) [3] and that stroke was the second
greatest cause of disability-adjusted life years (DALYs), caus-
ing 113 million DALYs (42% due to hemorrhagic strokes) [3].

Intracerebral hemorrhage (ICH) can be classified as
primary or secondary, depending on the cause of the hem-
orrhage. Primary ICH is caused by a spontaneous rup-
ture of small arteries by chronic hypertension or amyloid
angiopathy. In secondary ICH, the hemorrhage is caused,

for example, by trauma, vasculopathies, coagulopathies, and
tumors, among other causes [4].

Unlike the ischemic infarct, which often has an acute
onset, ICH usually has a progressive onset. Symptoms vary
according to the location and size of the hematoma [5].
In 40% of the cases, the patient will have intraventricular
hemorrhage, which is associated with a worse outcome and
with an increased risk of developing hydrocephalus [4].
Delayed deterioration is not uncommon and is usually due
to rebleeding, edema, hydrocephalus, or seizures.

Many studies have been trying to elucidate the best
treatment option for this catastrophic pathology since there
are still many controversies regarding the management of
patients with ICH. For this reason, every three years the
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American Heart Association and the American Stroke Asso-
ciation perform a review of the literature and elaborate an
evidence-based guideline for the management of ICH [6].

Despite all efforts, the overall 30-day mortality rate
of ICH patients can reach 40–50% [7]. Although a large
number of randomized medical trials have been completed,
they all failed to prove any benefit of different drugs or
surgical interventions in patients with ICH [8, 9]. Current
treatment is based on the prevention of secondary brain
injury, including rebleeding and secondary brain ischemia.
General measures, such as the control of blood pressure,
reduction of intracranial pressure (ICP), and prevention of
infections, are important to prevent secondary brain injuries
[7]. Indeed, the presence of secondary clinical complications,
such as pneumonia, brain edema, cardiac complications, and
sepsis, was correlated with a higher mortality in surgically
and conservatively treated patients [10].

The general practice is to operate on young patients
with large superficial lobar hematomas with mass effect
and that are leading to an uncontrolled increase in ICP. In
addition, posterior fossa hematomas are usually surgically
evacuated, when they are larger than 3 cm in diameter and
are causing a mass effect on the brainstem. In summary, each
medical decision should be individualized based on patient’s
neurosurgical condition, size and location of hematoma,
patient’s age, and family wishes. Normally, ICHs are evacu-
ated through a regular craniotomy, with or without the use
of a microscope. New types of surgery have been studied and
tried, including minimally invasive techniques with smaller
incisions. However there is a lack of evidence that those new
techniques are more efficient than the regular craniotomy
[6, 11].

In this scenario, cell-based therapies represent a promis-
ing approach for the treatment of hemorrhagic stroke. Accu-
mulating evidence suggests that different types of stem cells
have the potential to induce or accelerate functional recovery
in animal models of ICH and subarachnoid hemorrhage
(SAH) [12–14]. As described by Hu et al. [12], mesenchymal
stem cells (MSC) and neural stem cells were the most
frequent cell types investigated in these studies. Neural stem
cells are defined by their capacity to self-renew and give
rise to neurons and glial cells. They can be derived from
embryonic stem cells and induced pluripotent stem cells
or can be isolated from fetal and adult neurogenic niches
[15]. In contrast, MSC are plastic adherent stromal cells,
characterized by their ability to self-renew and differentiate
into osteocytes, chondrocytes, and adipocytes, but not into
cells of nonmesodermal origin. MSC are present in the
bone marrow and in numerous other fetal and adult tissues,
including the umbilical cord, placenta, and adipose tissue,
from which they can be isolated and expanded in culture
[16, 17]. Furthermore,MSC can be generated from embryonic
stem cells and induced pluripotent stem cells [18, 19].

In view of the increasing use of bone marrow-derived
MSC (BM-MSC) in clinical trials for ischemic and hem-
orrhagic strokes [20], the aim of this review is to discuss
current evidence from preclinical and clinical studies that
have investigated the therapeutic potential of BM-MSC in
ICH. Because the bone marrow contains other cell types with

potential therapeutic value in ICH, including lymphocytes,
monocytes, endothelial progenitor cells, and hematopoietic
stem/progenitor cells, which compose the mononuclear cell
fraction [21], studies that have used bone marrow mononu-
clear cells (BM-MNC) were included in the present review.

