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/e objective of this study was to investigate the effect of dropping height on the forces of joints and muscles in lower extremities
during landing. A total of 10 adult subjects were required to landing from three different heights (32 cm, 52 cm, and 72 cm), and
the ground reaction force and kinematics of lower extremities were measured. /en, the experimental data were input into the
AnyBody Modeling System, in which software the musculoskeletal system of each subject was modeled. /e reverse dynamic
analysis was done to calculate the joint and muscle forces for each landing trial, and the effect of dropping-landing on the results
was evaluated. /e computational simulation showed that, with increasing of dropping height, the vertical forces of all the hip,
knee, and ankle joints, and the forces of rectus femoris, gluteus maximus, gluteus medius, vastii, biceps femoris and adductor
magnus were all significantly increased. /e increased dropping height also resulted in earlier activation of the iliopsoas, rectus
femoris, gluteus medius, gluteus minimus, and soleus, but latter activation of the tibialis anterior. /e quantitative joint and
muscle forces can be used as loading conditions in finite element analysis to calculate stress and strain and energy absorption
processes in various tissues of the lower limbs.

1. Introduction

Landing is a common and important form of movement that
is necessary in a variety of sports, dancing, and special
occupations [1–5]. Landing is also very easy to cause injuries,
especially on the lower limbs. About 49%–52% of the injuries
in gymnastics training occur during the landing phase [1, 2].
/e reasonable protection of landing injuries, as well as the
clinical treatment and rehabilitation of patients after injury,
requires a scientific understanding of the landing injuries.

Traditionally, some people thought that greater ground
reaction force (GRF) or shorter time to peak vertical GRF
(TPvGRF) would be more likely to incur damage [5, 6]. We
found that, compared to women, men had significantly
higher vGRF and rate of loading (ROL, i.e., vGRF/TPvGRF)
[7–10]. In accordance with the above traditional notion, the

phenomenon of women more prone to landing injuries
could not be explained [11, 12]. Based on previous studies,
we concluded that (1) the relationship between the ankle
joint activity and the risk of injury was insignificant, while
the joint angular velocity is positively related to the risk of
injury [7, 8, 13]; (2) compared with women, men were more
adept at using the ankle dorsiflexor and had better explosive
strength and cocontraction of the ankle plantarflexor and
dorsiflexor, and then, these factors induced the higher injury
rate for women [8, 9]; and (3) the ankle brace significantly
improved GRF and the muscle forces and enhanced the
proprioception of the lower limbs [9, 10]. During landing, if
the joint range of motion (ROM) was controlled within the
tolerance range through muscle forces, more kinetic energy
would be converted through increasing GRF to avoid ex-
cessive joint motions./is mainly reflects the relationship of
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muscle force, GRF, and joint kinematics. /erefore, the
influence of muscle force must be considered in the research
of landing biomechanics.

Electromyography (EMG) has been commonly used to
reflect the muscle activity [7–9, 14, 15]. However, due to
many influential factors, it is hard to accurately get the
muscle force and torque based on EMG measurement. In
recent years, the rapid development of computer technology
brought about reverse dynamic analysis to a complex com-
putational musculoskeletal model [16–18]. /is provides
a reasonable way for us to calculate muscle forces accurately.

/erefore, the purpose of this study was to evaluate
effects of dropping height on muscle forces and force of the
lower limb joints during landing using a computational
musculoskeletal model and experimental data.

2. Materials and Methods

Based on our previous data [4, 7–9], a power analysis
revealed that to achieve 80% statistical power, with an
exploratory α level of 0.05, a minimum of 10 subjects were
required. /us, 10 subjects (6 women and 4 men) were
recruited for this study. /eir mean ± SD age was 23.8± 3.9
years, and the height and body mass were 165± 5 cm and
57.8± 8.5 kg, respectively. All subjects were right-leg
dominant, which was determined individually by asking
which one leg they would use to kick a ball as far as possible
[7]. All subjects were physically active and had never ex-
perienced surgery, had no trauma and neurological dys-
function at least 6 months before the test, and were free
from any trouble with inner ear problems, vision, neuro-
muscular dysfunction, or any orthopedic conditions. All

subjects signed the University-approved informed consent
before participating.

