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Abstract: The Brassicaceae family constitutes some of the most well-studied natural products in the
world, due to their anti-inflammatory, anti-oxidative, and pro-regenerative properties as well as
their ubiquitous distribution across the world. To evaluate the potential efficacy of the Brassicaceae
family in the treatment of inflammatory skin disorders and wounds, based on preclinical evidence
from in vivo and in vitro studies. This systematic review was performed according to the PRISMA
guidelines, using a structured search on the PubMed-Medline, Scopus, and Web of Science platforms.
The studies included were those that used murine models and in vitro studies to investigate the
effect of Brassicaceae on skin disorders. Bias analysis and methodological quality assessments were
examined through SYRCLE’s RoB tool. Brassicaceae have shown positive impacts on inflammatory
regulation of the skin, accelerating the wound healing process, and inhibiting the development of
edema. The studies showed that the Brassicaceae family has antioxidant activity and effects on the
modulation of cyclooxygenase 2 and the nuclear factor kappa β (NFκβ) pathway. The secondary
metabolites present in Brassicas are polyphenols (68.75%; n = 11), terpenes/carotenoids (31.25%;
n = 5), and glycosylates (25%; n = 4), which are responsible for their anti-inflammatory, healing, and
antioxidant effects. In addition, the current evidence is reliable because the bias analysis showed a
low risk of bias. Our review indicates that compounds derived from Brassicaceae present exceptional
potential to treat inflammatory skin diseases and accelerate cutaneous wound healing. We hope
that our critical analysis can help to expedite clinical research and to reduce methodological bias,
thereby improving the quality of evidence in future research. The registration number on the Prospero
platform is CRD42021262953.

Keywords: Brassicaceae; inflammation; murine; epithelial cells; cytokines; inflammatory mediators

1. Introduction

The skin is the largest organ of the human body and has several roles, including
protection against microorganisms and thermoregulation [1]. Many alterations can affect
the integrity of this organ, usually resulting in diseases [2]. Therefore, skin diseases and
changes represent a serious health problem worldwide and are frequently associated with
high costs for treatment and inefficient medicines [3]. The problem is due to the complexity
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and lack of understanding of the mechanisms involved during the inflammatory process.
In each stage of skin lesion recovery, different cells and mediators act to promote tissue
regeneration, independent of the etiology. The skin recovery process is separated into
inflammation, proliferation, and tissue remodeling phases [4]. If the inflammation process
persists, excessive release of inflammatory mediators, free radicals and reactive oxygen
species (ROS) by macrophages and neutrophils occurs, promoting oxidative stress [5]. The
mechanism that explains a direct relationship between inflammation and oxidative balance
is known as respiratory burst, or inflammasome, in which the greater the inflammation, the
greater the tissue oxidative imbalance [6]. Therefore, the control of inflammation is essential
for a good recovery of the skin tissue. Therapeutic interventions that assist in rapid recovery
and promote infection control and consequently the resolution of the inflammatory process
are increasingly necessary.

In this sense, the search for natural products for the treatment of skin diseases has
been growing. Among these products, we can highlight compounds obtained from the
Brassicaceae, one of the largest plant families distributed on all continents except the
Antarctic [7]. Brassicas are not endemic to Brazil but are the most cosmopolitan plant family
in the plant kingdom. Their greatest diversity is centered in the temperate regions of the
northern hemisphere, extending from the Mediterranean to Central Asia [8]. They have
great importance for medicine, being used as anti-inflammatory, antioxidant, and healing
agents. These properties are related to their chemical composition, especially flavonoids,
folic acid, amino acids, vitamins, and minerals [9]. This family comprises several secondary
metabolites (glucosinolates, e.g., sinigrin), hormones (e.g., brassinosteroids), and amino
acids that contribute to its anti-inflammatory and healing properties [10,11]. In addition to
its probable action and effectiveness compared to drugs, it has a low cost compared to the
drugs, making it affordable for the population.

The available evidence on doses, timing, and different types of compounds obtained
from Brassicas is rather fragmented. In this context, we used a systematic review framework
to integrate preclinical evidence (in vitro and in vivo) to investigate the relevance of the use
of Brassicaceae in skin disorders. In addition, the methodological quality of each in vivo
study was assessed, pointing out the main sources of bias that undermine the quality of the
current evidence and that should be overcome in natural options to treat skin changes.

2. Methods and Materials
2.1. Focus Question

The main question to be answered in this systematic review was: What is the influence
of the Brassicaceae family on skin inflammatory diseases using in vitro and in vivo analysis?

