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Abstract. Acute myeloid leukemia (AML) is a hematological 
cancer prevalent worldwide. Anoikis‑related genes (ARGs) 
are crucial in the progression of cancer and metastasis of 
tumors. However, their role in AML needs to be clarified. 
In the present study, differential analysis was performed on 
data from The Cancer Genome Atlas database to identify 
differentially expressed ARGs (DE‑ARGs). Subsequently, 
a prognostic model for patients with AML was constructed 
using univariate Cox, Least Absolute Shrinkage and 
Selection Operator and multivariate Cox regression anal‑
yses. This model was based on four key DE‑ARGs [lectin 
galactoside‑binding soluble 1 (LGALS1), integrin subunit 
α 4 (ITGA4), hepatocyte growth factor (HGF) and Ras 
homolog gene family member C (RHOC)]. Independent 
prognostic factors for AML included prior treatment, age, 
risk scores and diagnosis. A nomogram was constructed 
based on these factors to aid clinical decision‑making. 
Furthermore, bone marrow samples were collected from 
individuals diagnosed with AML and healthy donors to 
validate the expression of the identified ARGs using reverse 
transcription‑quantitative PCR. The mRNA levels of 
LGALS1 and RHOC were significantly higher, while those 
of ITGA4 and HGF were significantly lower in patients with 
AML than in healthy donors (all P<0.05). The results of the 
present study expands the understanding of the function of 
ARGs in AML, providing a new theoretical basis for the 
treatment of AML.

Introduction

Acute myeloid leukemia (AML) is a blood cancer character‑
ized by the abnormal growth and accumulation of cells in 
the hematopoietic system (1). It is the most common type of 
AML in adults, with ~20,380 new cases and 11,310 deaths in 
2023 (2). Despite extensive research on prognostic biomarkers, 
the prognosis of AML remains highly variable, with a <50% 
5‑year overall survival (OS) rate and only a 20% survival 
rate for elderly patients 2 years post‑diagnosis (3). Currently, 
cytogenetic and molecular abnormalities at diagnosis are 
considered the most important prognostic factors, predicting 
complete remission rates, disease‑free survival, relapse risk 
and OS.

Anoikis, a form of programmed cell death, occurs when 
cell‑cell or cell‑extracellular matrix attachments are disrupted, 
contributing to tissue homeostasis maintenance by eliminating 
misplaced or dislodged cells (4). Cancer cells often evade 
anoikis through several mechanisms, resulting in enhanced 
invasiveness and metastatic potential (5). Anoikis‑related 
genes (ARGs) are crucial in driving the overall progression 
and metastatic cascade across several cancers, such as gastric 
carcinoma (6), lung cancer (7), breast carcinoma (8) and 
endometrial carcinoma (9).

Patients with AML and elevated lectin galactoside‑binding 
soluble 1 (LGALS1) mRNA levels exhibit reduced disease‑free 
survival (10). Additionally, hepatocyte growth factor (HGF) 
affects leukemic cell proliferation and migration (11), whilst 
integrin subunit α 4 (ITGA4) mediates anti‑apoptotic signals, 
conferring chemoresistance (12). Both in vivo and in vitro 
studies have demonstrated the critical role of Ras homolog 
gene family member C (RhoC) in promoting metastasis by 
protecting metastatic cells from apoptosis, influencing cell 
motility and modulating chemokine secretion (13). Despite its 
substantial impact on tumorigenesis and metastasis, the role of 
anoikis in AML remains unclear.

The present study aimed to identify hub genes associated 
with anoikis in patients with AML and enhance the predictive 
power of highly influential genes through several analyses, 
including univariate and multivariate Cox regressions, differ‑
ential expression analysis and Least Absolute Shrinkage and 
Selection Operator (LASSO) regression. Using these identified 
ARGs, the present study performed prognostic assessments, 
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functional enrichment analysis and principal component 
analysis (PCA) in patients with AML. Ultimately, a risk signa‑
ture was developed to assess the predictive value of ARGs in 
AML, aiming to provide a novel prognostic tool for patients 
with this pathology.

