
polymers

Article

Vertical Orientation of Liquid Crystal on
4-n-Alkyloxyphenoxymethyl-Substituted Polystyrene Containing
Liquid Crystal Precursor

Kyutae Seo and Hyo Kang *

����������
�������

Citation: Seo, K.; Kang, H. Vertical

Orientation of Liquid Crystal on 4-n-

Alkyloxyphenoxymethyl-Substituted

Polystyrene Containing Liquid

Crystal Precursor. Polymers 2021, 13,

736. https://doi.org/10.3390/

polym13050736

Academic Editor: Sergi Gallego Rico

Received: 8 February 2021

Accepted: 23 February 2021

Published: 27 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, 37 Nakdong-Daero 550
Beon-gil, Saha-gu, Busan 604-714, Korea; kyutae@donga.ac.kr
* Correspondence: hkang@dau.ac.kr; Tel.: +82-51-200-7720; Fax: +82-51-200-7728

Abstract: We synthesized a series of polystyrene derivatives that were modified with precursors
of liquid crystal (LC) molecules, such as 4-ethyloxyphenol (homopolymer PEOP and copolymer
PEOP#; # = 20, 40, 60, and 80, where # indicates the molar fraction of 4-ethyloxyphenoxymethyl in
the side chain), 4-n-butyloxyphenol (PBOP), 4-n-hexyloxyphenol (PHOP), and 4-n-octyloxyphenol
(POOP), via polymer modification reaction to investigate the orientation of LC molecules on polymer
films, exhibiting part of the LC molecular structure. LC molecules showed a stable and uniform
vertical orientation in LC cells fabricated with polymers that have 4-ethyloxyphenoxymethyl in
the range of 40–100 mol%. In addition, similar results were obtained in LC cells fabricated with
homopolymers of PEOP, PBOP, PHOP, and POOP. The vertical orientation of LC molecules in LC
cells fabricated with polymer films correlated to the surface energy of polymer films. For example,
vertical LC orientation was observed when the total surface energies of the polymer films were lower
than approximately 43.2 mJ/m2. Good alignment stabilities were observed at 150 ◦C and 20 J/cm2 of
ultraviolet irradiation for LC cells fabricated with PEOP film.

Keywords: anisotropic material; liquid crystal; orientation layer; vertical; 4-n-alkyloxyphenol

