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Background.  The 2013–2016 West African Ebola epidemic has been the largest to date with >11 000 deaths in the affected coun-
tries. The data collected have provided more insight into the case fatality ratio (CFR) and how it varies with age and other charac-
teristics. However, the accuracy and precision of the naive CFR remain limited because 44% of survival outcomes were unreported.

Methods.  Using a boosted regression tree model, we imputed survival outcomes (ie, survival or death) when unreported, cor-
rected for model imperfection to estimate the CFR without imputation, with imputation, and adjusted with imputation. The method 
allowed us to further identify and explore relevant clinical and demographic predictors of the CFR.

Results.  The out-of-sample performance (95% confidence interval [CI]) of our model was good: sensitivity, 69.7% (52.5–75.6%); 
specificity, 69.8% (54.1–75.6%); percentage correctly classified, 69.9% (53.7–75.5%); and area under the receiver operating char-
acteristic curve, 76.0% (56.8–82.1%). The adjusted CFR estimates (95% CI) for the 2013–2016 West African epidemic were 82.8% 
(45.6–85.6%) overall and 89.1% (40.8–91.6%), 65.6% (61.3–69.6%), and 79.2% (45.4–84.1%) for Sierra Leone, Guinea, and Liberia, 
respectively. We found that district, hospitalisation status, age, case classification, and quarter (date of case reporting aggregated at 
three-month intervals) explained 93.6% of the variance in the naive CFR.

Conclusions.  The adjusted CFR estimates improved the naive CFR estimates obtained without imputation and were more rep-
resentative. Used in conjunction with other resources, adjusted estimates will inform public health contingency planning for future 
Ebola epidemics, and help better allocate resources and evaluate the effectiveness of future inventions.
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Ebola virus disease (EVD), a hemorrhagic fever disease of zoo-
notic origin, has been detected in several outbreaks in African 
countries since it was first identified in 1976 [1]. While out-
breaks have typically been of relatively limited size and confined 
to rural Central Africa, the 2013–2016 mostly urbanized epi-
demic in West Africa took the world by surprise and showed the 
potentially devastating impact of the Ebola virus [1].

The case fatality ratio (CFR), the proportion of EVD cases 
who died [2], remains a challenging quantity to estimate due 
to undetected cases, incomplete data on detected cases, and 
the lack of laboratory confirmation of probable and suspected 
cases. CFR estimates may vary because of unreported survival 

outcomes, time of case diagnosis, and the statistical methods 
used for estimation [3, 4]. For instance, 14 694 (44%) of the 
survival outcomes for confirmed, probable, and suspected 
cases are unreported in the dataset analyzed by the World 
Health Organization (WHO) Ebola Response Team [5]. Using 
clinical, laboratory, and field surveillance data, we imputed 
unreported outcomes based on models fitted to observed out-
come data. Imputed outcomes have previously been used in 
other contexts to generate baseline estimates of CFR neces-
sary in evaluating interventions and designing randomized 
controlled trials [6].

Regression modeling has been used widely to predict EVD 
survival outcomes [7–9]. For instance, after the first 9 months of 
this epidemic, logistic regression was used to identify predictors 
of CFR [9]. It was found that age, sex, country, and fever were 
correlated with CFR [8]. However, much of the observed het-
erogeneity remained unaccounted for. Thus, there is a need to 
use methods that can account for multiple predictors and their 
interactions as well as limitations of the data available.

Machine learning (ML) techniques are powerful alterna-
tives to conventional statistical regression models [10]. In 
ML, less restrictive algorithms are used to learn the relation-
ship between outcome and proposed predictors [10]. Because 
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of this flexibility, ML techniques are generally very effective in 
predicting outcomes at the individual level. Boosted regression 
trees (BRTs), a well-characterized ML technique, have been 
used in infectious disease modeling for data imputation [11]. 
The predictive performance of a BRT, its ability to identify in-
fluential predictors and interactions, and its ability to model 
nonlinear relationships make it an ideal technique to answer 
key questions in infectious disease epidemiology. For instance, 
Bhatt and colleagues [11] used BRTs to map the global distri-
bution and burden of the dengue virus. Similarly, Dorigatti and 
colleagues [12] used BRTs to refine the efficacy estimate of the 
Sanofi Pasteur dengue vaccine CYD–TDV (chimeric yellow 
fever virus-DENV tetravalent dengue vaccine), illustrating 
the effectiveness of BRTs in estimating the uncertainty around 
missing or unrecorded data. However, despite these attempts, 
ML models are still seldomly used in the analysis and modeling 
of infectious diseases.