Materials and methods

Data acquisition of patients with AML. The survival data and 
RNA‑sequencing (RNA‑seq) data of 151 patients with AML 
were obtained from The Cancer Genome Atlas (TCGA) using 
the publicly available University of California, Santa Cruz 
Xena database (https://xenabrowser.net/datapages/). A training 
set comprising 132 patients with AML with comprehensive 
clinical information and survival data was used for subsequent 
analysis. The GSE71014 dataset, containing RNA‑seq and 
survival data from 104 patients with AML, was sourced from 
the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) and served as the validation set. In 
a previous study, 434 ARGs were identified (14).

Identification of anoikis‑related subtypes in the training set. 
The R package ‘ConsensusClusterPlus’ version 1.54.0 (15) was 
used to identify subtypes associated with anoikis, based on 
the expression of the 434 ARGs. The clustering results were 
validated using PCA. The OS among different subtypes was 
further assessed using the ‘Survival’ package version 3.2‑3.

Simultaneously, the ‘limma’ package version 3.52.4 (16) 
was used for differential expression analysis to identify 
differentially expressed ARGs (DE‑ARGs) between the 
two identified subtypes. The screening criteria were set 
as P<0.05 and |log2FoldChange|>0.5. The ‘clusterProfiler’ 
version 4.4.4 (15) was used to perform Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses on these DE‑ARGs. The results were 
visualized using bubble plots with the R package ‘ggplot2’ 
version 3.3.2 (The R Foundation) (17).

Construction and validation of the prognostic risk model. 
A univariate Cox analysis of DE‑ARGs was performed 
in the training set to identify the prognosis‑related genes 
(P<0.05). The most predictive prognostic genes were identi‑
fied through using LASSO (18) and multivariate Cox analyses. 
Subsequently, patients in the training set were stratified 
into two groups based on the median risk score. The differ‑
ences in OS between the two groups were visualized using 
Kaplan‑Meier (KM) curves using the ‘survminer’ package 
3.6.0 (19). To assess the prognostic capability of the model, 
receiver operating characteristic (ROC) curves were devel‑
oped using the ‘survival ROC’ package 1.42.0 (20). Finally, the 
prognostic model was validated using the external validation 
dataset GSE71014.

Analysis of independent prognostic factors. Univariate and 
multifactorial Cox analyses were performed to determine 
the association between clinicopathological characteristics 
and risk scores, and identify independent predictive factors 
for AML. The ‘rms’ package version 6.0‑1 (21) was used to 
develop a nomogram predicting survival probability based 
on independent prognostic criteria. Calibration curve and 

decision curve analyses were used to validate the suitability of 
the nomogram for clinical decision‑making.

Biological differences between the two groups. The limma 
package version 3.52.4 (16) was used to identify differentially 
expressed genes (DEGs), with criteria set at |log2FC|>0.5 and 
adjusted P‑value (P.adjust) <0.05. Subsequently, a functional 
enrichment analysis on these DEGs was performed using the 
R package ‘clusterProfiler’ version 4.4.4 (The R Foundation).

Distribution of clinicopathological features for risk score 
determination. In the training set, clinical information was 
extracted, such as cytogenetic risk categories mentioned in the 
published literature (intermediate/normal, favorable, unknown 
or poor) (22), sex (female or male), prior treatment and 
diagnosis (No or Yes) and age (>60 or ≤60 years) of patients 
with AML. The phenotype data of the TCGA AML dataset 
were downloaded from the Xena database (https://gdc‑hub. 
s3.us‑east‑1.amazonaws.com/download/TCGA‑LAML.GDC_ 
phenotype.tsv.gz) to extract clinical features including cyto‑
genetics risk category, sex, ‘prior_treatment.diagnoses’ and 
age. The cytogenetics risk category was categorized into 
intermediate/normal, favorable, poor and unknown groups 
according to the cytogenetics risk category column in the 
downloaded phenotype file. Differences in risk scores between 
subgroups with different clinical characteristics were subse‑
quently compared using Wilcoxon rank‑sum tests (comparison 
between two groups) and the Kruskal‑Wallis test (comparison 
between multiple groups) to determine significant differences 
between clinical conditions (P<0.05. Dunn's test was used as 
the post hoc test. The ‘ComplexHeatmap’ version 1.14.0 (23) 
was used to visualize the results.