1. Introduction

The macroscopic physicochemical properties of materials that are composed of anisotropic
molecules are affected by their molecular orientations [1–7]. Extensive studies have investi-
gated the physicochemical properties of anisotropic materials, including thermal conductiv-
ity [8–11], mechanical properties [12–14], wettability [15,16], and ionic conductivity [17–19],
with respect to molecular orientations. Initially, the thermal conductivity of anisotropic
materials could be controlled by adjusting the orientation of the anisotropic molecules
in the polymer chain. The polymer chains oriented parallel to the heat transfer direction
are preferred for increasing thermal conductivity because strong carbon–carbon covalent
bonds transport atomic vibrational energy compared to weak van der Waals interchain
interactions [8,9]. For example, the thermal conductivity of single-crystal polyethylene
in parallel to the polymer chain is considerably greater than that perpendicular to the
polymer chain, owing to the aforementioned mechanism [20]. The mechanical properties
of a material are closely related to the orientation of anisotropic molecules. The tensile
strength of materials with anisotropic molecules parallelly oriented to the applied load
is greater than that with anisotropic molecules perpendicularly oriented to the load. For
example, thermoplastics reinforced with glass fiber exhibit impressive mechanical proper-
ties according to the glass fiber orientation. The maximum tensile strength was observed
for glass fibers oriented parallelly to the external stress [12–14]. In addition, the surface
property of polymeric materials could be reformed by the introduction of anisotropic
molecules onto the surface. For example, polydimethylsiloxane (PDMS) is restricted to
applications in biomedical devices because of the fast hydrophobic recovery in vivo and/or
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in vitro system [21–24], despite the numerous advantages, such as low cost, ease of fabri-
cation, and optical transparency [25–29]. The surface properties of PDMS for biomedical
applications, such as biosensors, bioanalytical devices, and implants, could be changed by
orienting the anisotropic molecules, such as the amphiphilic surfactant, vertically onto the
polymer surface. The hydrophobic tails of the anisotropic surfactants are adsorbed onto
the PDMS surface while the hydrophilic head sticks out into the aqueous solution, thereby
changing the PDMS surface properties [15,16]. The control of molecular scale ordering via
self-assembly in nanotechnology is indispensable, owing to its necessity in developing
high-performance materials. Liquid crystal (LC) molecules, which are anisotropic materials,
have numerous applications, owing to unique characteristics, such as dynamic molecular
order, self-assembling, and anisotropic optical, electrical, and magnetic properties. For
example, ionic LC molecules are exceptional candidates for efficient ion conduction because
LCs form well-organized channels for ion transportation in their LC phases. The anisotropic
properties and processability of LCs have high potentiality in advanced areas, such as
biosensors and drug delivery [17–19]. It is important to orient the anisotropic molecules,
such as LC molecules, on the substrate in one direction, as this plays an essential role in the
LC orientation technique for diverse applications [30], as described earlier. In general, the
rubbing technique is a method to make uniformly oriented anisotropic molecules [31]. The
rubbing of polymeric surfaces is the most common technique to produce uniform orienta-
tion of LC molecules in the fabrication of electro-optical devices [32–36]. Through a contact
method such as the rubbing technique, aromatic polymers with a rigid backbone, such as
polyimide derivatives, are commonly employed as LC orientation substrates because they
provide very stable LC orientation via strong interactions, such as π–π and dipole–dipole
interactions, between polymer and LC molecules [37–43]. Moreover, polyimide derivatives
having long alkyl or alkyloxy groups show vertical LC orientation behavior [44–47]. How-
ever, the vertical LC orientation layer on polystyrene (PS) derivatives with long alkyl or
fluoroalkyl groups can be synthesized using non-contact methods because long alkyl or
fluoroalkyl groups on polystyrene layers produce low surface energy, owing to the steric
effect of alkyl or fluoroalkyl groups on the polymer film surface [48]. The surface energy of
polymer films and the molecular orientation in polymers are decisive factors in obtaining
vertical LC orientation behaviors, owing to different steric repulsions and/or interactions
between LC molecules and surfaces.

In this study, we synthesized a series of polystyrene derivatives that have
4-n-alkyloxyphenoxymethyl side groups (Figure 1) to systematically investigate the LC
orientation behavior of the polystyrene derivates. The synthesis and characterization of
these polymers and the optical properties of assembled LC cells with unrubbed polymer
films were studied.
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2. Materials and Methods
2.1. Materials

The 4-chloromethylstyrene and 4′-pentyl-4-biphenylcarbonitrile (5CB, ne = 1.7360,
no = 1.5442, and ∆ε = 14.5, where ne, no, and ∆ε represent the extraordinary refractive in-
dexes, ordinary refractive indexes, and dielectric anisotropy, respectively) were purchased
from Merck Co. The 4-ethyloxyphenol, 4-n-butyloxyphenol, 4-n-hexyloxyphenol, and
4-n-octyloxyphenol were obtained from Tokyo Chemical Industry (TCI) Co. (Tokyo, Japan).
The potassium carbonate, 2,2′-azoisobutyronitrile (AIBN), tetrahydrofuran (THF), and
N,N′-dimethylacetamide (DMAc) were acquired from Daejung Co. (Busan, Korea). The
methanol was supplied by SK Chemical Co. (Ulsan, Korea). The DMAc and ethanol were
dried over molecular sieves (4 Å). The THF was dried through refluxing with benzophe-
none and sodium, followed by distillation. The 4-chloromethylstyrene was purified using
column chromatography on silica gel, with hexane as the eluent to remove impurities and
inhibitors (tert-butylcatechol and nitroparaffin). The AIBN was purified through crystal-
lization using methanol. Poly(4-chloromethylstyrene) (PCMS) was synthesized through
the conventional free radical polymerization of 4-chloromethylstyrene using AIBN under
a nitrogen atmosphere. The solution mixture was cooled to room temperature and then
poured into methanol to obtain a white precipitate. The precipitate was further purified
through Soxhlet extraction using hot methanol to remove the remaining monomer (4-
chloromethylstyrene) and low molecular weight PCMS. The AIBN was used as an initiator.
Other reagents and solvents were used as received.