Here, we used BRTs to identify, using a nonparametric ap-
proach, the predictors of CFR for the West African epidemic, 
imputed unreported survival outcomes, and combined the im-
puted and reported survival outcomes to re-estimate CFRs for 
the epidemic. Finally, we compared the CFR estimates obtained 
without data imputation with estimates obtained including data 
imputation and estimates adjusted for model imperfection.

METHODS

Data Sources

We used case-level data that were reported to the WHO using 
the viral hemorrhage fever case-reporting forms as published in 
the supplementary data of the WHO Ebola Response Team [5]. 
On the case-reporting forms, cases were defined as confirmed, 
probable, and suspected using the WHO EVD case definition 
system [13].

Our main analyses present CFR inference based on con-
firmed, probable, and suspected cases, while sensitivity analyses 
using either “confirmed” cases or “confirmed and probable” 
cases are presented in the Supplementary Data (Supplementary 
Sensitivity Analysis). A wealth of information was recorded for 
each case, including demographic (eg, age, country) and clinical 
(eg, fever, diarrhea, bleeding) data.

The survival outcome for this dataset was reported as the 
“final status” of cases. Final status was defined as alive, dead, 
or missing. The fate of cases with missing final status was un-
known (eg, cases could have been alive in the communities or 
later died in the communities but were not reported to, or re-
corded by, the appropriate authorities). Cases with known final 
outcomes accounted for 18 644 (56%) of the cases in the dataset.

We selected 43 variables as candidate predictors of CFR. This 
selection was informed by the literature [9, 14] as well as judg-
ment on the influence of potential predictors on CFR.

Statistical Methods

BRT models rely on decision trees and gradient boosting. With 
regression trees, a recursive binary split of data is carried out 
until a stopping criterion is reached [10]. Used alone for anal-
ysis, regression trees are susceptible to bias and inaccuracy. 
The gradient boosting applies randomness into the stage-
wise fitting, which by introducing stochasticity helps to avoid 
overfitting of the model to the data (Supplementary Methods).

To fit the BRT model, we used the survival outcomes as the 
dependent variables and the candidate predictors as the inde-
pendent variables. We evaluated the model performance in 
terms of multiple measures of predictive accuracy—that is, sen-
sitivity, specificity, proportion of predictions correctly classified, 
and the area under the receiver operating characteristic curve 
(AUC). The performance measures quantify the ability of the 
BRT model to discriminate between outcomes (death/survival) 
for the given predictors [15]. For the AUC, performance values 
of 0.5 (50%) indicate random discrimination of outcomes and 
performance values of 1 (100%) indicate perfect discrimination 
of outcomes. These performance measures were used to deter-
mine the optimal hyperparameters.

To identify the model hyperparameters (tree complexity [tc], 
learning rate [lr], and bag fraction [bf]), multiple BRT models 
were fitted using different parameter combinations. In total, we 
explored 72 hyperparameter combinations. Figure 1 presents a 
summary schematic of the analysis and further details of the pa-
rameterization are included in the Supplementary Data.

BRT models return probabilities for each outcome. 
Converting these probabilities into binary values requires a 
threshold probability [16]. We selected our threshold to obtain 
equal sensitivity and specificity. It allowed us make predictions 
without trading off death and survival outcomes.

We simplified the BRT model by excluding noninformative 
predictors with minimal effect on prediction [10]. The rela-
tive influence (RI) of a predictor is the number of times the 
predictor is selected to discriminate outcomes (death/sur-
vival) and the improvement in the model for each selection, 
which is based on the amount of residuals explained at each 
selection [17]. These RIs are scaled to sum to 100, and higher 
influences indicate greater effects on survival outcome. The 
model was repeatedly refitted, each time removing the pre-
dictor with the lowest RI. We applied a default rule that con-
tinued to remove predictors with the lowest RIs until the 
average change in predictive deviance exceeded the standard 
error of the full model (ie, model using all candidate pre-
dictors) [10].