2. Preclinical Studies

We searched the PubMed/Medline database for original arti-
cles in English that have evaluated the therapeutic role of bone
marrow-derived cells in animal models of ICH and SAH.We
identified 18 articles in which BM-MSC were transplanted
and 1 article in which BM-MNC were transplanted. The
collagenase model of ICH was used by 11 studies while the
remaining studies used the autologous bloodmodel of ICH (6
studies) and SAH (2 studies) (Figure 1(a)). Almost all studies
used rats, with the exception of two studies that used mice
and monkeys (Figure 1(b)).

2.1. Cell Type, Dose, Administration Route, and Time Window
for Therapy. In 14 of the 19 studies, rat BM-MSC were used
while 4 other studies used human BM-MSC (Figure 2(a)).
The remaining study used rat BM-MNC and it was the only
study that injected autologous cells. All studies found bene-
ficial effects of the treatment on structural and/or functional
outcomes, as summarized in Table 1.

Most of the studies that we identified (12 of 19 or 63,17%)
have injected BM-MSC or BM-MNCwithin the first 24 hours
after the injury (Figure 2(b)). This is consistent with the fact
that these cells are expected to modulate early events in the
pathophysiology of ICH and SAH, by counteracting neuronal
cell death and limiting detrimental inflammatory responses
[22–26]. For instance, in a series of 3 studies, Seyfried
and colleagues evaluated the effects of human BM-MSC
transplantation in a model of autologous blood injection
into the rat striatum [27–29]. Their data showed that doses
ranging from 1 × 106 to 8 × 106 of BM-MSC, intravenously
injected 24 hours after ICH,were equally effective in reducing
tissue loss and improving the neurological function of treated
animals [27, 29]. In contrast, the lower dose of 0.5 × 106 cells
was not capable of inducing such protective effect [29].

They have also tested the intra-arterial route of injection,
by injecting 1 × 106 cells into the internal carotid artery.
Interestingly, the beneficial effects of intra-arterially deliv-
ered BM-MSC were only observed when the animals were
pretreated with an intravenous injection of mannitol. The
authors proposed that mannitol facilitated the entry of BM-
MSC in the perihematomal region, through its effects on the
blood-brain barrier [28].

Different results were obtained by Zhang et al. [30],
who compared the effects of 3 routes of rat BM-MSC
administration on the motor recovery of rats subjected to
a model of collagenase injection into the striatum. In their
study, while the intra-arterial and intracerebroventricular
routes were able to improve the motor dysfunction (in the
beam balance test), the intravenous delivery of BM-MSC
showed no effect. Major differences between this work and
the studies of Seyfried [27–29] were the source of BM-
MSC (rat versus human cells, resp.), the model of ICH, and
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Figure 1: Charts summarizing the animal models (a), species (b), and sex of the animals (c) used in preclinical studies that have evaluated
the potential of bone marrow-derived cells to treat hemorrhagic stroke.

the behavioral tests used, making it difficult to compare
their results. However, all subsequent studies have shown
that the intravenous administration of BM-MSC promotes
neurological recovery in models of ICH [23, 25, 31] and SAH
[22].

The intracerebral route was the second most common
route of BM-MSC administration in ICH models (Fig-
ure 2(c)) and also has led to an improvement of the functional
outcome [24, 32–36]. Finally, Sun and coworkers [37] have
shown that the intranasal administration could represent
a less invasive option for the delivery of BM-MSC to the
brain following ICH. Their work was based on previous
studies showing that intranasally injected rat BM-MSC can
migrate from the nasal mucosa through the cribriform plate
into the intact and injured rodent brain [38, 39]. In these
studies, animals were pretreated with an intranasal injection
of hyaluronidase 30 minutes before the application of cells,
a protocol that facilitated the migration of BM-MSC to the
brain [39].