2.2. Search Strategy

This systematic review followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [12] (Figure 1), which were used as a guide for
study selection, screening, and eligibility. Based on two parameters, a search strategy
was developed to maximize the retrieval of relevant study registers. The first parameter
was based on a direct advanced search in the electronic databases PubMed/Medline
(www.ncbi.nlm.nih.gov/pubmed, accessed on 12 April 2021), Scopus (www.scopus.com,
accessed on 12 April 2021), and Web of Science (www.webofknowledge.com, accessed on
12 April 2021). In the second parameter, an indirect screening was performed by carefully
reading the reference list of selected articles previously in the databases, to select potential
studies to be included in the systematic review. For all databases, search filters were based
on: (i) skin and (ii) Brassicaceae.

www.ncbi.nlm.nih.gov/pubmed
www.scopus.com
www.webofknowledge.com
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow
diagram. The flowchart indicates the research records obtained at all standardized stages of the
search process required for the development of systematic reviews and meta-analyses. Based on the
PRISMA statement (http://www.prisma-statement.org, accessed on 25 June 2022). * Consider, if
feasible to do so, reporting the number of records identified from each database or register searched
(rather than the total number across all databases/registers). ** If automation tools were used, indicate
how many records were excluded by a human and how many were excluded by automation tools.

A search filter was initially developed for PubMed/Medline according to standardized
descriptors (MeSH terms) organized in the hierarchical tree of the MeSH database (www.
ncbi.nlm.nih.gov/mesh, accessed on 10 April 2021). The commands (MeSH Terms) and
TIAB were combined to broaden the retrieval of relevant indexed studies and those in the
indexing process. The search matrix used in the PubMed/Medline database was adapted
for Scopus and Web of Science by using the search algorithms TITLE-ABS-KEY or TS=,
respectively [13]. Table S1 fully describes the search strategy for this review.

Two reviewers (PSM and MMS) conducted the literature search, removed duplicate
articles, and examined titles and abstracts according to eligibility criteria. In case of
discrepancies, another group of reviewers (RDN, DAE, and RVG) decided whether the
study met the inclusion criteria.

Two independent researchers (PSM and MMS) conducted the literature search. The
kappa test was performed for data selection (kappa = 0.911).

2.3. Eligibility Criteria

After initial screening and removal of duplicates, the full text of potentially relevant
studies was retrieved and then assessed for eligibility for inclusion in the review. Study
exclusion was based on well-defined criteria as follows: (i) studies ex vivo, (ii) studies with
humans; (iii) secondary studies (i.e., editorials, commentaries, letters to the editor, literature
reviews without original data). In addition, no language limits were applied in the primary
search. All studies published up to April 2021 were included in the systematic review. The
search strategy is detailed in the supplementary materials (Table S1). Only studies that met
the following eligibility criteria were selected:

http://www.prisma-statement.org
www.ncbi.nlm.nih.gov/mesh
www.ncbi.nlm.nih.gov/mesh
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(1) Studies that evaluate Brassicas exposure in the skin changes.
(2) In vivo and in vitro studies of changes in the skin with murine models.
(3) Studies evaluating the effect of Brassicaceae on the inflammatory process associated

with edema and wound healing.

2.4. Data Extraction and Synthesis from In Vivo and In Vitro Studies

The essential data from each study were extracted through structured tables according
to the following descriptive levels: (i) Publication characteristics (authors, years, and coun-
tries); (ii) Characteristics of the experimental model (species, sex, age, weight); (iii) Char-
acteristics of the target organ: normal skin or skin with changes (wound healing; contact
dermatitis; edema); (iv) Information about Brassica treatment (species of plant used, dose,
frequency of administration, pharmaceutical form, and treatment in the control group);
(v) Primary outcomes (skin change, cellular analysis, vascularization, extracellular matrix
analysis, molecular analysis (cytokine and growth factor analyses), epithelialization rate
and/or wound closure); (vi) Secondary outcomes (oxidative stress analyses, wound tensile
strength, epidermis thickness).

The characteristics described in the descriptive levels (i), (iv), (v), and (vi) were also
extracted and analyzed from in vitro studies. Other characteristics were also evaluated for the
in vitro studies, such as cell type, cell lineage, culture medium, and incubation/treatment time.

2.5. Risk of Bias Assessment from In Vivo Studies

The risk of bias was analyzed using the Systematic Review Centre for Laboratory
animal Experimentation (SYRCLE) tool. This instrument is based on the Cochrane Collabo-
ration’s tool for assessing the risk of bias in randomized trials and is adjusted for aspects
of bias that play a specific role in animal intervention studies. To increase transparency
and applicability, standardized signaling questions were applied as a way to guide the
judgment of researchers, based on the following domains: (i) sequence generation, (ii) allo-
cation concealment, (iii) blinding of participants and personnel, (iv) blinding of outcome
assessment, (v) incomplete outcome data, (vi) selective reporting, (vii) animal information,
(viii) intervention, (ix) ethical approval, (x) tool validated, (xi) statistical methods, (xii) ap-
plicability and (xiii) other bias. The items in the RoB tool were scored with “low risk of
bias”; “high risk of bias”; or “unclear” (indicating that the item was not reported, and,
therefore, the risk of bias was unknown). Adherence to individual quality criteria obtained
in the SYRCLE system was expressed graphically using the Review Manager 5.3 program
(The Nordic Cochrane Centre, Copenhagen, Denmark, The Cochrane Collaboration). Other
characteristics were also evaluated for the in vitro studies, such as cell type, cell lineage,
culture medium, and incubation/treatment time.