The simplified model was used to predict the survival out-
comes for the 44% of cases in the dataset with missing outcomes 
and the CFRs were re-estimated for the full dataset. Using non-
parametric bootstrapping with replacement for 1000 realiza-
tions, we calculated the means and 95% confidence intervals 
(CIs) of the re-estimated CFRs (see Supplementary Methods).

https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz678#supplementary-data
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CFR estimates with imputation ignore the bias arising 
from the imperfect sensitivity and specificity of the impu-
tation algorithm. We therefore corrected our CFR estimate 
using the estimated sensitivity and specificity of the BRT 
model to obtain unbiased estimates [18]. The inferred CFR 
was calculated for each subset of interest according to the 
following formula:

Inferred CFR =
(q + specif icity − 1)

(sensitivity + specif icity − 1)
,� (1)

where q is the CFR for the imputed data (ie, data with unknown 
outcomes) using the estimated sensitivity and specificity of the 
BRT model [19, 20]. Thus, the final CFR was calculated after 
adjusting the CFR for missing outcomes for imputation sensi-
tivity and specificity (Supplementary Methods).

RESULTS

In the dataset, a total of 18 644 (confirmed, probable, and sus-
pected) cases with known outcome were reported out of 33 338 
cases total (Table 1). The proportions of cases with dead, alive, 
and unknown survival outcomes vary across age classes and 
reporting-delay categories (Figure 2), with statistically signifi-
cant differences indicating missingness departed from random 
(Supplementary Table 1).

Using the 72 tested hyperparameter configurations of the full 
BRT model (ie, fitted using all available predictors), Supplementary 
Figures 1 and 2 show the out-of-sample predictive performance 
and the goodness-of-fit performance, respectively. Further ana-
lyses were based on the following optimal hyperparameters: data-
partitioning ratio (P =  .65), tree complexity (tc = 27), learning 
rate (lr = 0.001), and bag fraction (bf = 0.75). In the simplified 

Figure 1.  Schematic summary of the analysis steps used in this study. Abbreviations: AUC, area under the receiver operating characteristic curve; BRT, boosted regression 
tree; PCC, percentage correctly classified. 

https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz678#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz678#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz678#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz678#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz678#supplementary-data
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model we retained 24 survival predictors (out of the 43 originally 
included in the full model), accounting for 96% of the RI of the 
full model (ie, model with all candidate predictors).

District, hospitalization status, age, case classification, and 
date of case reporting aggregated at three-month intervals 
(thereafter defined as quarter) were the most important pre-
dictors, with average RIs of 41.7%, 28.9%, 10.7%, 10.1%, and 
2.2%, respectively (Table 2). Unadjusted CFR estimates (ie, CFR 
estimates obtained with imputation not corrected for imperfect 
sensitivity and specificity) and CFR estimates without imputa-
tion initially decreased with age, with the lowest CFR estimates 
found in the 15- to 19-year age group, with CFRs of 57.3% (95% 
CI, 39.4–68.2%) and 57.2% (95% CI, 48.6–65.4%) unadjusted 

and without imputation, respectively (Figure 3). Thereafter, 
CFR increased steadily with the highest rates in 75-years-and-
older age group, with CFRs of 90.9% (95% CI, 75.8–96.3%) and 
93.4% (95% CI, 88.8–97.2%) unadjusted and without imputa-
tion, respectively (Figure 3).

CFR estimates increased with increasing reporting delays. The 
lowest rates were at 0 to 5 days, with CFRs of 71.5% (95% CI, 54.1–
79.2%) and 74.4% (95% CI, 72.3–76.5%) unadjusted and without 
imputation, respectively. The highest rates were at 16 to 21 days, 
with CFRs of 78.5% (95% CI, 63.6–88.0%) and 82.0% (95% CI, 
70.6–90.3%) unadjusted and without imputation, respectively.

Figure 3 shows overall and country-level estimates. Overall 
CFR estimates were 71.9% (95% CI, 56.1–79.8%) and 75.1% 

Figure 2.  Proportion of known survival outcomes (ie, dead and alive) and unknown survival outcomes (ie, missing) for “confirmed, probable, and suspected” cases. A, 
Proportion of deaths, survivals, and entries with unknown outcome by age group (in years). B, Proportion of deaths, survivals, and entries with unknown outcome by reporting 
delay (in days).