Reverse transcription (RT)‑quantitative (q)PCR) analyses. 
Bone marrow samples were collected from 20 individuals 
diagnosed with AML, including newly diagnosed patients 
and those who had relapsed. The control group consisted of 
healthy donors matched for age and sex with the patients. 
Allogeneic hematopoietic stem cell donors were recruited from 
patients scheduled for hematopoietic stem cell transplantation 
at Guizhou Medical University (Guiyang, China) between 
February 2022 and October 2023. Ethical approval for the 
present study was obtained from The Ethics Committee of the 
Affiliated Hospital of Guizhou Medical University (approval 
no. 2023‑744). The donors were all family members or friends 
of patients who were then hospitalized. Prior to the donation, 
all patients underwent bone marrow aspiration to assess the 
normality of bone marrow morphology according to hospital 
requirements. The present study was performed in accordance 
with the principles of the Declaration of Helsinki, and all 
patients provided written informed consent prior to enroll‑
ment. Table SI presents information on the patients with AML.

RNA extraction was performed using an Ultra Pure RNA 
Extraction kit (cat. no. CW0581; Jiangsu CoWin Biotech Co, 
Ltd.), followed by RT at 55˚C for 5 min to generate cDNA using 
a Reverse Transcription cDNA kit (cat. no. K1622; Thermo 
Fisher Scientific, Inc.). qPCR was performed with SYBR 
Green Master Mix (cat. no. NVZ‑Q221‑01; Vazyme Biotech 
Co., Ltd.), using an Applied Biosystems 7500 Real‑Time 
Cycler (QuantStudio 1; Applied Biosystems; Thermo Fisher 
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Figure 1. Differential analysis between anoikis‑related subtypes and enrichment analysis. (A) Cluster analysis performed using The Cancer Genome Atlas‑Acute 
myeloid leukemia cohort (n=132) using the expression matrix of ARGs showing the changes in values and (B) the downward trend of CDF. (C) Cluster effect 
diagram of two subtypes of samples. (D) Kaplan‑Meier analysis of patient outcomes between different clusters. (E) Volcano map of the differential expression 
of the 54 ARGs between cluster 1 and 2. (F) Heatmap demonstrating expression patterns of the 54 ARGs. (G) Bubble plot of Gene Ontology top 10 enrichment 
results for 54 ARGs. (H) Bubble plot of Kyoto Encyclopedia of Genes and Genomes top 10 enrichment results for 54 ARGs. CDF, cumulative distribution 
function; ARGs, anoikis‑related genes.
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Scientific, Inc.). PCR conditions included an initial denaturation 
step at 95˚C for 10 min, followed by 40 cycles of denaturation 
at 95˚C for 15 sec, and annealing/extension at 60˚C for 1 min, 
with a standard melting curve analysis performed afterward. 
All samples were analyzed in triplicate, and gene expression 
levels were quantified using the comparative threshold cycle 
method (2‑ΔΔCq) with GAPDH serving as the reference gene for 
normalization (24). Primer pairs and corresponding sequences 
used in the present study are detailed in Table SII.