1H NMR of PCMS (400 MHz, CDCl3, δ/ppm): δ = 1.01–1.88 (–CH2–CH–Ph–, 3H),
δ = 4.13–4.77 (–Ph–CH2–Cl, 2H), δ = 6.00–7.22 (CH2–CH–PhH–CH2–, 4H).

2.2. Preparations of 4-n-Alkyloxyphenoxymethyl Modified Polystyrene

The following procedure was used to synthesize 4-n-alkyloxyphenoxymethyl-substituted
polystyrenes (PAOPs), where the alkyl group is –O–(CH2)nH (n = 2, 4, 6, and 8). The 4-
ethyloxyphenoxymethyl-substituted polystyrene (PEOP) synthesis is given as an example.
A mixture of PCMS (0.300 g, 1.97 mmol), 4-ethyloxyphenol (0.407 g, 2.96 mmol, 150 mol%
compared to PCMS), and potassium carbonate (0.489 g, 3.54 mmol, 120 mol% compared
to 4-ethyloxyphenol, used as a substituent) in DMAc (50 mL) was heated to 70 ◦C and
magnetically stirred at 200 rpm under nitrogen atmosphere for 24 h. Thereafter, the solution
mixture was cooled to room temperature and then poured into methanol to obtain a white
precipitate. The precipitate was further purified by several reprecipitations from the DMAc
solution into methanol, and Soxhlet extractor was used to remove the potassium carbonate
and remaining salts with hot methanol. A yield of 80% PEOP was obtained after overnight
drying under vacuum conditions.

1H NMR of PEOP (400 MHz, CDCl3, δ/ppm): δ = 0.98–2.38 (–CH2–CH–Ph–CH2–,
–O–CH2–CH3, 6H), δ = 3.69–4.04 (–Ph–O–CH2–CH3, 2H), δ = 4.56–5.02 (–Ph–CH2–O–Ph–O–,
2H), δ = 6.20–7.21 (–CH2–CH–PhH–CH2–O–, –CH2–O–PhH–O–, 8H).

Similarly, 4-n-butyloxyphenoxymethyl (PBOP, n = 4), 4-n-hexyloxyphenoxymethyl
(PHOP, n = 6), and 4-n-octyloxyphenoxymethyl-substituted polystyrene (POOP, n = 8)
were synthesized using the aforementioned procedure. Here, 4-n-butyloxyphenol (0.490 g,
2.95 mmol, 150 mol% compared with PCMS), 4-n-hexyloxyphenol (0.573 g, 2.95 mmol,
150 mol% compared with PCMS), and 4-n-octyloxyphenol (0.656 g, 2.95 mmol, 150 mol%
compared with PCMS), respectively, replaced 4-ethyloxyphenol.

1H NMR of PBOP (400 MHz, CDCl3, δ/ppm): δ = 0.80–1.82 (–CH2–CH–Ph–CH2–,
–O–CH2–(CH2)2–CH3, 10H), δ = 3.69–3.95 (–Ph–O–CH2–(CH2)2–CH3, 2H), δ = 4.64–4.97
(–Ph–CH2–O–Ph–O–, 2H), δ = 6.20–7.21 (–CH2–CH–PhH–CH2–O–, –CH2–O–PhH–O–, 8H).