Table 1.  Case Fatality Ratio Estimates Without Imputation, Unadjusted With Imputation, and Adjusted With Imputation for Confirmed, Probable, and 
Suspected Cases

Cases in the Dataset 
Without Imputation, n

Cases in the Dataset Including 
Those With Imputation, n

CFR Without Impu-
tation, % (95% CI)

Unadjusted CFR With 
Imputation, % (95% CI)

Adjusted CFR With  
Imputation, % (95% CI)

Guinea 3740 3757 65.8 (61.6–69.9) 65.6 (61.3–69.6) 65.6 (61.3–69.6)

Liberia 4624 8130 71.7 (67.2–75.6) 69.7 (55.6–78.7) 79.2 (45.4–84.1)

Sierra Leone 10 280 21 451 81.3 (79.3–83.3) 74.6 (52.2–84.3) 89.1 (40.8–91.6)

Overalla 18 644 33 338 75.1 (73.5–76.6) 71.9 (56.1–79.8) 82.8 (45.6–85.6)

All CFR estimates and corresponding CIs were calculated using a nonparametric bootstrap of the BRT model.
Abbreviations: BRT, boosted regression tree; CI, confidence interval; CFR, case fatality ratio.
aAdjusted CFR estimated using tp function from the R package RSurveillance to correct for bias in BRT model performance.
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(95% CI, 73.5–76.9%) unadjusted and without imputation, 
respectively (Table 1, Figure 3). Guinea had the lowest rates, 
with CFRs of 65.6% (95% CI, 61.3–69.6%) and 65.8% (95% CI, 
61.6–69.9%) unadjusted and without imputation, respectively. 

The Liberian rates were lower, with CFRs of 69.7% (95% CI, 
55.6–78.7%) and 71.7% (95% CI, 67.2–75.6%) unadjusted and 
without imputation, respectively. Sierra Leone had the highest 
rates, with CFRs of 74.6% (95% CI, 52.2–84.3%) and 81.3% 
(95% CI, 79.3–83.3%) unadjusted and without imputation, re-
spectively (Table 1, Figure 3).

Fever, anorexia, difficult breathing, and fatigue are the clin-
ical predictors in the minimal model (Table 2). The unadjusted 
CFR estimates were 69.3% (95% CI, 50.7–78.2%) and 82.1% 
(95% CI, 67.1–88.7%) for cases with fever and cases without 
fever, respectively (Figure 3). The CFR estimates without im-
putation were 70.7% (95% CI, 68.6–72.7%) and 87.5% (95% 
CI, 84.6–90.3%) for cases with fever and cases without fever, 
respectively (Figure 3). Fever, anorexia, difficult breathing, and 
fatigue together accounted for 4.7% of the RI of the minimal 
model, defined as the model using the 10 most influential pre-
dictors (district, hospitalization status, reporting delay, age, 
quarter, case classification, anorexia, difficult breathing, fatigue, 
and fever; see Table 2).

Adjusted CFRs (ie, corrected for imperfect sensitivity and 
specificity) with imputation for all predictors were broadly 

Table 2.  Relative Contributions of the Predictors in the Minimal BRT 
Model Using 10-fold Cross-validation; tc = 27, lr = 0.001, and bf = 0.75; and 
Trained on 1000 Training Sets Generated by Randomly Sampling 65% of 
Cases With Known Survival Outcomes Without Bootstrapping

Predictors Relative Contribution, %

District of origin 41.7

Hospitalization status 28.9

Age 10.7

Case Classification 10.1

Quarter 2.2

Delay 1.8

Anorexia 1.6

Difficult breathing 1.6

Fever 1.0

Fatigue 0.5

The minimal model used these 10 predictors.
Abbreviations: bf, bag fraction; BRT, boosted regression tree; lr, learning rate; tc, tree 
complexity.