/e subjects jumped from three different heights (32 cm,
52 cm, and 72 cm) and landed on a force plate (FP4060-08,
Bertec Corp, Columbus, OH) with a half-squatting posture
(Figure 1). /ese heights were determined according to our
previous studies [4, 7–9, 13] and a study by Mcnitt-Gray
[19]. /e landing posture was also defined elsewhere as
a simulated parachute landing in China [8, 9]. /e subjects
were instructed to takeoff and touch down with both feet, to
lean forward with body at takeoff, to make a half-squatting
posture with foot contact, and finally to break the fall
smoothly. /e trial order was random to avoid the order
effect on the results.

/e GRF data in three directions were collected at
a sampling frequency of 1000 Hz. An Optotrak Certus
motion capture system (Northern Digital Inc., Waterloo,
Canada) was used to measure the limb kinematics during
landing. Each body segment was registered using a plate
with 4 noncollinear LED markers, which was tightly
attached to the corresponding segment [8, 9]. /ese
markers were captured, and the kinematic data were then
analyzed using Visual3D (C-Motion Inc., Rockville, MD).
/e processed signals were synchronized by an analog-to-
digital converter.

/e anthropometric data (body weight, body height,
pelvis width, thigh, shanks, and foot length) were measured
from each subject and then were used to construct the
musculoskeletal model in the AnyBody Modeling System
version 5.0 (AnyBody Technology A/S, Aalborg, Denmark)
[20]. /e model was developed from the Twente Lower
Extremity Model (TLEM) in AnyBody Managed Model

(a) (b) (c)

Figure 1: A female subject was in the trial: (a) jumping; (b) prelanding; (c) postlanding.
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Repository [21]./ismodel is based on a comprehensive and
consistent data set from one donor [22]. According to our
anthropometric measurement, the model was then scaled
with a mass-fat scaling algorithm to simulate each indi-
vidual. /e AnyBody Modeling System and the musculo-
skeletal model have been validated to be useful for analyzing
human movement [20]. /e main input of the modeling is
the kinematic and GRF data from the subjects while landing.
/e GRF was filtered using a Woltring filter that does not
affect the timing and hardly affects the amplitude.

/e inverse dynamic analysis calculated the force of each
muscle bundle and the lower limb joints. Because the force
directions were similar for the bundles in the same muscle,
we combined them all for simplifying the analysis. /e
calculated forces of the hip, knee, and ankle joints were
normalized to the body weight (BW) of each subject. /e
effect of dropping height on these force values was evaluated
using the univariate analysis of variance (ANOVA) and
Turkey’s HSD post hoc analysis. /e statistical analysis
confidence interval was 95%, and the statistical analysis was
performed using the free data analysis system VassarStats
(http://vassarstats.net/) [8, 9].

3. Results and Discussion

3.1. GRF and Joint Force. As a critical factor during landing,
the dropping height greatly affects the landing speed. When
landing from three different heights of 32 cm, 52 cm, and
72 cm, the performer at initial contact had the average speed
of 2.1m/s, 2.3m/s, and 3.0m/s, respectively, with significant
statistical differences (P< 0.001). As shown in Figure 2, with
increase of the dropping height, peak vGRF increased sig-
nificantly (P< 0.001).

We have found a linear relationship between the peak
vGRF and root dropping height [10]. In the present study,
we found that, with the increase of the dropping height, the
GRF peak increased significantly in the vertical and anterior-
posterior (A-P) directions, but the dropping height has no
significant influence on the peak medial-lateral (M-L) GRF
peak, TPvGRF, or ROL./is is consistent with the finding by
Yeow et al. [23].