1H NMR of PHOP (400 MHz, CDCl3, δ/ppm): δ = 0.80–1.82 (–CH2–CH–Ph–CH2–,
–O–CH2–(CH2)4–CH3, 14H), δ = 3.72–3.93 (–Ph–O–CH2–(CH2)4–CH3, 2H), δ = 4.60–4.96
(–Ph–CH2–O–Ph–O–, 2H), δ = 6.20–7.21 (–CH2–CH–PhH–CH2–O–, –CH2–O–PhH–O–, 8H).
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1H NMR of POOP (400 MHz, CDCl3, δ/ppm): δ = 0.80–1.80 (–CH2–CH–Ph–CH2–,
–O–CH2–(CH2)6–CH3, 18H), δ = 3.73–3.97 (–Ph–O–CH2–(CH2)6–CH3, 2H), δ = 4.62–5.00
(–Ph–CH2–O–Ph–O–, 2H), δ = 6.20–7.21 (–CH2–CH–PhH–CH2–O–, –CH2–O–PhH–O–, 8H).

The copolymer of PEOP, designated as PEOP#, where # is the degree (mol%) of
substitution of chloromethyl to the 4-ethyloxyphenoxymethyl group, were prepared using
the same procedure as for the PEOP. However, less than 150 mol% of 4-ethyloxyphenol
was used. For example, PEOP20, PEOP40, PEOP60, and PEOP80 were prepared with
4-ethyloxyphenol of 0.054 g (0.39 mmol), 0.109 g (0.79 mmol), 0.163 g (1.18 mmol), and
0.217 g (1.57 mmol), respectively, using a slight excess of potassium carbonate (120 mol%
compared to 4-ethyloxyphenol).

1H NMR of PEOP20 (400 MHz, CDCl3, δ/ppm): δ = 0.97–2.38 (–CH2–CH–Ph–CH2–
Cl, –CH2–CH–Ph–CH2–O–, –O–CH2–CH3, 9H), δ = 3.69–4.04 (–Ph–O–CH2–CH3, 2H),
δ = 4.56–5.02 (–Ph–CH2–Cl, 2H) δ = 4.56–5.02 (–Ph–CH2–O–Ph–O–, 2H), δ = 6.20–7.21
(–CH2–CH–PhH–CH2–Cl, –CH2–CH–PhH–CH2–O–, –CH2–O–PhH–O–, 12H).

1H NMR of PEOP40 (400 MHz, CDCl3, δ/ppm): δ = 0.97–2.38 (–CH2–CH–Ph–CH2–
Cl, –CH2–CH–Ph–CH2–O–, –O–CH2–CH3, 9H), δ = 3.69–4.04 (–Ph–O–CH2–CH3, 2H),
δ = 4.56–5.02 (–Ph–CH2–Cl, 2H) δ = 4.56–5.02 (–Ph–CH2–O–Ph–O–, 2H), δ = 6.20–7.21
(–CH2–CH–PhH–CH2–Cl, –CH2–CH–PhH–CH2–O–, –CH2–O–PhH–O–, 12H).

1H NMR of PEOP60 (400 MHz, CDCl3, δ/ppm): δ = 0.97–2.38 (–CH2–CH–Ph–CH2–
Cl, –CH2–CH–Ph–CH2–O–, –O–CH2–CH3, 9H), δ = 3.69–4.04 (–Ph–O–CH2–CH3, 2H),
δ = 4.56–5.02 (–Ph–CH2–Cl, 2H) δ = 4.56–5.02 (–Ph–CH2–O–Ph–O–, 2H), δ = 6.20–7.21
(–CH2–CH–PhH–CH2–Cl, –CH2–CH–PhH–CH2–O–, –CH2–O–PhH–O–, 12H).

1H NMR of PEOP80 (400 MHz, CDCl3, δ/ppm): δ = 0.97–2.38 (–CH2–CH–Ph–CH2–
Cl, –CH2–CH–Ph–CH2–O–, –O–CH2–CH3, 9H), δ = 3.69–4.04 (–Ph–O–CH2–CH3, 2H),
δ = 4.56–5.02 (–Ph–CH2–Cl, 2H) δ = 4.56–5.02 (–Ph–CH2–O–Ph–O–, 2H), δ = 6.20–7.21
(–CH2–CH–PhH–CH2–Cl, –CH2–CH–PhH–CH2–O–, –CH2–O–PhH–O–, 12H).