3. Results
3.1. PRISMA Guideline

From the PubMed/MEDLINE, Scopus, and Web of Science databases, 551 articles
were recovered. A total of 83 studies were duplicated, and 424 with inadequate thematic
were excluded after reading the title and abstract. Of the 44 remaining studies, 32 articles
were excluded after reading the full text for not meeting the eligibility criteria. Therefore,
12 studies were included in the systematic review. The reference list of all included studies
was analyzed to ensure the identification of additional relevant studies, and four of them
were recovered, totaling 16 studies, with 11 articles from in vivo studies, four articles from
in vitro studies, and two from both. The flowchart and each step performed in the selection
process to retrieve relevant studies are shown in Figure 1.

3.2. Characteristics of Publication

Among the studies included in this review, 62.5% of the studies evaluated the effect
of Brassica in animal models (n = 10), 25% in vitro (n = 4), and 12.5% used both (n = 2).
Regarding the locality of the studies in this review, Brazil was the predominant country
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with 33.33% of the studies on Brassicaceae (n = 4), followed by India, Ethiopia, Peru, Taiwan,
Korea, Spain, and the United States of America (USA), which had the same proportion of
studies (8.33%; n = 1). Only one study did not report this information (8.33%; n = 1). The
species and origin (where they were obtained) of Brassicas were reported in 62.5% of the
studies (n = 10), in 25% of the studies only the species (n = 4), in 6.25% of the studies only
the place of acquisition of the plant (n = 1), and one study reported neither the species nor
origin (6.25%; n = 1). Figure 2 presents the Brassicas acquisition sites and the proportion of
in vivo and in vitro studies included in this review, as well as the species studied.

Figure 2. The places of acquisition of the Brassicas used in the studies are represented in Figure 2, as
well as the types of studies (in vitro and/or in vivo) developed and the Brassicaceae species studied.
The place of acquisition was reported in 31.25% of the studies reviewed, and the remaining studies
did not report this information; 12% of the studies did not report the species studied.

3.3. In Vivo Model
3.3.1. Characteristics of the Animal Model

The most used animal models were rats (58.33%; n = 7), followed by mice (41.67 n = 5).
Among the rats, the predominant strain was Wistar in 50% of the studies. Among the mice,
the predominant strain was Swiss (25%; n = 3), followed by Balb/C (8.33%; n = 1) and ICR
(8.33%; n = 1). One study reported only the rat model but did not report the strain studied.
Most of studies used only males (58.33%; n = 7), 16.67% used only females (n = 2), 16.67%
used both (n = 2), and 8.33% of the studies did not report this information (n = 1). The
age of the animals ranged from 6 to 10 weeks (50%; n = 6), and this information was not
reported in 50% of the studies (n = 6). Animal weight ranged from 20 to 250 g in 66.67%
of the studies (n = 8), and from 280 to 319 g in 25% (n = 3), and this information was not
reported in two studies (16.67%; n = 2) (Table S2) [14–25].

3.3.2. Characteristics of Treatments

The topical route was more commonly used (50%; n = 8), followed by oral (18.75%;
n = 3) and intraperitoneal 6.25% (n = 1). The duration of the intervention varied between the
healing studies and the edema/inflammation induction studies. In the studies evaluating
the effects of Brassica on wound healing, the range was 3 to 9 days (40% of studies), or from
16 to 20 days (60% of studies). For edema/inflammation, the range was 1 day (71.42% of
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studies) and 3 days in two studies (28.57%). Among the Brassicaceae species studied in
in vivo studies, we found Brassica oleracea in 25% of the studies (n = 3), Coronopus didymus,
Isatis indigotica, Lepidium meyenii, Lepidium sativum L., Brassica carinata and Isatis tinctoria
in 8.33% of the studies each (n = 1). All of the studies used a control group, most of them
using saline solution (41.67%; n = 5), and others (58.33%; n = 7).

The best results for the wound healing process (45.45%; n = 5), were obtained in
the 10% dosage on day 16 (n = 4) after continuous Brassicaceae exposure. Excisional
wounds were used in 80% of the studies, and one study performed both incisional and
excisional wounds. Among excisional wounds, those of size 12 mm in diameter (40%)
were more commonly described by the studies (Table S6). The best results were found
for the extracellular matrix, especially with an increase in collagen fiber synthesis and cell
quantity, especially fibroblasts. Indicating that Brassica exposure was important to promote
the repair process and restore tissue homeostasis.