Although the therapeutic window of BM-MSC admin-
istration for ICH and SAH has not been defined, there is
evidence that the delayed treatment could still be effective.
Vaquero and coworkers have shown that the IC admin-
istration of BM-MSC, 2 months after the induction of
ICH, improved the functional outcome of treated rats [34,
35]. This favorable effect on the neurological recovery was

potentiated by embedding the cells in a platelet-rich plasma
(PRP) scaffold. Notably, donor cells could be found near
the injury site, up to 6 months after transplantation, and
the use of PRP-derived scaffolds increased the number of
engrafted cells. Although the delayed treatment did not
affect the lesion volume, it stimulated the proliferation of
endogenous cells in the subventricular zone (SVZ), one of
the neurogenic niches of the adult brain [35]. Furthermore,
one interesting study found that the neurological deficits
were attenuated by BM-MSC, regardless of whether the cells
were intracerebrally transplanted at 1 or 4 weeks after the
induction of ICH in Macaca fascicularis monkeys. However,
early treatment led to a better metabolic recovery, as assessed
by serial positron emission tomography (PET) scanswith 18F-
fluorodeoxyglucose (18F-FDG) [32].

The majority of these studies have shown that BM-MSC
and BM-MNC migrated to the vicinity of the hemorrhagic
lesion, regardless of the administration route. Several dif-
ferent techniques were employed to track the transplanted
cells, but none of the studies have used noninvasive imaging
techniques, such as bioluminescence imaging (BLI), fluores-
cence imaging (FLI), and radiopharmaceutical cell tracking
(recently reviewed in [40]). The time point of the analysis
varied among the studies, ranging from 6 hours to 6 months
(Table 1), indicating that at least a fraction of the transplanted
cells can survive for long periods in the brain.
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Figure 2: Charts summarizing the type of bone marrow-derived cells (a), time of injection (b), and route of administration (c) in preclinical
studies for hemorrhagic stroke.

2.2. Mechanisms of Action. Although it was initially hypoth-
esized that BM-MSC and BM-MNC could differentiate into
neural cells, this hypothesis has been challenged by many
studies [17, 41–43]. Recent evidence supports the theory
that the therapeutic action of bone marrow-derived cells is
mediated by paracrine mechanisms, including the release of
immune mediators, growth factors, and extracellular vesicles
[44, 45]. The success of BM-MSC-based therapies is founded
on the ability of BM-MSC to sense changes in the local
environment and modify their secretome in response to
alarmins [46] and pathogen-associated molecular patterns
[47]. Thus, a great research effort has been made to charac-
terize the secretome of BM-MSC under different stimulatory
conditions. For instance, Németh and colleagues [48] have
demonstrated that lipopolysaccharide-stimulated BM-MSC
release prostaglandin E2 which promotes the production
of the anti-inflammatory cytokine IL-10 by macrophages.
Similarly, by analyzing the secretome of BM-MSC cells with
a new methodology, Milwid et al. [49] identified a previ-
ously unknown anti-inflammatory action of microfibrillar-
associated protein 5 (MFAP5), which increased the produc-
tion of IL-10 by lipopolysaccharide-stimulated monocytes
and protected mice from a cytokine storm. Furthermore,
extracellular vesicles, such as exosomes andmicrovesicles, are
an important part of the BM-MSC secretome, as they can
transfer functional mRNAs, miRNAs, proteins, and bioactive

lipids with immunoregulatory and neuroprotective activities
to target cells [45, 50, 51].

The anti-inflammatory role of transplanted BM-MSC and
BM-MNC was evidenced by their ability to decrease the
number of microglial cells/macrophages and neutrophils in
the perihematomal region and to attenuate the expression
of proinflammatory cytokines in the brain and/or plasma
in animal models of ICH [24–26]. The anti-inflammatory
protein TNF-𝛼 stimulated gene/protein 6 (TSG-6) probably
mediated at least part of these effects, as suggested by Chen et
al. [25], who found increased levels of TSG-6 in the brain of
rats treatedwith an intravenous injection of BM-MSC2hours
after the induction of ICH. Previous studies have shown that
a large fraction of intravenously injected BM-MSC is retained
in the lungs [52] and that the pulmonary passage induces
them to secrete high levels of TSG-6, which contributes to
the healing of the infarcted myocardium [53]. In addition,
it was recently observed that the intravenous infusion of
BM-MSC-derived extracellular vesicles, containing 4 ng of
TSG-6, decreased the expression of the proinflammatory
cytokine interleukin-1𝛽 in the brain and improved the cog-
nitive function in a model of traumatic brain injury [54].
This is far lower than the dose of recombinant TSG-6 that
promoted beneficial effects in this model of traumatic brain
injury (50𝜇g/mouse, intravenous) [55], suggesting that there
may be other molecules in BM-MSC-derived extracellular
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vesicles that act synergistically with TSG-6 or that there
are differences in the bioavailability of TSG-6 in these two
conditions.