2.3. Film Preparation and LC Cell Assembly

Solutions of PEOP#, PAOP (PEOP, PBOP, PHOP, and POOP) in THF (1 wt.%) were
filtered using a poly(tetrafluoroethylene) (PTFE) membrane with a pore size of 0.45 µm.
Then, thin polymer films were prepared by spin-coating (2000 rpm, 60 s) onto 2.0 × 2.5 cm2

glass substrates. LC cells were fabricated by assembling two polymeric layers onto the two
glass substrates using spacers with a thickness of 4.25 µm. The physicochemical properties,
such as surface tension, of the 4′-pentyl-4-cyanobiphenyl (5CB) have been documented in
numerous studies because of its accessible nematic temperature range around room tem-
perature, high positive dielectric anisotropy, and remarkable chemical stability. Therefore,
the 5CB was selected to fabricate LC cells in order to investigate the correlation between
the orientation layer and LC molecules via physicochemical interaction [49–52]. The cells
were filled with nematic LC, 5CB. The manufactured LC cells were sealed with epoxy glue.

2.4. Instrumentation

For characterization of the synthesized structure, 1H nuclear magnetic resonance
(NMR) spectroscopy, using an Agilent MR400 DD2 NMR spectrometer, differential scan-
ning calorimetry (DSC) (TA Instruments, Q-10), and polarized optical microscopy (POM)
images of the LC cells, using a Nikon Eclipse E600 POL, NIKON Co. (Tokyo, Japan), in-
stalled polarizer, and digital camera (Nikon, Coolpix 995, NIKON Co., Tokyo, Japan), were
performed. The energy dispersive spectroscopy (EDS) mapping analysis was performed
using dual-beam focused ion beam (FIB) scanning electron microscopy (SEM) fitted with
an Oxford EDS (Thermo Fisher Scientific, Scios2) in order to confirm the uniformity and the
thermal stability of the polymer film on the glass substrate. The contact angles of distilled
water and methylene iodide on PAOP and PEOP# films were determined using a Kruss
DSA10 contact angle analyzer equipped with drop shape analysis software. The surface
energy was measured using the Owens–Wendt equation, given below:

γsl = γs + γl − 2(γs
dγl

d)1/2 − 2(γs
pγl

p)1/2 (1)



Polymers 2021, 13, 736 5 of 12

where γsl is the surface energy of the solid–liquid interface, γs is the surface energy of the
solid, γs

d is the dispersive component of surface energy, γs
p is the polar component of

surface energy, γl is the liquid surface tension, γl
d is the dispersive component of surface

tension, and γl
p is the polar component of surface tension. The surface energy (γs) of the

solid is the sum of dispersive (γs
d) and polar (γs

p) components of surface energy [53].