Figure 3.  CFRs by age, delay, country, and fever. Median and 95% confidence intervals are plotted (based on 1000 bootstrap realizations for “confirmed, probable and 
suspected cases”). Abbreviations: CFR, case fatality ratio; S/Leone, Sierra Leone.
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higher compared with unadjusted estimates and estimates 
without imputation (Figure 3). For instance, the adjusted CFR 
was 82.8% (95% CI, 45.6–85.6%) overall and they were 65.6% 
(95% CI, 61.3–69.6%), 79.2% (95% CI, 45.4–84.1%), and 89.1% 
(95% CI, 40.8–91.6%) for Guinea, Liberia, and Sierra Leone, re-
spectively (Table 1).

In Table 3, we found that the full (ie, using 43 predictors), 
simplified (ie, using 24 predictors), and the minimal (ie, using 
10 predictors) models produced comparable performances, 
for instance, the AUC of the full model was 76.7% (95% CI, 
61.0–82.7%), that of the simplified model was 76.0% (95% CI, 
56.8–82.1%), and that of the minimal model was 75.7% (95% 
CI, 56.1–82.1%).

DISCUSSION

We have used the BRT to impute for unreported outcomes 
and produced improved (ie, representative of all cases and ad-
justed for BRT imputation performance) CFR estimates for the 
2013–2016 West African Ebola epidemic. To our knowledge, 
the dataset used in this study (33 338 cases) is the largest case-
level data used to characterize the CFR of EVD.

The effects of the BRT’s hyperparameters on the survival 
outcome were consistent with those in the published literature 
[10], with AUCs greater than 70% and less than 90% indicating 
appreciable predictive performance [21]. The data to which we 
fitted the BRT model were large relative to typical epidemiolog-
ical datasets in outbreak settings; however, our method proved 
robust to changes in sample sizes, with comparable mean im-
putation performances reported even after data downsampling 
(Supplementary Figure 3).

Model simplification suggested that district, hospitaliza-
tion status, age, case classification, quarter, reporting delay, 
anorexia, difficult breathing, fever, and fatigue were the most 
important predictors retained in the model. Most bleeding pre-
dictors (except for unexplained bleeding) were removed, which 
corroborates the existing literature suggesting that external 
bleeding was not a prominent characteristic of the West African 
Ebola epidemic [22–24]. Consequently, the predictive value of 

bleeding predictors was limited compared with the other (eg, 
age, reporting delay, district, and fever) predictors of CFR. 
Simplification removed some clinical predictors, but we found 
that the significance of clinical predictors varied with sample 
size and the subset of data included in the analysis. For example, 
hiccups occurrence was excluded from the final (simplified) 
model in our analysis but was found to have a predictive value 
in an earlier study conducted in Sierra Leone [22], although 
larger sample sizes would be needed to validate the significance 
of those results [22]. Earlier analyses of the West African epi-
demic showed that fever was not a significant predictor of the 
CFR [5, 9], while, in contrast, our study identified fever as the 
ninth most important predictor of the CFR. Further investiga-
tions revealed that the occurrence of fever only became a signif-
icant predictor in analyses using the datasets compiled after 25 
November 2014 (Supplementary Table 2). From this finding we 
cannot determine whether the emergence of fever occurrence 
as an important predictor of the CFR is related to changing 
clinical presentation of the EVD over time or was caused by 
changes in reporting practices over the course of the epidemic. 
The high CFR in patients without fever might also suggest im-
mune evasion [25, 26]. Interestingly, survival outcomes were 
better for patients with anorexia (see Supplementary Results), 
perhaps because these patients were better medically attended.

The predictors retained in the simplified model were broadly 
similar to those reported in the literature and the identified clin-
ical predictors reflected the symptomatic profile of EVD cases 
during the West African epidemic and in previous outbreaks 
[9, 22, 27]. Demographic predictors of age, case classification, 
reporting delay, quarter, and district were important predictors 
of CFR, which broadly agrees with discussions in the literature 
suggesting that, notwithstanding the clinical presentations of 
EVD, demographic factors were predictors of EVD fatalities 
[9, 28, 29]. Age-dependent CFR variation, consistent with pre-
vious studies [6, 7], suggests a biological effect. Potential bio-
logical reasons include variation in the immunocompetency 
of children and young adults and the increased likelihood of 
comorbidities in aged individuals [25, 30]. The CFR increased 

Table 3.  Boosted Regression Tree Model Performance

Performance Measures

Model Performance

Full Modela With Bootstrap  
Median, % (95% CI)

Simplified Modelb With Bootstrap  
Median, % (95% CI)