Prediction of chemotherapy drug. The oncoPredict tool 
version 0.2 (25) was used to predict chemotherapy agents for 
AML using data from the Genomics of Drug Sensitivity in 
Cancer (GDSC) database (https://www.cancerrxgene.org/). 
The half‑maximal inhibitory concentration (IC50) values 
were calculated for each patient with AML in the two groups. 
To compare differences in drug sensitivity between the two 
groups, the Wilcoxon rank‑sum test was used.

Statistical analysis. R software (version 4.2.2; The R 
Foundation) was used for all analyses. The Wilcoxon rank‑sum 

test was used to compare data between the two groups. The 
Kruskal‑Wallis test was used for multiple comparisons, 
followed by Dunn's post hoc test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Identification of anoikis‑related subtypes. Using the expres‑
sion profiles of ARGs, 132 AML samples were classified 
through the consensus clustering analysis method. The 
consistency distribution for k values ranging from 2‑6 was 
displayed in an empirical cumulative distribution function 
plot. The consensus matrix heatmap revealed that k=2 was 
optimal for classification, dividing AML samples into cluster 
1 and cluster 2 (Figs. 1A‑C and S1; Table SIII). Patients in 
cluster 2 exhibited inferior prognoses compared with those 
in cluster 1 (Fig. 1D), indicating that AML prognosis is 
influenced by ARG expression levels and supporting the 
subsequent screening of survival‑related ARGs. A difference 
in the expression of 54 ARGs was observed between the two 
subtypes (Fig. 1E and F). Using a significance threshold of 

Figure 2. Prognostic risk model development and validation. (A) Univariate Cox analysis of DE‑ARGs. (B) Abscissa represents log (λ) and the ordinate denotes 
the error of cross‑validation. (C) Each curve represents the change trajectory for each independent variable coefficient. (D) Multifactorial Cox analysis of 
DE‑ARGs that passed least absolute shrinkage and selection operator regression analysis. (E) Distribution of patients into high‑ and low‑risk groups in the 
training set. (F) KM survival analysis of patients in the high‑ and low‑risk groups. (G) ROC curves of patients at 1, 3 and 5 years. DE‑ARGs, differentially 
expressed anoikis‑related genes, ROC, receiver operating characteristic, KM, Kaplan‑Meier, AUC, area under the curve; LGALS1, lectin galactoside‑binding 
soluble 1; ITGA4, integrin subunit α4; HGF, hepatocyte growth factor; RHOC, Ras homolog gene family member C.
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P.adjust <0.05, 1,067 GO terms and 104 KEGG pathways were 
associated with these DEGs (Fig. 1G and H). GO analysis 
revealed that these DEGs were involved in the regulation of 
the intrinsic apoptotic signaling pathway, regulation of pepti‑
dase activity, apoptotic signaling pathway, focal adhesion and 
cell‑substrate junction. Additionally, DEGs were significantly 
associated with microRNA (miR) in cancer, phosphatidylino‑
sitol 3‑kinase (PI3K)/protein kinase B (Akt) signaling pathway 
and proteoglycans in cancer.

Development of an effective prognostic risk model associated 
with anoikis in AML. Using DE‑ARGs, 21 genes with P<0.05 
were identified in the training set (Fig. 2A). Subsequently, 
LASSO regression analysis was performed to exclude false 
positive genes (Fig. 2B and C). Finally, four prognostic ARGs 
were determined using multifactorial Cox analysis: LGALS1, 
ITGA4, HGF and RHOC (Fig. 2D).

The risk score was calculated as follows: Risk score 
= 0.13836534 x LGALS1‑0.26749323 x ITGA4‑0.227481177 x 
HGF + 0.3471619 x RHOC.

Patients were stratified into two groups based on a median 
risk of 1.042299 (Fig. 2E). Patients with low‑risk scores 
demonstrated significantly higher OS rates compared with 
those with high‑risk scores (Fig. 2F). The validity of the 
risk signature was further assessed by computing the ROC 
curve for OS. The area under the curve (AUC) values were 
>0.70 at 1, 3 and 5 years, indicating enhanced efficacy of the 
prognostic risk model (Fig. 2G).