Studies using animal models of ischemic stroke have
raised the possibility that umbilical cord blood- and bone
marrow-derived cells could exert their anti-inflammatory
action in the spleen [56, 57], where a large number of
transplanted cells can be found for several days after trans-
plantation [58–60]. Consistent with these findings, Suda et
al. [26] observed that a significant number of intravenously
administered BM-MNC migrated to the spleen in a rat
model of ICH. However, it remains to be elucidated whether
and how the interaction between transplanted cells and
splenocytes contributes to the therapeutic effects of bone
marrow-derived cells in this model.

Besides the anti-inflammatory action, BM-MSC and BM-
MNChave been shown to exert neuroprotection inmodels of
SAH and ICH.Many studies have found a reduced number of
apoptotic cells in the brain [22–26, 33, 61] and/or a decrease
in striatal tissue loss or lesion volume after the treatment
[23, 27–29, 37, 61]. However, other studies showed no effects
of the therapy on lesion volume [24, 35] or brain atrophy
[62], despite the beneficial effect on functional recovery. A
possible reason for this discrepancy is the fact that BM-
MSC and BM-MNC can stimulate mechanisms of brain
plasticity [62] and regeneration, including synaptogenesis
[27–29], angiogenesis [24, 26], and neurogenesis [33, 35–
37]. Moreover, the cell therapy can attenuate the blood-brain
barrier dysfunction after ICH [25, 31]. In this regard, it has
been shown that the pulmonary passage may be an impor-
tant step for the protection of the blood-brain barrier by
intravenously delivered BM-MSC. Menge et al. [63] showed
that the interaction between pulmonary endothelial cells and
BM-MSC induced the latter to secrete tissue inhibitor of
matrix metalloproteinase-3 (TIMP3), thereby increasing the
serum levels of TIMP3 in a model of traumatic brain injury.
Silencing the expression of TIMP3 in BM-MSC abrogated the
protective effects of the cell therapy in the blood-brain barrier
[63]. Further work from this group has revealed that TIMP3
also has a direct neuroprotective role both in vitro and in vivo
[64].

2.3. Quality of Preclinical Studies. Two recent meta-analyses
concluded that the quality of original articles investigating
the efficacy of stem cell therapies in animal models of ICH
is still low [12, 13], as assessed by the Collaborative Approach
to Meta-Analysis and Review of Animal Data from Experi-
mental Stroke (CAMARADES) checklist [65]. For instance,
studies using animals with relevant comorbidities (aged,
hypertensive, or diabetic) are still rare. From the 19 studies
included in our analysis, only 2 studies included animals
with comorbidities. Wang et al. [31] subjected spontaneously
hypertensive rats to the blood injection model of ICH and
treated them with an intravenous injection of rat BM-MSC
or vehicle. They showed that the cell therapy improved the
recovery of behavioral function and increased the expression
of the tight junction occludin in the blood-brain barrier
of spontaneously hypertensive rats. However, the authors
have not examined whether these effects were comparable to

those reported in studies with normotensive rats. Another
exception was the study of Suda and colleagues [26], who
induced ICH in both young and aged rats. Animals received
an intravenous injection of autologous BM-MNC or vehicle,
1 day after ICH. Both young and retired breeder aged rats
benefited from the therapy, which decreased brain atrophy
and edema and attenuated spatial learning deficits.