Regarding the articles that analyzed the effect of Brassicas on edema, five studies
induced edema in the paws of animals with carrageenan (71.42%), and one study performed
only the ear edema induction test with 12-O-tetradecanoylphorbol-13-acetate (TPA). Of
these, in addition to the induction of edema using carrageenan, they also analyzed the
effects of Brassica with other tests, such as formalin (n = 1), TPA (n = 1) and with other
irritating agents such as croton oil, arachidonic acid, capsaicin, and indomethacin, which
were all tested in a single study (Table S6). In consideration of the induction of edema by
the carrageenan test, there were large variations in the doses and time durations of Brassica
exposure (125 to 1500 mg/kg and 1 h to 48 h). Additionally, the best results were observed
after exposure to high doses in a short period (1 h), unlike low doses that needed a longer
period of exposure (equal to or greater than 3 h) to show the same effect. Similarly, to all
studies, at the 3 h time point (100%; n = 6) Brassica acted positively, regardless of the large
dose variation, inhibiting the development of edema in the animals’ paws. As for the study that
induced edema by TPA, the dose used in the intervention was 5 mg/kg (extremely low dose); it
also needed a longer exposure time to show the result of edema reduction (Tables S4 and S5).

3.3.3. Main Outcomes

In the healing studies, we observed that Brassica increased wound strength due to
increased collagen type I fibers (50%; n = 3) and the formation of granulation tissue rich in
new blood vessels. In addition, there was an improvement in the nutrition of new tissue
(50%; n = 3), providing an increase in re-epithelialization in a short period (33.33%; n = 2)
and increasing the number of inflammatory cells in the acute phase (e.g., macrophages)
(50%; n = 3). Most of the papers included in this review justified these effects with the
antioxidant (33.33%; n = 2) and anti-inflammatory (n = 7) capacity of the Brassicaceae.
Among the antioxidant effects were reduction of free radicals and ROS and the decrease in
the activity of antioxidant enzymes. Like anti-inflammatory potential, we can highlight
macrophage activation inhibition and downregulation of inflammatory mediators such as
nitric oxide, prostaglandin 2 (PGE2), and inflammatory cytokines (TNF-α and IL-6) (50%;
n = 3). Brassicaceae exposure also inhibited the cyclooxygenase 2 (COX2) pathway (67%;
n = 1) and the phosphorylation of Iκβα, preventing the translocation of NFκβ (33.33%; n = 2)
to the nucleus and consequently preventing the gene expression of inflammatory mediators.
Possibly the Brassicaceae exposure positively interferes in many other inflammatory and
proliferative pathways; however, the number of papers that described this was small, and
sometimes the results were fragmented. These findings demonstrated the importance of
focusing studies in this area.

3.3.4. Reporting Bias In Vivo Studies

The detailed results for the analysis of bias using SYRCLE’s tool are shown in
Figures 3 and 4. Five items were fully described in all studies (100%): namely, incom-
plete outcome data, selective reporting, theoretical background, statistical methods, and
applicability. All of the previous items were evaluated with a low risk of bias (100%; n = 12).
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Referring to the sequence of assessed items described in Figures 3 and 4, the following items
were predominantly assessed with a low risk of bias: characteristics of the intervention
(66.66%; n = 8), ethical approval on the use of experimental animals (66.66%; n = 8) and
other bias (presentation of images, tables, and graphs) (50%; n = 6), in addition to the items
already described above. Four items were evaluated as “unclear”, i.e., with incomplete
information since the data were presented in the study, but in a way that was unsatisfactory
for an understanding, such as random sequence generation (50%; n = 6), allocation conceal-
ment (8.33%; n = 1), ethical approval (16.67%; n = 2), and other bias (presentation of images,
tables, and graphs) (41.66; n = 5). Finally, the items that were predominantly assessed with
a high risk of bias included allocation concealment (83.33%; n = 10), blinding of participants
and personnel (100%; n = 12), blinding of outcome assessment (100%; n = 12), and animal
characteristics (83.33%; n = 10). However, some items were needed to improve the reports
by reporting more accurate information and presenting images, tables, and graphs that
facilitate the reader’s understanding of the discussed topic. The methodological quality of
the studies included in this review was predominantly classified as low risk, indicating
that most of the features needed for biased study evaluation were sufficiently reported.
Few studies were evaluated with incomplete information. Incomplete characterization
of animal models, acquisition of the species studied, treatment protocols, and especially
phytochemical characterization of the plant contributed to the increased risk of bias. In
addition, most studies did not report on the randomization of animals or on the blinding of
animals and caregivers, which ended up generating bias in the results.