Effects of dropping height on GRF were further reflected
in the similar effects on the contact force of lower limb joints.
/is would lead to injury risk of these joints during high-
speed landing. As listed in Table 1, with increasing of the
dropping height, the vertical force of each joint significantly
increased./e influence of dropping height on the ankle joint
in any horizontal direction was not significant. /ough no
significant influence was found in the dropping height on the
knee joint force in the A-P direction, the force in the M-L
direction was significantly higher while landing from higher
positions. We also found significant influences of the drop-
ping height on the force of the hip joint in all three directions.

/is study showed that the force peaks of the ankle joint
and the hip joint could reach more than 20 BW when
subjects landed from 72 cm height. If the dropping height
was even increased, higher joint force may lead to injuries.
/erefore, the high peak joint force was reasonable in the
current study. When subjects landed from low and medium

heights, from the ankle to the knee and the hip joints, the
peak forces in the vertical direction declined. However,
when subjects landed from 72 cm height, the vertical force
peak of the hip joint was significantly higher than that of the
knee joint. It may be caused by higher muscle force of
gluteus during landing from higher level.

3.2. Muscle Force. Because the joint force is directly related
to the joint torque and the muscle force, the effect of the
dropping height on the joint force is further reflected in the
force of each muscle. In the current study, the same subject
had similar musculation pattern even while landing from
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Figure 2: Vertical ground reaction forces when a representative
subject landed from three different heights.

Table 1: Effects of dropping height on the forces of the ankle, knee,
and hip joints (unit: body weight, BW).

Joint Direction Low
(32 cm)

Medium
(52 cm)

High
(72 cm) F P

Ankle

Vertical 16.95±
2.59

18.88±
3.46

23.98±
4.21 8.815 <0.001

A-P 4.87±
0.96

5.19±
1.04

5.18±
1.11 1.562 0.252

M-L 4.17±
0.88

4.23±
1.06

5.83±
0.96 2.204 0.147

Knee

Vertical 9.09±
2.09

11.5±
2.26

14.58±
2.17 6.895 0.004

A-P 2.86±
0.74

5.23±
1.09

4.98±
1.32 1.785 0.204

M-L 0.72±
0.31

0.75±
0.24

0.88±
0.32 7.307 0.007

Hip

Vertical 8.50±
2.53

9.49±
2.68

22.81±
4.69 10.208 <0.001

A-P 3.49±
1.15

4.08±
1.68

11.9±
2.96 8.024 0.003

M-L 3.74±
0.69

4.76±
1.12

12.56±
3.36 8.749 0.004

A-P: anterior-posterior; M-L: medial-lateral.

Journal of Healthcare Engineering 3

http://vassarstats.net/


(0.32 m)
(0.52 m)
(0.72 m)

Low
Medium
High

M
us

cle
 fo

rc
e o

f s
ol

eu
s (

BW
)

0.0
0.9
1.8
2.7
3.6
4.5
5.4

M
ed

ia
l

0

2

4

6

8

La
te

ra
l

0 50 100 150 200 250 300 350–50
Time (ms)

–50 50 100 150 200 250 300 3500

M
us

cle
 fo

rc
e o

f b
ic

ep
s f

em
or

is 
(B

W
)

0

2

4

6

8

Ca
pu

t l
on

gu
m

0

0.1

0.2

0.3

0.4

0.5

Ca
pu

t b
re

ve

0 50 100 150 200 250 300 350–50
Time (ms)

0 50 100 150 200 250 300 350–50

(0.32 m)
(0.52 m)
(0.72 m)

Low
Medium
High

(0.32 m)
(0.52 m)
(0.72 m)

Low
Medium
High

M
us

cle
 fo

rc
e o

f g
as

tro
cn

em
iu

s (
BW

)

0 50 100 150 200 250 300 350–50
Time (ms)

0 50 100 150 200 250 300 350–50
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

M
ed

ia
l

0.0
0.3
0.6
0.9
1.2
1.5
1.8

La
te

ra
l

M
us

cle
 fo

rc
e o

f v
as

tu
s m

ed
ia

lis
 (B

W
)

0 50 100 150 200 250 300 350–50
Time (ms)

0 50 100 150 200 250 300 350–50

0 50 100 150 200 250 300 350–50

0.0
0.2
0.4
0.6
0.8
1.0

Su
pe

rf
ic

al
 la

ye
r

0.0
0.3
0.6
0.9
1.2

M
id

dl
e l

ay
er

0.00
0.06
0.12
0.18
0.24
0.30
0.36

D
ee

p 
la

ye
r

(0.32 m)
(0.52 m)
(0.72 m)

Low
Medium
High

Figure 3: Continued.
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Figure 3: Continued.
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different heights, but certain difference of the sequence of
muscle activation existed among different subjects.