Other important parameters that are usually neglected
or not informed by the authors are the control of body
temperature during the surgeries, allocation concealment,
blinded assessment of outcome, and sample size calculation
[12, 13]. In an elegant review, MacLellan and colleagues [66]
identified and discussed some of the limitations of the current
preclinical research on ICH. Among these limitations, they
highlighted that despite the fact that behavioral data collected
at acute time points might be confounded by other factors,
such as the presence of brain edema, the functional outcome
is rarely assessed at protracted time points. They also found
that the neurological deficit score (NDS), which includes a
battery of subtests, was the most used behavioral method in
models of ICH, whereas more sensitive tests were seldom
performed. Indeed, among the 19 studies of ICH/SAH that we
found, 13 had used NDS or modified versions of a neurologi-
cal stroke scale (mNSS). Other sensorimotor behavioral tests
that were used included the Rotarod (in 4 studies, 3 from the
same group), the corner turn test (in 3 studies from the same
group), the staircase test, and the adhesive removal test (used
in 1 study each). Only one study also performed a cognitive
test (Morris water maze task) [26] and two studies have not
performed any behavioral assessments [33, 67]. We observed
that the time of the last behavioral assessment varied widely,
although almost all the studies have evaluated the animals
for at least 2 weeks after the injury. In only one study, the
behavioral analysis was restricted to the acute phase of stroke
(Figure 3(a)) [25]. Similarly, the minimal number of animals
per experimental group varied among the studies, ranging
from 5 to 15 (Figure 3(b)).

Another criterion that is not included in the CAMA-
RADES checklist is the inclusion of animals of both sexeswith
the separate analysis of data by sex, as recently recommended
by the US National Institutes of Health (NIH) [68]. Among
the 19 articles that we found, 7 studies have induced ICH
only in females, 9 have subjected only male animals to
ICH, and the 3 remaining studies have not informed the
sex of the experimental animals (Figure 1(c)). Although
there is conflicting evidence regarding the existence of sex-
dependent differences inmortality and neurological outcome
after ICH, numerous preclinical studies have indicated that
gonadal hormones affect the pathophysiology of ICH [69],
which in turn could affect the response to a given therapy
[70].

We also noticed that while the cell dose and the infusion
volume were reported in all studies, the infusion velocity was
not informed. Both the cell dose and the infusion velocity
can influence the occurrence of adverse events, such as the
formation of microocclusions and the development of stroke,
after the intra-arterial administration of BM-MSC in rats
[71, 72]. These findings draw attention to the need for more
studies on the long-term safety of cell therapies, such as
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Figure 3: Charts summarizing the timing of the latest behavioral test (a) and the minimal number of animals per experimental group (b) in
preclinical studies that have evaluated the therapeutic potential of bone marrow-derived cells for hemorrhagic stroke.

the study by Donega et al. [73], who performed a systematic
histopathological analysis of 38 organs, 14 months after the
induction of neonatal hypoxia-ischemia and the intranasal
transplantation of BM-MSC inmice.Their results showed no
evidence of any adverse effects in the brain, nasal turbinates,
or other peripheral organs.

3. Clinical Studies

We searched the PubMed/Medline database for original
articles in English. We found 5 articles involving 5 different
trials of cell therapies with a total of 188 treated patients
with hemorrhagic stroke. Two trials were for basal ganglia
hemorrhagic stroke and 3 for ischemic or hemorrhagic
strokes (Table 2). One trial performed intravenous injections,
1 intrathecal injections, 2 intracerebral injections, and 1
intracerebral administration followed by intrathecal injec-
tions (Table 2).

Suarez-Monteagudo and coworkers [74] carried out a
study with an IC injection of BM-MNC, which had 3 subjects
with ischemic lesions in the cortex, striatum, or thalamus
and 2 subjects with hemorrhagic lesions in the striatum
or thalamus, between 3 and 8 years after the stroke. The
patients with hemorrhagic lesions received a total of 1.7
× 107 to 5.5 × 107 BM-MNC by stereotactic implantation
along different tracts next to the injury. The authors reported
that no significant adverse events occurred in the 12-month
follow-up. The authors described functional improvements
at 12 months, with a decline in motor deficits assessed by
Ashworth’s Scale for Spasticity and the Medical Research
Council Scale; an increase in the National Institutes of Health
Stroke Scale (NIHSS), Barthel index (BI), and Scandinavian
Stroke Scale; and improved locomotion and equilibrium,
assessed by the Tinetti scale. Nevertheless, the absence of
a control group, the small study size, and the unblinded
evaluation do not permit conclusions concerning efficacy.