Figure 3. Results for the risk of bias and methodological quality indicators for all in vivo studies
included in this systematic review that evaluated the effects of the Brassicaceae family on skin changes.
The items in the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) Risk of
Bias assessment were scored with “yes”, indicating low risk of bias (green), “no”, indicating high risk
of bias (red), or “unclear”, indicating that the item was not reported, resulting in an unknown risk of
bias (yellow).
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Figure 4. Risk of bias summary: review authors’ judgments about the risk of bias items for each
included study. Green: low risk of bias; yellow: unclear risk of bias; and red: high risk of bias.
References of the articles in the figure: [14–25].

3.4. In vitro Models
3.4.1. Characteristics of the Culture Cells

Most in vitro studies investigated the effects of Brassicaceae on human keratinocytes
(50%; n = 3), especially the HaCaT lineage (66.67%; n = 4). Monocytes/macrophages and
fibroblasts were also used (33.33%; n = 2, and 16.67%; n = 1, respectively). Most cells
were cultured in DMEM (83.33%; n = 5) or EPI-500 (16.67%; n = 1) medium. The main
characteristics related to in vitro studies are described in detail in Table S3 [16,25–29].

3.4.2. Characteristics of Treatments

Four studies (26.67%) investigated the effects of Brassicaceae from in vitro models, and
two studies investigated in vivo and in vitro models (13.33%). The duration of the in vitro
study interventions varied (from 24 to 72 h) depending on the test and analysis performed.
The species more studied were Eruca sativa in 50% (n = 2) and Lepidium sativum in 25%
(n = 1), and one of the studies used the compound sinigrin found in Brassicas. Some of the
studies that were performed in vivo and in vitro used the species Lepidium apetalum and
Radix isatidis. Most of the studies that performed cell stimulation used lipopolysaccharide
(LPS) (50%; n = 3), which is an integral component of the outer membrane of Gram-negative
bacteria. The ranges of doses administered were 1 µM to 5 µM (16.67%; n = 1) and 0 µg/mL
to 500 µg/mL (83.33%; n = 5). The characteristics and treatment protocols related to
Brassicaceae are described in Table S5.
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3.4.3. Main Outcomes

In general, the results obtained from in vitro studies indicated that Brassica could
control positively pro-inflammatory markers such as TNF-α (66.67%), IL-1β (50%), COX2
(33.33%), IL-6 (33.33%), and nitric oxide synthase (33.33%; n = 2), promoting a reduction in
mRNA transcription and controlling the first step of skin repair. Two other studies evalu-
ated the proliferation and viability of RAW 264.7 macrophage cells (33.33%), and one study
performed the in vitro experiments with fibroblasts (16.67%); both did not stimulate the cell
migration. Brassicaceae exposure promoted a decrease in LPS-induced phosphorylation
of ERK in a dose-dependent manner, while it did not affect the phosphorylation of p38 or
JNK (16.67%; n = 1). Furthermore, the treatment significantly reduced the recruitment of
myeloid differentiation factor 88 (MyD88), preventing the phosphorylation of Iκβα (33.33%;
n = 2) and consequently the translocation of NFκβ to the nucleus, decreasing the gene
expression of pro-inflammatory mediators. On the other hand, Brassicas also influenced the
gene expression of anti-inflammatory growth factors, up-regulating the gene expressions
that are important to resolve the inflammatory process. Such as vascular endothelial growth
factor (VEGF) (33.33%; n = 2) and transforming growth factor-beta (TGF-β) (16.67%; n = 1),
which play a role in the production of new blood vessels and the control of proliferation,
respectively—events that have been described previously (Figure 5).

Figure 5. A summary of the results of the studies included in this systematic review on Brassicaceae
applied in the treatment of skin alterations. In vivo and in vitro results are shown merged in the
representation.

3.5. Secondary Metabolites Found in Brassicas

Our results show us that although Brassicas belong to the same family, these species
show great diversity in terms of their metabolites composition, both quantitatively and
qualitatively. Studies of secondary metabolites have developed rapidly in recent decades,
due to their extensive biological activities in medicine, being an important source of
pharmacologically active substances. In addition, they are known to play an important role
in the adaptation of plants to their environments (abiotic and biotic stresses) and present
nutritional value for human health. An analysis of the articles in this review showed that
the positive effect of cruciferous vegetables on the inflammatory process during wound
healing and edema development may be associated with the presence of health-promoting
phytochemicals, such as polyphenols (68.75%; n = 11), terpenes/carotenoids (31.25%; n = 5),
and glucosinolates (25%; n = 4). Some studies analyzed the effects of Brassica, but did not
perform a phytochemical characterization and did not report on the metabolites present in
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the chosen species (31.25%; n = 5). Figure 6 shows in detail the chemical structures of the
compounds commonly found in Brassicaceae.

Figure 6. Secondary metabolites commonly found in the Brassicaceae family: phenolics, terpenes,
and nitrogenated.