3. Results and Discussion

The synthesis routes for PAOPs (PEOP, PBOP, PHOP, and POOP) and PEOP# are
shown in Figure 1. The copolymers that have different substitution ratios (mol%) were
obtained by varying the molar ratio of 4-ethyloxyphenol in the reaction mixture. An ap-
proximately complete conversion of chloromethyl to oxymethyl was obtained when an
excess (150 mol%) of 4-ethyloxyphenol, 4-n-butyloxyphenol, 4-n-hexyloxyphenol, and
4-n-octyloxyphenol, respectively, were reacted with poly(4-chloromethylstyrene) at 70 ◦C
for 24 h. Figure 2 shows the 1H NMR spectrum of PEOP as an example. Chemical composi-
tions of the monomeric units in the obtained polymers were confirmed using the 1H NMR
spectrum. The 1H NMR spectrum and the assignment of the respective peaks of PEOP are
shown in Figure 2. The 1H NMR spectrum of PEOP indicates the presence of protons from
PEOP derivatives ((δ/ppm = 0.98–2.38 (3H), 4.56–5.02 (2H), 3.69–4.04 (2H), and 6.20–7.21
(4H)); peaks a, b, c, and d). The degree of substitution from chloromethyl to oxymethyl was
calculated to be approximately 100% by comparing the integration area of the oxymethyl
peak at 4.56–5.02 ppm and the backbone peaks at 0.98–2.38 ppm. Similar integrations and
calculations for PEOP# and PAOP were performed and were typically within ±10% of
the expected values. The 1H NMR spectra of the other polymers, including PAOPs and
PEOP#, are shown in Figures S1–S7. These polymers were soluble in medium-polarity
solvents with low boiling points, such as tetrahydrofuran and chloroform, and in aprotic
polar solvents, such as N,N′-dimethylformamide (DMF) and N,N′-dimethylacetamide
(DMAc). The solubility of polymer samples in various solvents was sufficient for PEOP#
and PAOP to be applied as thin film materials. Among the organic solvents, THF was
chosen as the coating solvent for thin film fabrication, owing to its low eco-toxicity and
good biodegradability [54]. In addition, these polymer thin films could be fabricated using
a low-temperature process based on a wet process, owing to good solubility in volatile
organic solvents. The energy dispersive spectroscopy (EDS) mapping images of the bare
glass and the polymer films on the glass substrates before and after heat treatment at 200 ◦C
for 10 min were observed at different positions, in order to determine coating failure and
thermal stability of the polymer films. For example, the coating uniformity of the PEOP
film on the glass substrate using THF was confirmed by the carbon mapping images in
Figure S8. The discernible difference in the number of carbon elements in the PEOP film
on the glass substrate before and after heat treatment could not be observed by the EDS
mapping images, as illustrated in Figure S9. Therefore, it could be interpreted that the
polymer film on the glass substrate has satisfactory uniformity and thermal stability.

The polymer thermal properties were studied using differential scanning calorimetry
(DSC) at a heating and cooling rate of 10 ◦C/min under a nitrogen atmosphere. All poly-
mers were amorphous; only one glass transition was observed in their DSC thermograms.
The glass transition temperatures were determined from the extrapolated intersection of
the asymptotes to the glassy and rubbery regions for the enthalpy [55,56], as illustrated
in Figure 3. As the molar content of 4-ethyloxyphenoxymethyl side group increased from
20 mol% to 100 mol%, the Tg value decreased from 100 ◦C for PEOP20 to 61.2 ◦C for
PEOP (Table 1). In addition, as the number of carbon atoms in the alkyl moiety of the
4-alkyloxypheoxymethyl side group increased from 2 to 6, Tg decreased from 61.2 ◦C for
PEOP to 37.7 ◦C for PHOP. The decrease of polystyrene derivative Tgs with increasing
bulkiness of the side groups was reported earlier and ascribed to the increase of free volume
in the polymer because polymers that have larger free volumes have lower Tgs [57–59].
However, as the number of carbon atoms of the side groups increased from 6 to 8, Tg in-
creased from 37.7 ◦C for PHOP to 38.4 ◦C for POOP. The increase of polystyrene derivative
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Tgs was ascribed to the increase of the interactions of side groups, such as π–π and van der
Waals interactions [57,58,60,61].
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Table 1. Reaction conditions and results for the synthesis of the PEOP# and PAOP (PEOP,
PBOP, PHOP, and POOP).

Polymer
Designation

Feed Ratio of
4-n-Alkyloxyphenol

(mol%)

Degree of Substitution
(mol%) Tg (◦C)