The model was validated using the GSE71014 dataset, 
and AML samples were stratified based on the median 
risk score. As the risk score increased, the OS of patients 
with AML gradually decreased, accompanied by a steady 
rise in mortality rates (Fig. S2A and B). KM curves in the 
GSE71014 dataset revealed that patients with AML in the 
low‑risk group had significantly longer OS rates compared 
with those in the high‑risk group (P<0.05; Fig. S2C). 
Furthermore, the AUC values for 1‑, 3‑ and 5‑year survival 
rates based on this model were 0.809, 0.737 and 0.813, 
respectively, indicating enhanced efficacy of the prognostic 
risk model (Fig. S2D).

Figure 3. Development and assessment of the nomogram model. Forest plots demonstrating (A) univariate and (B) multivariate Cox independent prognostic 
analysis of clinical characteristics and risk scores (C) Nomogram constructed based on independent prognostic factors. (D) Calibration curve evaluating the 
predictive power of the nomogram model. (E) Clinical benefits of the nomogram model surpassed those of the age curve, riskScore curve, prior treatment and 
diagnoses curve within the risk threshold range of 0‑1. OS, overall survival.

https://www.spandidos-publications.com/10.3892/ol.2024.14808
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Construction of a nomogram model with accurate prediction. 
The clinicopathological variables and risk scores from 
132 patients were combined to perform univariate and 
multivariate Cox regression analyses (Fig. 3A and B). Risk 
scores, prior treatment, diagnosis and age were demonstrated 
to be independent prognostic factors for patients with AML. 
Based on these factors, a nomogram model was constructed 
(Fig. 3C), indicating a marked decrease in survival rate with 
an increasing overall score. The calibration curve yielded a 
c‑index of 0.942 for this nomogram model, demonstrating its 
high predictive accuracy and reliability (Fig. 3D). Therefore, 
the nomogram emerged as the optimal model (Fig. 3E).

Identification of DEGs and their functional enrichment 
analysis. A total of 1,433 DEGs between the two groups were 
identified (Table SIV). Volcano and heatmap representations of 
these DEGs are presented in Fig. 4A and B. Screening based 
on P.adjust values <0.05 yielded 1,218 GO terms and 59 KEGG 
pathways (Fig. 4C and D). These DEGs were significantly 
associated with regulation of cell‑cell adhesion, positive regula‑
tion of cytokine production, endocytic vesicles and leukocyte 
cell‑cell adhesion. DEGs were significantly involved in 

phagosome formation, neutrophil extracellular trap formation, 
hematopoietic cell lineage and osteoclast differentiation.

Association between risk scores, age and cytogenetics risk 
category. Significant differences in risk scores (P<0.05) were 
demonstrated across cytogenetics risk categories (favorable 
vs. intermediate/normal, favorable vs. poor and favorable 
vs. unknown) and age groups (Fig. 5A; Table SV). A total 
of four genes were notably associated with different clinical 
characteristics (Fig. 5B). Survival analysis stratified by clinical 
data revealed no significant differences in the cytogenetics 
risk category‑favorable and prior treatment diagnosis‑Yes 
subgroups, whilst significant differences were demonstrated in 
the remaining subgroups (Fig. 5C).

LGALS1, ITGA4, HGF and RHOC can be used as prognostic 
genes of AML. Multivariate Cox regression analysis revealed 
that LGALS1, RHOC, ITGA4 and HGF were notably associ‑
ated with a favorable prognostic impact on patients with AML. 
As diagnostic biomarkers, the AUC of LGALS1, RHOC, 
ITGA4 and HGF were >0.6, indicating their high predictive 
accuracy in AML diagnosis (Fig. 6A).