Li and collaborators [75] included subjects in a nonran-
domized, phase I, single-blind study of BM-MNC therapy.
Sixty patients received an intraparenchymal cell injection 5 to
7 days following basal ganglia hemorrhage, and 40 subjects
were included in the control group. The total number of

injected cells varied from 2.5 × 108 to 2.3 × 109 cells. The
authors reported that after 6 months the NIHSS scores in
the cell therapy group were significantly lower in comparison
to the control group (𝑝 < 0.01), whereas the BI scores
were higher (𝑝 < 0.01). Furthermore, the authors described
that neurological and functional improvements occurred in
86.7% of the patients in the cell therapy group versus 42.5%
in the control group (𝑝 = 0.001).

Bhasin and colleagues [76] carried out an unblinded
nonrandomized trial with 4 subjects with ischemic middle
cerebral artery (MCA) lesions and 2 with hemorrhagic MCA
lesions, as well as 6 control subjects. Autologous BM-MSC
were intravenously injected between 8 and 12months after the
stroke. Patients were evaluated through theMedical Research
Council scale for muscle strength, the modified Ashworth
Scale for spasticity, the Fugl-Meyer (FM) scale for motor
recovery, and the modified BI. The authors reported that
no therapy-related adverse effects occurred in the 6-month
follow-up. Even though the analysis indicated an advance
on the FM scale and modified BI after 2 and 6 months, no
statistically significant difference was seen when comparing
the BM-MSC-treated and control groups.

Sharma et al. [77] included patients with ischemic or
hemorrhagic stroke in a phase 1, nonrandomized, open-label
study.The authors stated that 30 patients were included but 6
were lost to follow-up. Of the remaining 24 patients, 10 had
hemorrhagic and 14 ischemic lesions. Patients were treated
4 to 144 months after the stroke (mean 40.5 months) and
received an intrathecal injection of 106 cells multiplied by
the body weight. Follow-up varied from 6 to 54 months
(mean 30 months). The authors reported that 12 patients
had improvement in ambulation, 10 in hand functions, 6 in
standing balance, 9 in walking balance, and 10 patients in
functional status. Three patients agreed to undergo PET with
18F-FDG before and after cell therapy. The authors reported
an increase in brain metabolism after cell therapy in these
patients.

Zhu and collaborators [78] carried out a clinical trial
where 215 patients with ICH were included. Following sur-
gical drainage and decompressive craniotomy, 114 patients
agreed to receive the cell therapy while the remaining 101
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patients participated as a control group. Three to six days
after the surgery, bone marrow harvest was performed and
a mean of 4 × 109 BM-MNC was obtained. Half of the
cell suspension was administered intracerebrally through
indwelling drainage tubes that had been placed at the rim
of the hematoma cavity. The other half of the cell suspension
was separated for BM-MSC culture and a mean of 8.4 × 107
cells was injected after 4 weeks by the intrathecal route. Four
patients from the cell therapy group and 5 patients from the
control group were lost to follow-up. The authors reported
that there was no significant difference in demographic
variables including age, gender, neurological findings, mean
lesion volumes, and surgical methods between both groups.
The authors reported that NIHSS scores and Rankin scale in
the cell therapy group were lower and Barthel scores were
higher than in the control group at 6 and 12 months. The
authors stated that no transplantation-related adverse events
occurred in the follow-up.

3.1. Ongoing Clinical Studies. A search in clinicaltrials.gov
showed 3 ongoing registered studies, which are estimated
to enroll up to 280 subjects with ischemic or hemorrhagic
strokes (Table 3). However, none of the studies informed the
proportion of ischemic to hemorrhagic stroke patients that
will be included, and it is therefore not possible to know
how many hemorrhagic stroke patients will be included. The
intrathecal injection of autologous BM-MNC was chosen by
two of the trials and the intravenous injection of autologous
BM-MSC was chosen by the remaining trial (Table 3).