Minimal Modelc With Bootstrap 
Median, % (95% CI)

Sensitivity 70.5 (56.0–76.5) 69.7 (52.5–75.6) 69.7 (51.7–75.7)

Specificity 70.5 (56.8–75.9) 69.8 (54.1–75.6) 69.8 (51.2–75.6)

PCC 70.5 (56.6–75.9) 69.9 (53.7–75.5) 69.7 (51.0–75.4)

AUC 76.7 (61.0–82.7) 76.0 (56.8–82.1) 75.7 (56.1–82.1)

Medians and 95% CIs are reported, based on 1000 bootstrap realizations using confirmed, probable, and suspected cases.
Abbreviations: AUC, area under the receiver operating characteristic curve; BRT, boosted regression tree; CI, confidence interval; PCC, percentage correctly classified.
aThe full BRT model used all 43 candidate predictors.
bThe simplified BRT model used the 24 predictors retained after model simplification.
cThe minimal BRT model used the 10 most important predictors.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz678#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz678#supplementary-data
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with increasing reporting delay, suggesting that early case re-
porting could have improved survival outcomes, although 
previous findings have suggested that early reporting was insuf-
ficient to increase survival probability [7]. A clinical considera-
tion is that people who were reported late may have been more 
likely to die because their symptoms persisted while those with 
milder symptoms would have recovered earlier and were less 
likely to report as patients with Ebola.

While adjusted CFRs were broadly higher than uncor-
rected CFRs, they corroborate with estimates of the Ebola 
Zaire CFR, from 1979 to 2014, compiled by Van Kerkhove and 
colleagues [1]. However, adjusted CFRs must be interpreted 
with appropriate caution, as CIs are wide. Results validating 
the sensitivity and specificity adjustments are reported in the 
Supplementary Data.

Country-level CFR estimates were consistent for Guinea, 
which had the highest proportion of complete outcome data 
(99.5%; ie, 3740 out of 3757 cases; see Table 1) among the 3 
countries. The relatively high adjusted CFR estimates obtained 
in Liberia and Sierra Leone compared with estimates without 
and with imputation, and the associated relatively wide CI, 
could reflect the true CFR in these 2 countries but also possibly 
the changing data-collection practices over time. For instance, 
Liberia switched from an aggregate system of reporting to an 
individual-based system of reporting that could have affected 
data curation at the country level [31]. Potential biases may 
arise because definitive outcomes are more frequently reported 
for hospitalized cases, who, this study shows, were less likely to 
die from EVD infection [2]. Adjusted CFRs account for the es-
timated sensitivity and specificity of the BRT imputation model 
and the dependence of missingness on characteristics of the 
cases (eg, age and reporting delay).

These robust CFR estimates in conjunction with other re-
sources can be used to inform public health contingency pla-
nning for future Ebola epidemics—for instance, to allocate 
resources and evaluate the effectiveness of interventions [32]. 
In epidemic settings with limited resources, as was the case in 
West Africa, reliable CFR estimates are essential for planning 
hospital care and managing cases [33].

While previous studies show clinical characteristics indica-
tive of death with the intention of having a profile that could be 
used in subsequent case triaging [34, 35], the model built in this 
study cannot be used in such manner as it lacked clinically sig-
nificant predictors, such as viral load, which were not captured 
in the dataset. Rather, the output of our analyses should be used 
to inform resource allocation and care planning. Also, our anal-
ysis provides a baseline CFR against which the CFR observed 
with interventions (such as a new treatment) could be assessed. 
As a known predictor of EVD CFR [6, 36, 37], viral load data, 
where available, should be used in future attempts to further 
refine CFR estimates of EVD. If some survival outcomes were 
incorrectly recorded during data collection and/or if some cases 

were missing entirely from the database, then, in the absence 
of at least some gold-standard data, no estimation strategy can 
fully account for such limitations and this may be in part re-
sponsible for the imperfect nature of the imputation process.

In conclusion, we have demonstrated that BRT modeling can 
be used to obtain improved estimates of CFR where outcome 
data are unreported. This BRT modeling framework could be 
implemented to further investigate EVD CFR heterogeneity 
and adapted to other infectious disease epidemiological ana-
lyses based on datasets with missing data.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding author.
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