Figure 4. Identification of DEGs and their enrichment analysis. (A) Volcano map and (B) heatmap demonstrating the DEGs. In the heatmap, the first row repre‑
sents sample grouping, with each subsequent row representing the expression level of individual genes across different samples, and each column indicating the 
expression level of all differentially expressed genes within each sample. The tree on the left side illustrates the results of cluster analysis, grouping different 
genes from several samples. Top 10 enriched pathways associated with DEGs using (C) Gene Ontology and (D) Kyoto Encyclopedia of Genes and Genomes 
analyses. DEGs, differentially expressed genes.
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Furthermore, LGALS1 and HGF expression levels 
were significantly lower, whilst ITGA4 and RHOC expres‑
sion levels were significantly higher in patients with AML 
compared with the corresponding controls (all P<0.05; 

Fig. 6B). These results were further confirmed by RT‑qPCR 
analysis (Fig. 6C). Additionally, mRNA expression levels of 
LGALS1 and RHOC were significantly higher, whilst those 
of ITGA4 and HGF were significantly lower in patients with 

Figure 5. Association between risk scores and clinical characteristics. (A) Analysis of differences in risk scores among different clinical features. (B) Heatmap 
of biomarker expression differentially expressed between high‑ and low‑risk groups and several clinical features. (C) Survival curves between groups with 
different clinical features.

https://www.spandidos-publications.com/10.3892/ol.2024.14808
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AML compared with their healthy counterparts (all P<0.05; 
Table SVI).

Sensitivity of AML‑related drugs varies between high‑ and 
low‑risk groups. The IC50 values were calculated for each 
patient with AML in the two groups. In total, 138 drugs 
demonstrated significant IC50 values (Table SVII). Box plots in 
Fig. 7 demonstrate the IC50 values for the top 10 significantly 
different treatment‑sensitive drugs. These results indicate 
substantial disparity between the high‑ and low‑risk groups, 
with the former exhibiting considerably higher IC50 values.

Discussion

AML is an aggressive form of cancer characterized by the 
rapid proliferation of immature myeloid leukemia cells (26). 
Whilst it primarily affects the bone marrow, malignant 
cells may also be found in the peripheral blood or other 
tissues (27,28). Despite advancements in therapeutic and 
diagnostic techniques, early diagnosis and treatment of AML 
remain challenging. Therefore, identifying new and highly 
accurate prognostic indicators for AML is an urgent and 
unmet need.

Anoikis, a form of programmed cell death, is crucial 
for tissue homeostasis and development by preventing the 

attachment or growth of dysplastic cells (29). Its dysregulation 
has been linked to cancer progression, promotion of tumor 
invasion and migration, and the development of drug resis‑
tance (30‑32). However, limited research exists on the impact 
of ARGs on invasive mobility and drug resistance in AML, as 
well as their role in predicting AML prognosis.

The present study used the TCGA database and existing 
literature (14) to acquire relevant data and identify genes 
associated with the anoikis. Through consistent cluster, differ‑
ential gene expression and functional enrichment analyses, 
four biomarker genes were identified (LGALS1, ITGA4, HGF 
and RHOC). Subsequently, a risk model was constructed 
using single‑factor Cox, LASSO and stepwise multi‑factor 
Cox regression analysis. The risk model was evaluated using 
the TCGA training set, stratifying it into high‑ and low‑risk 
groups based on the median quantitative risk calculated from 
the four biomarkers. Moreover, the present study validated the 
effectiveness of the risk model through KM survival curves, 
ROC curves, risk curves and PCA. External validation using 
the GSE71014 dataset further confirmed the efficacy of the risk 
model. Prognostic analysis identified risk score, prior treat‑
ment, diagnosis and age as significant independent prognostic 
factors. Significant differences were also demonstrated in risk 
scores among cytogenetics risk categories and age groups. 
Finally, by evaluating TCGA training set with the GDSC 

Figure 6. Prognostic and clinical value analyses of LGALS1, ITGA4, HGF and RHOC in patients with AML. (A) Receiver operating characteristic curves 
of LGALS1, ITGA4, HGF and RHOC. (B) Gene expression levels of LGALS1, ITGA4, HGF and RHOC in AML and normal control samples. (C) Reverse 
transcription‑quantitative PCR analysis of LGALS1, ITGA4, HGF and RHOC expression (P<0.05). ***P≤0.001. AML, acute myeloid leukemia, AUC, area 
under the curve.
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database, 50 drugs with significant differences in efficacy 
between the high‑ and low‑risk groups were identified.