4. Discussion
4.1. General Characteristics

Our findings indicated that the effects of these plants on the skin inflammatory process
have been investigated since 1994 in different countries. Most studies were predominantly
conducted in Brazil, followed by India, Ethiopia, Peru, Taiwan, Korea, Spain, and the
USA. Many classes of active compounds have been isolated from Brazilian medicinal
plants [30]. Brazil has the highest total biodiversity in the world and is traditionally
known for the use of medicinal plants for the treatment of different acute and chronic
diseases [31]. Therefore, it is easy to understand the focus on Brazil when thinking about
the development of new compounds obtained from Brassicaceae. In Brazil, there is an
important government organization, National Health Surveillance Agency (ANVISA), that
controls studies with natural compounds. Understanding the action of the compound, its
properties, and its safety for use by the population is of utmost importance to researchers for
future formulations of natural bioactives. In most studies, Brassicaceae species originated
from Korea and Germany, later in China, Peru, Ethiopia, India, Turkey, the USA, and Italy.
Most of the plants chosen by the studies are traditionally used by the people, which may
have been the predominant factor that attracted the researchers’ attention. Brassicaceae are
considered important food crops in China, Japan, India, and European countries [32,33].

4.2. Characteristics of In Vivo Studies

Murine excisional wound models were the primary animal model used in the studies
included in this systematic review about the effects of Brassicaceae on skin edema and
wounds (rats and mice, respectively). This is probably because rats and mice have long
been the preference for animal models in research in various areas, due to their anatomical,
physiological, and especially genetic similarities with humans [34]. Another important
factor is that the greater the uniformity of the animals concerning experimental, environ-
mental, and genetic variables, the smaller the sample size of animals needed to develop the
research [35]. These animal models afford low acquisition costs easy handling and can be
used in large quantities in experiments, providing a higher degree of reliability in the results.
Moreover, these models allow macroscopic, biochemical, and biomechanical measurements
and the monitoring of the different phases of the wound healing process, especially the
inflammatory and proliferative phases [36]. Male animals were predominantly used to the
detriment of females. Possibly, this choice is due to different behaviors associated with the
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hormonal cycles of females, which can compromise the results of experiments. In addition,
females are more sensitive to acute oral toxicity, as well as dermal toxicity, than males [14].
The age groups of the animals were similar, which is an important feature for studies
evaluating wound healing and even intrinsically in studies of the inflammatory process,
since aging rats influence the formation of new vessels, wound closure, re-epithelialization,
and the resolution of the inflammatory process [34], due to the activity of enzymes that
break down with aging [37]. Excisional wounds were predominant, although the number
and size of wounds were variable. Possibly, the excisional wound model was chosen due to
the wound closure time and to permit the best understanding of all phases of tissue repair,
with a focus on the inflammatory, proliferative, and remodeling phases [38]. Besides this,
the number of wounds is important information that implies the therapeutic outcome and
can compromise the quality of evidence. The number of wounds produced on the animals
was very heterogeneous, with two, three, or five wounds on each animal. Ideally, only one
wound per animal should be produced to avoid the stress and reduce bias in the results,
and consequently to reduce cytokines and growth factors that can act negatively on wound
repair [39,40].

The use of skin irritants has been more common to promote tissue inflammation and
edema. Mouse paw edema has been increasingly used to test new anti-inflammatory drugs,
as well as to understand the mechanisms involved in inflammation [41]. Carrageenan-
induced edema is a widely used test to establish anti-inflammatory activity and is a routine
simple animal model for assessing pain at the site of inflammation [42,43]. TPA is an active
constituent of croton oil that induces topical inflammation and a hyperproliferative response
in animals in a manner like many skin diseases and in the development of edema [44]. It
is often used to activate the signal transduction enzyme, protein kinase C (PKC), which
is involved in the regulation of epidermal keratinocyte growth and differentiation [45].
Studies have revealed that seeds of Sinapis alba L. or Brassica juncea (L.) Czern. et Coss. are
effective anti-inflammatory agents against acute and chronic inflammatory processes, an
effect possibly mediated by suppressing mRNA expression of inflammatory mediators
including TNF-α, IL-6, and IL-1β [46].

The most used route of administration was topical, followed by oral and intraperi-
toneal. These findings can be justified in the edema studies by the great local effect that is
promoted by topical administration directly to the site of inflammation, permitting direct
contact with the compounds responsible for anti-inflammatory activity [47]. Aspects of
dosimetry depend on the biological effect and other factors of each molecule. Thus, al-
though medicinal effects are influenced by dose and treatment time, generalizations cannot
be made for molecules with different biological properties [39].