4. Discussion

Several interrogations remain concerning the potential use
of cell therapies for hemorrhagic stroke. Amongst the key
issues to be resolved is defining the optimal cell type to be
transplanted. In 2013 the US Food and Drug Administration
released its “Guidance for Industry: Preclinical Assessment
of Investigational Cellular and Gene Therapy Products”
stating that whenever feasible, the tentative product that
will be delivered to the patients should be evaluated in the
preclinical studies [79]. However, the delivery of human cells
in preclinical studies may be challenging due to immune
responses of animals, which may lead to rejection of the cells
[79].

There are marked differences between the predominant
cell types that have been chosen by preclinical and clinical
studies for ICH. Four out of 5 clinical studies used BM-
MNC while only 1 of the 19 preclinical studies studied this
cell population. Moreover, while all clinical studies used
autologous cells, either BM-MNC or BM-MSC, only 1 of the
19 preclinical studies used autologous cells. [26]. In the latter
study, by Suda and collaborators, BM-MNCwere collected 22
hours after ICH [26]. This approach was based on previous
data demonstrating that the therapy with autologous BM-
MNC was more effective if the cells were harvested 22
hours after the ischemic event, compared to cells harvested
24 hours before MCA occlusion in rats [80]. Such results
suggest that stroke may prime BM-MNC (or perhaps a
subpopulation of BM-MNC) towards a protective phenotype.

Similar observations have been made in a model of acute
intestinal infection with Toxoplasma gondii, where monocyte
progenitors were primed for regulatory functions very early
after infection, prior to their mobilization from bonemarrow
[81].

Notably, the transplantation of autologous poststroke
BM-MNC is a feasible approach for the acute treatment of
different types of stroke, since the BM-MNC fraction can
be easily isolated in high yield and purity using density
gradient media [20]. In contrast, the time required to expand
BM-MSC in culture would not allow the transplantation of
autologous BM-MSC in the acute phase of the injury, unless
the cells had been banked for future use. Nevertheless, given
their low immunogenicity, allogeneic MSC could be trans-
planted without the need for immunosuppressive drugs.This
approach has been demonstrated in many preclinical and
clinical studies for different diseases [20, 82]. For instance,
Prochymal�, allogeneic culture-expanded adult human BM-
MSC, was the first stem cell product to receive conditional
market authorization from Health Canada for the treatment
of acute graft-versus-host disease in pediatric patients who
are unresponsive to corticosteroid [83]. Different trials using
culture-expanded allogeneic bone marrow-derived cells have
also been designed for ischemic stroke, including from US
companies Athersys, SanBio, and Stemedica, but their final
results have not yet been reported [84, 85].

It is possible to manipulate BM-MSC before injection
in an attempt to increase their survival, to induce a desired
phenotype or to modify their migratory capacity. This can be
done by changing culture conditions (e.g., three-dimensional
culturing), by genetic manipulation, or by exposing the
cells to growth factors, immunomodulators, or low doses
of toxic factors, for example [86]. Wei and coworkers have
demonstrated that BM-MSC upregulate the expression of the
growth factors brain-derived neurotrophic factor (BDNF),
glial cell line-derived neurotrophic factor (GDNF), and vas-
cular endothelial growth factor (VEGF) after 48 hours of cul-
ture under hypoxic conditions [87]. They also have observed
that the intranasal injection of hypoxia-preconditioned BM-
MSC (cultured for 24 hours under hypoxia) restored the
expression of these same factors to near normal levels in the
perihematomal region in mice [37].

Several lines of evidence have supported the notion
that BM-MSC comprise a heterogeneous population of cells
with distinct functions [88]. Therefore, the identification and
enrichment of one or more subpopulations of BM-MSC with
the desired functional attributes could represent a strategy
to improve the therapeutic potential of BM-MSC. This was
the approach used by Bao et al. [24], who investigated
the effects of the intracerebral transplantation of fetal liver
kinase- (Flk-) 1+ human BM-MSC, a subpopulation of BM-
MSC that was the first stem cell product approved by the
State Food and Drug Administration of China, in a rodent
model of ICH. In sum, their results have shown that Flk-1+
BM-MSC improved the neurological recovery through anti-
inflammatory, antiapoptotic, and proangiogenic effects.