The anoikis‑related model (ARS model) proposed in the 
present study demonstrated a significant association with 
survival outcomes in AML cases. The ARS model comprises 
four ARGs: LGALS1, ITGA4, HGF and RHOC.

LGALS1, a member of the galectin family, is a protein with 
a strong affinity for β galactosides, regulating several tumor 
suppressors and promoters (33). LGALS1 is highly expressed 
in AML cells and is associated with a poor prognosis in 
affected patients. Furthermore, it promotes the survival and 
proliferation of AML cells by regulating the expression of 
apoptosis‑ and cell cycle‑related proteins (10).

ITGA4 is a protein‑coding gene belonging to the integrin 
α chain family. ITGA4 serves as a key molecule that allows 
AML cells to bind to bone marrow stromal elements and 
facilitates cellular migration. Methyltransferase‑like 3 has 
been reported to increase the stability of ITGA4 mRNA tran‑
scripts through N6‑methyladenosine modification, leading to 
its upregulation on the cell surface and promoting AML cell 
homing and engraftment (34).

The HGF gene, located on the long arm of chromo‑
some 7 (7q2111), encodes a precursor protein consisting 
of 728 amino acids. Under normal conditions, the 

HGF/mesenchymal‑epithelial transition factor (c‑MET) 
signaling pathway serves a critical role in mediating interac‑
tions between epithelial and mesenchymal cells, which is 
essential for tissue repair, inflammation control and immune 
regulation (35). HGF upregulation emerged as a prominent 
compensatory mechanism, contributing to resistance against 
MET inhibition in AML (36). A 29‑fold higher expression of 
HGF was reported in bone marrow samples during refrac‑
tory disease compared with remission. Additionally, HGF 
induces upregulation of matrix metalloproteinase (MMP)2 
and MMP9 expression, facilitates cell cycle progression, 
suppresses apoptosis and enhances cell proliferation through 
activation of the PI3K/AKT and mitogen‑activated protein 
kinase (MAPK)/extracellular signal‑regulated kinase (ERK) 
signaling pathways (37). Collectively, these investigations 
highlight the pivotal role of the HGF/c‑MET signaling pathway 
in AML.

RhoC, a member of the Rho family of small GTPases, 
regulates several cellular processes (38). Recent research 
assessed the involvement of the Rho subfamily in cellular 
migration (39). This subfamily includes highly homologous 
RhoA, RhoB and RhoC, which regulate actin cytoskeleton 
dynamics. Overexpression of miR‑372 has been reported to lead 
to downregulation of RhoC expression via its 3' untranslated 

Figure 7. Analysis of acute myeloid leukemia‑related drugs. Yellow boxes indicate low‑risk groups, and blue boxes indicate high‑risk groups. IC50, half‑maximal 
inhibitory concentration.
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region (3' UTR), thereby suppressing the proliferation, migration 
and invasion abilities of endometrial adenocarcinoma cells (40). 
Additionally, miR‑10b has been reported to inhibit homeobox 
D10 in colorectal cancer, metastatic breast cancer and malignant 
glioma cells, upregulating RhoC expression (41,42). In ovarian 
cancer, miR‑519d binds directly to the 3' UTR of RhoC mRNA, 
suppressing its expression, as reported in a nude mouse xeno‑
transplantation model (43). miR‑493 directly regulates RhoC, 
leading to a marked decrease in its mRNA and protein expression 
levels, effectively suppressing the growth, invasion and metas‑
tasis of gastric cancer cells (44). Moreover, upregulation of RhoC 
expression has been reported to be notably associated with an 
unfavorable prognosis. Therefore, a strong negative association 
exists between RhoC expression and cancer prognosis, and these 
signature genes are closely associated with tumors.