Figure 3 showed themuscle activation of a representative
subject landing from three heights. /e peak forces of main
muscles were statistically analyzed and shown in Table 2.
With increasing of dropping height, the peak forces in-
creased for most muscles in the lower limb, in which the
rectus femoris (RF), GMax, gluteus medius (GMed), vastii,
biceps femoris (BF), and adductor magnus all showed sig-
nificant changes.

/e increased dropping height also resulted in earlier
activation of the iliopsoas, RF, GMed, gluteus minimus
(GMin), and SOL, but latter activation of the tibialis anterior
(TA). In addition, when subjects landed from higher po-
sitions, the time from initial contact to peak force of RF and
SOL was significantly longer. /e longer the duration of
muscle activity, the longer and more durable the muscle
force used to counter the impact.

As seen in Figure 1, we divided the entire landing process
into three phases. Because the researcher instructed subjects
not to jump higher than their initial level, the timing and
amplitude of each muscle had consistent activity pattern and
amplitude. /e flying phase can also be called as the prel-
anding phase, while the last phase can be called the post-
landing phase. Some studies showed that, with increasing of
dropping height, the EMG onset latency and duration would
be longer in TA, soleus (SOL), RF, and BF, but the prel-
anding EMG duration was less affected by the change of the
dropping height [24, 25]. Our previous study also showed
the similar phenomenon in TA and gastrocnemius (Gast)
[7–9]. Because the landing is a high-intensity impact action,
the requirement for muscle energy is high. Even during

a lower height landing, the muscle will be prepared with
enough time. If the dropping height was increased, the
accumulation of muscle power is not through the duration,
but through the activity amplitude.

/e calculated results showed that, with increasing
dropping height, the maximum force of TA increased, but
there was no significant difference between different heights.
/is was consistent with the experimental results. /is also
showed that ankle plantarflexor has a more important role
on the landing movement than the dorsiflexor. In addition,
the force of triceps muscle was up to 10 BW level and had
a main role in changing the mechanics of the shank.

As for the effects of dropping height on the knee flexors
and extensors, various experimental studies gave different
findings [26–29]. /is study showed that the knee flexors
and extensors were all significantly activated to maintain the
balance of the knee joint. As a result, when the dropping
height was higher, the compressive force of the knee joint
also increased because the larger muscle forces provided
additional loads.

During landing, the muscle contraction mode is very
complex, and the forces of some muscles or muscle groups
are even beyond the level of ground reaction force. Because
these muscle forces would be loaded on the skeleton around
joints, they may have great impact on the stress or strain of
bone and cartilage, energy absorption, and transmission in
the lower limbs. Some authors have tried to get these data
using finite element analysis [30], but it is necessary to
understand the muscle contraction mode and force before
modeling of local joints or organs. /is study could provide
more precise loading conditions for future finite element
simulation of any phase of a typical landing movement.
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FIGURE 3: Forces of leg muscles when a representative subject landed from three different heights.
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4. Conclusion

Based on the experimental data, the inverse dynamic model
of the human musculoskeletal system was established in this
study. /e force of the lower limb joints and the muscle
groups was calculated while the subjects landed to evaluate
the effects of dropping height on these parameters. /e
quantitative joint and muscle forces can be used as loading
conditions in finite element analysis to calculate stress and
strain and energy absorption processes in various tissues of
the lower limbs. /is would be useful for further un-
derstanding of the injury mechanism during landing.
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