PEOP20 20 20 100.0
PEOP40 40 40 81.7
PEOP60 60 60 78.3
PEOP80 80 80 74.0

PEOP 150 100 61.2
PBOP 150 100 47.3
PHOP 150 100 37.7
POOP 150 100 38.4
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It has been shown that the LC molecular orientations could be affected by the chem-
ical structure of the orientation layer because of the interaction at the interface between
LC molecules and the orientation layer [62–64]. We fabricated the LC cells made from
films of polystyrene derivatives grafted with precursors of LC molecules, such as 4-
ethyloxyphenoxymethyl, 4-n-butyloxyphenoxymethyl, 4-n-hexyloxyphenoxymethyl, and
4-n-octyloxyphenoxymethyl, using 5CB to investigate the orientation behavior of LC
molecules on the polymer films that have LC-like moieties. Figure 4a shows the photo-
graph of the LC cells fabricated with the PAOP films (PEOP, PBOP, PHOP, and POOP).
These LC cells showed uniform vertical LC orientation behavior in the whole area under
two crossed polarizers. The polarized optical microscopy (POM) images of the LC cells
were obtained in orthoscopic (top) and conoscopic modes (bottom) in Figure 4b to system-
atically investigate the orientation of the LC molecules. The vertical orientation of the LC
cells is shown in a Maltese cross pattern in the conoscopic POM images. In addition, the
LC cells assembled with PAOP films had orientation stability over several months. The
vertical orientation of the LC molecules might be explained by the similarity of molecular
structures between the orientation layer and the LC molecules.
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Figure 4. (a) Photograph, (b) orthoscopic (top) and conoscopic (bottom) polarized optical microscopy
(POM) images of the LC cells fabricated with PEOP, PBOP, PHOP, and POOP films.

In addition, we observed the orientation behavior of the LC molecules in PEOP# cells,
using 5CB to investigate the effect of the molar content of the 4-ethyloxyphenoxymethyl
side group in the polymer. Figure 5a shows the photographs of the LC cells made from
PEOP# and PEOP. The PEOP20 LC cells exhibited LC textures with birefringence, while
good uniformity of vertical LC orientation was observed for PEOP40, PEOP60, PEOP80,
and PEOP in the whole area. Additionally, LC orientation behaviors of the LC cells fabri-
cated with the PEOP# films were investigated by observing their POM images for close
examination in Figure 5b. When the molar fraction of the 4-ethyloxyphenoxymethyl con-
taining a monomeric unit in the PEOP# was less than 20 mol%, the LC cells prepared from
PEOP20 film showed random planar LC orientation with birefringence in the conoscopic
POM image. In contrast, PEOP40, PEOP60, PEOP80, and PEOP provided stable vertically
oriented LC layers. The discernible difference in LC orientation on PEOP40, PEOP60,
PEOP80, and PEOP films, according to the molar fraction of the 4-ethyloxyphenoxymethyl
in the side groups, could not be observed using the Maltese cross pattern in the conoscopic
POM images. The vertical alignment of the LC cells made of polymer films with short and
small molar contents of side groups and, long and high molar content of side groups was
observed. We believe that these results show that the similarity of the molecular structure
between the LC molecules and the alignment layer helps orient the LC molecules vertically
to the polymeric surface.
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Figure 5. (a) Photograph, (b) orthoscopic (top) and conoscopic (bottom) polarized optical microscopy
(POM) images of the LC cells fabricated with PEOP# (PEOP20, PEOP40, PEOP60, PEOP80, and PEOP).

We investigated the LC orientation behaviors of PEOP# and PAOP films using surface
characterization techniques, such as surface energy measurement, based on the static
contact angles of water and methylene iodide, and they are shown in Figure 6 and Table 2,
respectively. The surface energies were calculated using the Owens–Wendt equation. The
total surface energies of the respective polymer films were calculated from the summation
of polar and dispersion components. It has been widely known that the orientation of
LC molecules on the orientation layer could be explained by the total surface energy of
the orientation layer. For example, the LC molecules have a tendency to be oriented
vertically onto the orientation film in order to maximize their intermolecular interaction
when the total surface energy of the orientation film is relatively low [65–67]. The vertical
LC orientation of PEOP40, PEOP60, PEOP80, PEOP, PBOP, PHOP, and POOP was observed.
The total surface energies of these polymers are 43.2, 43.2, 42.9, 42.4, 39.6, 32.7, and
21.0 mJ/m2, respectively. However, PEOP20 (46.7 mJ/m2) did not show vertical LC
orientation behavior. Therefore, the vertical LC orientation behavior correlates well with
the total surface energy of the polymer, having less than approximately 46.7 mJ/m2 (the
critical surface energy of the polymer films to induce vertical LC orientation) [68,69].