Using the Gene set enrichment analysis algorithm, the 
present study identified several tumor signaling pathways acti‑
vated in the high‑risk group compared with that in the low‑risk 
group. These included the PI3K/AKT and hypoxia‑inducible 
factor 1 signaling pathways, which have been previously 
associated with AML growth and development. Furthermore, 
programmed death‑1 ligand 1 was reported to facilitate AML 
progression through the PI3K/AKT signaling pathway (32). 
These results underscore the importance of exploring the ARS 
model importance in AML.

The present study analyzed the TCGA and GSE71014 
cohorts, revealing that LGALS1, ITGA4, HGF and RHOC 
were significantly associated with AML prognosis. Meanwhile, 
ITGA4 and HGF were positively associated with AML, whilst 
LGALS1 and RHOC demonstrated a negative association with 
it, consistent with previous studies (10,11,34). Future research 
should involve larger sample sizes and cellular‑level experi‑
ments to clarify the specific roles of each prognostic gene in 
AML.

Conventional induction chemotherapy has tradition‑
ally been the frontline therapy for AML. However, therapy 
resistance remains a challenge, necessitating the development 
of new chemotherapeutic drugs. Dasatinib was reported to 
induce c‑KIT‑positive AML cell death via caspase‑dependent 
apoptosis (45), BI 2536 was reported to induce mitotic arrest 
and apoptosis in AML cells (46), and taxol was reported to 
suppress microtubule dynamics, inducing mitotic arrest, 
triggering caspase‑3 cleavage and inducing apoptosis in 
human AML HL‑60 cells (47). Furthermore, lapatinib was 
reported to effectively suppress the proliferation of AML 
cell lines in a dose‑ and time‑dependent manner, inducing 
either autophagic or apoptotic cell death (48). PD0325901 
also effectively blocks MEK/ERK signaling, with strong 
inhibitory and apoptotic effects, especially in AML (49), 
Jw‑7‑52‑1 was effective in treating AML (50), and erlotinib 
was reported to target Fms‑related tyrosine kinase 3 and 
Lyn, overcoming intratumoral heterogeneity in AML (51). 
Moreover, the interruption of the canonical NF‑κB pathway 
may enhance the lethality of belinostat when combined 
with bortezomib in AML cells (52). Roscovitine, combined 
with all‑trans retinoic acid, was reported to induce nuclear 
enrichment of proteins promoting differentiation and cell 
cycle arrest in t(15;17)‑negative HL‑60 human myeloblastic 
leukemia cells (53). The dual insulin‑like growth factor 1 
receptor/insulin receptor, inhibitor BMS‑536924 was also 

reported to reduce autophosphorylation of its target recep‑
tors through the PI3K/AKT and MAPK pathways and inhibit 
proliferation and colony formation in AML cell lines and 
clinical AML samples (54).

Although the proposed ARS model in the present study 
demonstrates promising predictive power for AML prognosis, 
the present study has certain limitations. First, all clinical 
AML cohorts analyzed were sourced solely from TCGA 
website, necessitating validation of the ARS model using 
external cohorts. Second, the expression patterns of the 
ARS genes need to be confirmed in clinical specimens using 
molecular biology techniques, and further research is required 
to elucidate the underlying mechanisms of ARS genes through 
experimental analyses.

In summary, the present study developed a novel gene 
signature related to anoikis in AML. The inclusion of ARS 
genes significantly enhances the prediction of AML survival 
outcomes and effectively stratifies the risk among patients 
with AML. The present study offers a fresh perspective on 
therapeutic strategies for individuals with AML.
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