In general, the animals that received Brassica at 10% doses showed an increase in the
rate of wound contraction, an increase in collagen fibers, and an increase in cellularity,
leading to faster wound healing. In the edema studies, extracts of Brassica at doses of
125 mg/kg to 1500 mg/kg inhibited the development of edema in murine models, thus
acting as an optimal anti-inflammatory. Ref. [48], studying the effect of some flavonoids in
experimental models of inflammation in rats, demonstrated significant inhibition of joint
edema induced by carrageenan with a prior intraperitoneal injection of quercetin at doses
of 50 mg/Kg and 75 mg/Kg, respectively. Interestingly, most of the studies in this review
reported dose-dependent results, varying according to the Brassicaceae species studied.

The studies on this theme were strong; however, it is evident that some studies were
weak due to a lack of information that may have generated difficulty in reproducibility
and understanding by other researchers. The risk of bias revealed specific limitations
in the research reports, associated with underreporting of information, such as random
sequence generation, random evaluation of results, and blinding of participants. Objectively,
the limitations cited above do not indicate that the researchers did not evaluate these
parameters, but it is strong evidence that this information was not included in the research
reports. Therefore, considering these limitations, we hope that this systematic review,
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while admitting its intrinsic qualitative nature in describing important points of bias, will
contribute to future studies by reporting elements of bias.

4.3. Characteristics of In Vitro Studies

The most used cells were keratinocytes, followed by fibroblasts. HaCaT cells are a
lineage that is widely used in scientific research to study epidermal homeostasis and its
pathophysiology, as well as to evaluate the molecular, biochemical, cellular, and histochem-
ical behavior of normal and pathological tissues [49]. Recent studies in wound biology
have clarified the molecular pathways governing the re-epithelialization of keratinocytes
at wound sites, where culturing keratinocytes has enabled several studies on the healing
and inflammatory process. [50]. Fibroblast cells are also widely used since they serve to
analyze biochemical behavior and the action of growth factors on lesion areas [51,52]. To
maintain the structure and proper function of the skin, keratinocytes and fibroblasts act
synergistically with defense cells, regulating the cutaneous immune response to biologi-
cal, physical, and chemical agents. Keratinocytes form the skin barrier through a highly
complex differentiation process, and fibroblasts provide physiologically relevant cytokines
and growth factors [53]. All of these positive points, together with the fact that these cells
are easy to grow in vitro and are intrinsically related to skin disorders, make the culture of
these cells an important tool to understand the effect of Brassicas on specific skin lesions.