The reliability of the LC cells fabricated with polymer films was substantiated via the
evaluation of the LC aligning stability under harsh conditions, such as high temperatures
and ultraviolet (UV) irradiation. Figure 7a shows the thermal stabilities of the LC cells
fabricated with PEOP film, estimated using the POM images after heating the LC cells
for 10 min at temperatures of 100, 150, and 200 ◦C, respectively. The POM images of
the LC cells fabricated with polymer film indicate that the vertical LC alignment was
maintained for 10 min at 150 ◦C. Therefore, the processing temperature of this polymer for
LC cell applications must be below 150 ◦C. In addition, the UV stabilities of the LC cells
fabricated with PEOP film were estimated from conoscopic POM images. The conoscopic
POM images of the LC cells were captured after UV irradiation at 5, 10, and 20 J/cm2,
respectively. As shown in Figure 7b, discernible differences in the vertical LC orientation
on PEOP film were not observed in the conoscopic POM images, indicating that the vertical
LC alignment of the LC cells was maintained even at high UV irradiations.
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Figure 6. Contact angle of water and methylene iodide on polymer films fabricated with (a) PEOP# and (b) PAOP, (c) surface
energy and LC orientation behaviors. Upper and lower parts around the broken line indicates random planar and vertical
LC orientation behaviors, respectively.

Table 2. Surface energy and LC orientation properties of the polymers.

Polymer
Designation

Contact Angle (◦) a Surface Energy (mJ/m2) b
Vertical LC Aligning

AbilityWater Methylene Iodide Dispersion Polar Total

PEOP20 90 23 46.1 0.6 46.7 No
PEOP40 82 31 40.0 3.2 43.2 Yes
PEOP60 82 31 40.0 3.2 43.2 Yes
PEOP80 82 32 39.3 3.6 42.9 Yes
PEOP 83 33 39.4 3.0 42.4 Yes
PBOP 90 39 38.2 1.4 39.6 Yes
PHOP 92 52 30.7 2.0 32.7 Yes
POOP 92 77 15.1 5.9 21.0 Yes

a Measured from static contact angle. b Calculated from the Owens–Wendt equation.
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Figure 7. Orthoscopic (top) and conoscopic (bottom) polarized optical microscopy (POM) images of the LC cells made using
PEOP films, (a) after thermal treatment at 100, 150, and 200 ◦C for 10 min and (b) UV treatment at 5, 10, and 20 J/cm2, respectively.

4. Conclusions

A series of 4-ethyloxyphenoxymethyl-substituted polystyrenes (PEOP# and PEOP),
PBOP, PHOP, and POOP-substituted polystyrenes were synthesized to evaluate the LC orien-
tation behaviors of their polymer films. The vertical LC orientation behavior was observed
for the LC cells from polymers that have a higher molar content of 4-ethyloxyphenoxymethyl
side groups. For example, LC cells with greater than 40 mol% of 4-ethyloxyphenoxymethyl
(PEOP40, PEOP60, PEOP80, and PEOP) showed vertical LC orientation, while LC cells
fabricated with PEOP20 films, having less than a 20 mol% of the 4-ethyloxyphenoxymethyl
group, exhibited a random planar LC orientation. The vertical orientation of LC molecules
in LC cells fabricated with polymer films was observed, despite the short side chain
length (PEOP) and low substitution ratio (about 40 mol%). Moreover, LC precursor
structures in the polymer side chains helped orient vertical LC orientations through π–π
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and van der Waals interactions between polymer chains and LC molecules. The verti-
cal LC orientation behavior correlated well with polymer films that have total surface
energies less than approximately 46.70 mJ/m2, owing to the unique structure of the 4-n-
alkyloxyphenoxymethyl side chain. Therefore, 4-n-alkyloxyphenoxymethyl-substituted
polystyrenes are a potential candidate for LC orientation layers, with next-generation
applications with low-temperature wet processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-436
0/13/5/736/s1, Figures S1–S7: 1H nuclear magnetic resonance (NMR) spectra of PBOP, PHOP, POOP,
PEOP20, PEOP40, PEOP60, and PEOP80, Figures S8 and S9: The energy dispersive spectroscopy
(EDS) mapping images of the bare glass and the polymer films on the glass substrates before and
after heat treatment at 200 ◦C for 10 min.
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