Besides the intrapopulation heterogeneity, there may be
differences in therapeutic efficacy among BM-MSC isolated
from different donors. In an attempt to overcome this
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limitation, Prockop and colleagues have demonstrated that
TSG-6 mRNA level could be used as a biomarker to predict
the in vivo anti-inflammatory activity of human BM-MSC
[89]. Accordingly, the establishment of potency assays is one
of themain challenges for the development of cellular therapy
products [90].

Finally, it has been demonstrated that MSC isolated from
other tissues, such as the umbilical cord blood [91], umbilical
cord tissue [92], or adipose tissue [93], can improve the
behavioral recovery in animalmodels of ICH.However, given
the intrinsic biological differences between MSC isolated
from different tissues [94], it is still uncertain whether there
are differences in their therapeutic potential.

The optimal cell dose also continues to be uncertain.
The Stem Cell Therapies as an Emerging Paradigm in Stroke
(STEPS) guidelines suggested dose conversion from preclin-
ical studies based on body weight [95]. However, only one of
the 5 clinical studies performed cell therapy based on body
weight, and no preclinical studywas used as rationale for dose
conversion [77].

The use of imaging methods is another tool that can
advance knowledge of numerous aspects, including cell
migration and homing. Several methods can be employed
to evaluate cell biodistribution. Although fluorescence and
bioluminescence have been efficiently used to follow cells in
animal studies for different neurological diseases, they have
not been used in studies of cell therapies for hemorrhagic
stroke and have limitations such as the restricted tissue
penetration of light that does not allow their clinical use
[96]. Superparamagnetic iron oxide nanoparticles (SPIOs),
initially produced to identify hepatic tumors, may be used
for exogenous cell labeling and tracking with MRI and has
been used in a preclinical study with neural stem cell therapy
for ICH [97]. However, SPIOs have restraints of exogenous
contrasts, such as the chance of reduction with cell division.
Furthermore, there are conflicting data on the impact of
SPIOs in biological activities [98–101], and they have only
been permitted for research studies.

For these reasons, nuclear medicine techniques such
as PET and single photon emission computed tomography
(SPECT) are important for the evaluation of cell migration
and homing in vivo by indirect or direct assessments [40]. In
indirect assessments, the uptake of 18F-FDG may be used to
evaluate increased metabolism in the lesioned brain. One of
the preclinical studies of BM-MSC therapy for ICH used 18F-
FDG and indicated improvedmetabolismup to 13 weeks after
cell transplantation [32]. One of the clinical studies also used
18F-FDG after intrathecal administration of autologous BM-
MNC in 3 of the 24 patients with ischemic or hemorrhagic
stroke and reported increased brain metabolism one year
after cell therapy [77]. However, the description of 18F-
FDG methods in the latter study was extremely limited and,
therefore, does not allow any conclusive analysis. Moreover,
the increase in 18F-FDG metabolism does not necessarily
indicate the presence of transplanted cells or improved brain
metabolism and may also occur if an inflammatory process
takes place [102]. Cells may also be labeled with radiotrac-
ers such as Technetium-99m for direct cell tracking [40].

Although it has beenproved feasible in preclinical and clinical
studies for ischemic stroke [60, 103–108], it has not yet been
employed in preclinical or clinical studies of cell therapies for
hemorrhagic stroke.

5. Conclusion

Findings from preclinical reports indicate that cell transplan-
tation may promote positive structural and functional effects
inmodels of ICH and SAH.Nevertheless, themodes of action
of these therapies are still under investigation. Clinical trials,
most of them small, open-label, and nonrandomized, have
been published and have reported that bone marrow-derived
cell transplantation appears to be safe and feasible for hem-
orrhagic stroke. Nonetheless, there is a clear need for better
preclinical and clinical studies, including randomized and
blinded studies, to define the efficacy of cell transplantation
for hemorrhagic stroke.
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