4.4. Phytochemical Composition of Brassicaceae and Their Anti-Inflammatory, Antioxidant, and
Healing Actions

Inflammation is a protective response of the body characterized by a series of reactions,
including vasodilation and recruitment of immune cells and proteins to the injured site,
which act by removing injurious stimuli and initiating the healing process [54]. Normally,
inflammation is beneficial and efficient, but its persistence can cause excessive tissue
damage, contributing to the development of inflammatory disease [55]. After tissue injury,
receptors are activated, such as toll-like receptors (TLR), which recognize specific molecules
and recruit proteins that activate different transcription factors, the most activated in this
process being NFκβ [44]. Activation of NFκβ is accomplished by inducible degradation of
Iκβα triggered through its phosphorylation by the Iκβ kinase (IKK) complex [56]. Upon
activation, IKK phosphorylates Iκβα, triggering the degradation of Iκβα in the proteasome,
resulting in the translocation of NFκβ to the nucleus [55]. When NFκβ is in the nucleus,
it initiates the transcription of various inflammatory mediators and pro-inflammatory
cytokines, such as TNF-α, IL-1, and IL-6, which can be overproduced. Anti-inflammatory
properties of Brassicaceae have been attributed to an inhibitory effect on inflammatory
cell infiltration [57], delay of pro-inflammatory gene expression, and reduction in the
biosynthesis of cytokines such as TNF, IL-1, IL-6 [58]. This in vivo effect was comparable to
that of the nonsteroidal anti-inflammatory aspirin, which has the property of antiplatelet
aggregation. Among the secondary metabolites found in Brassicas that can be associated
with these therapeutic effects are phenolic compounds, especially flavonoids, with quercetin
and kaempferol being the predominant flavonoids in kale [59]. Flavonoids are aromatic
substances containing 15 carbon atoms (C15) in their basic skeleton. This large number of
compounds arises from the wide variety of combinations of methyl and hydroxyl groups
as substituents in the basic chemical structure. Among the flavonoids, anthocyanins stand
out, which are glycosides that present in their chemical structure a sugar residue at carbon
3 [60]. The flavonoids present in Brassicaceae (such as quercetin and catechins) act by
modulating the cells involved in inflammation, inhibiting the production of TNF-α and IL-1,
modulating the activity of enzymes such as COX2, and modulating the nitric oxide-forming
enzyme [61,62]. Their main mechanism of action is the inhibition of COX, which converts
arachidonic acid into prostaglandins [63]. Another important class of phenolic compounds
found in Brassicas are tannins, and their mechanisms of action are related to three properties:
complexation with metal ions (such as iron, copper, and calcium), antioxidant and free
radical scavenger activity, and the ability to compete with macromolecules, such as proteins
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and polysaccharides [64,65]. In the human organism, they act as an antioxidant, antiseptic,
cicatrizing agent, and vasoconstrictor [60]. Tannins serve as the basis for many structures
with diverse functions in specialized and primary metabolism, ranging from rather small,
volatile molecules (e.g., mono- and sesquiterpenes) to hormones (such as brassinosteroids
and abscisic acid) and structural cellular components such as carotenoid pigments [66,67].
The group of nitrogen compounds includes the alkaloids, cyanogenic glycosides, and
non-protein amino acids. Alkaloids are the main nitrogen compounds in plant species
and are formed of different structures and composed of amino acids such as tyrosine,
phenylalanine, tryptophan/tryptamine, ornithine/arginine, and histidine [68]. Included
in the nitrogen compounds are also glucosinolates (GSLs), which are broken down and
release hydrocyanic acid (HCN) when the plant suffers some kind of injury [69,70]. The
anticarcinogenic effects of GSLs are the most commonly mentioned, but recent studies have
found other beneficial activities of GSLs, including regulatory functions in the inflammatory
response and antioxidant activities [71]. The biological activities of GSLs can be attributed
to their hydrolytic products, of which isothiocyanates (ITCs) are prominent examples. ITCs
may act as modulators of inflammation because they can reduce or inhibit the activity
of the nuclear factor “kappa-light- chain-enhancer” activated β-cells (NFκβ) [72]. NFκβ
regulates the expression of cyclooxygenase 2 (COX-2), which is responsible for elevated
prostaglandin levels and a key inducer of inflammatory processes. Ref. [73] demonstrated
that TNF-α secretion was inhibited at a concentration of 1 µM in the presence of GSLs. In
addition, cytokines themselves can lead to ROS formation, which establishes a vicious circle
between oxidative stress and the generation of pro-inflammatory cytokines [74,75]. Part
of this effect comes from the modulation of the signaling pathway of transcription factors
involved in the pro-inflammatory and anti-inflammatory pathways. Brassicas acted as a
good antioxidant, decreasing levels of myeloperoxidase (MPO) activity and inhibiting the
expression of enzymes involved in inflammation [76]. Studies have already reported the
antioxidant effects of Brassicas [77]; for example, broccoli (Brassica oleracea) extracts protect
against ROS, possibly due to the presence of vitamin C, quercetin, kaempferol, lutein,
tocopherol, and β-carotene [78–80]. The main carotenoids found in Brassicas are lutein,
β-carotene, violaxanthin, and neoxanthin [81], but also the presence of 13-cis-β-carotene,
α-carotene, 9-cis-β-carotene, and lycopene, which are involved in the antioxidant effects
of these species, has been reported [82]. Ref. [83] analyzed the secondary metabolites
present in Brassicas, which demonstrated antioxidant activity, aiding in protection against
free radicals and reactive oxygen species (ROS), and thus in the prevention of chronic
diseases. As for its healing action, Brassica demonstrated increased wound contraction and
rapid re-epithelialization, which may be associated with the synergistic effects of its high
polyphenol and flavonoid content. This finding is fortified by previous review studies on
bioactive phytochemicals of the species Brassica var. B. nigra, B. juncea, B. oleracea, and B. rapa [14].

The registration number on the Prospero platform is CRD42021262953.

5. Conclusions

Overall, we have shown that the evidence on the healing and anti-inflammatory
potential of Brassicaceae is based on valid and realistic pre-clinical models that share
similar stages of tissue repair with those observed in humans and in in vitro assays. From
studies using these models, we determined that Brassicaceae are potentially effective
in accelerating skin wound healing and efficient in reducing edema by inhibiting the
inflammatory process. Their beneficial effects are mainly associated with stimulation of
wound contraction, re-epithelialization, collagenogenesis, and inhibition of the expression
of inflammatory genes. All of these therapeutic effects are attributed to flavonoids, tannins,
terpene, carotenoids and glucosinolates. Low doses of Brassica are effective in closing
wounds and reducing edema in murine animals. However, a longer time exposure is
required when compared to high doses of this compound, which require low time exposure
to show their effects. Brassicaceae acted mainly on the NFκβ pathway, modulating the
expression of inflammatory mediators and cytokines. Since most inflammatory cytokines
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activate NFκβ, drugs that inhibit the activation pathways of this factor may have broad-
spectrum anti-inflammatory effects, as Brassicaceae have shown, expanding new perspectives
for the treatment of inflammatory diseases.
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Characteristics of all in vitro studies included in this systematic review; Table S4. Characteristics of
treatments administered in all in vivo studies that were identified in this systematic review; Table S5.
Characteristics of treatments administered in all in vitro studies that were identified in this systematic
review; Table S6. Characteristics of skin changes from in vivo studies identified in the systematic review.
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