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SUMMARY

Structure-property relationships are extremely valuable when predicting the
properties of polymers. This protocol demonstrates a step-by-step approach,
based on multiple machine learning (ML) architectures, which is capable of pro-
cessing copolymer types such as alternating, random, block, and gradient copol-
ymers. We detail steps for necessary software installation and construction of
datasets. We further describe training and optimization steps for four neural
network models and subsequent model visualization and comparison using
training and test values.
For complete details on the use and execution of this protocol, please refer to
Tao et al. (2022).1

BEFORE YOU BEGIN

This section includes the introduction of the fundamentals of machine learning model involved, the

minimal hardware requirements, and the installation procedures.

Regarding the machine learning model inputs, first the simplified molecular-input line-entry system

(SMILES) is used to represent each monomer of each copolymer. Then, a feature vector is obtained

for the repeat unit of each polymer using the Morgan fingerprint with radius 3.2 The number of oc-

currences of each substructure found in the monomer is labeled with a real number in the feature

vector.3,4 This feature vector represents the composition information of copolymers. Stacking the

feature vectors of the different monomers in a specific order represents the sequence distribution

of a copolymer. The feature vector or the resultant feature matrix serves as the numerical input

that is readable by ML models.

Based on different datasets, the target properties of copolymers investigated in this study included

optoelectronic properties,5 19F nuclear magnetic resonance (NMR) signal-to-noise ratio (SNR),6 and

glass transition temperature Tg.
7,8 The protocol here demonstrates the application of the ML model

for 19F NMR SNR predictions. The prediction of other properties can be processed in a similar way.

While there is no limitation of the properties that can be processed by the machine learning models,

the performance can be highly problem-dependent. In general it is recommended to check a target

property in two aspects: a) if the targeted property relates to the polymer’s monomer-level
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fingerprints that are used in this study; and b) if there is enough data available to develop the model.

The fidelity of the proposed model towards a new property will require a thorough investigation of

comparing different models via validation/verification on unseen test data. When the new property

is somewhat similar to these cases, these machine learning models could still be used through a

transfer learning strategy. In addition, the size of the dataset needed for reliable machine learning

is also problem-dependent. Some properties may require a large dataset while others may not.

In terms of the machine learning algorithm, four ML models are applied to the copolymer dataset to

correlate the molecular numerical input to the property output, including a feed-forward neural

network (FFNN) model, a convolutional neural network (CNN) model, a recurrent neural network

(RNN) model, and a combined FFNN/RNN (Fusion) model. For FFNN, the feature vector of a copol-

ymer FAB is calculated as the molar-weighted summation of each monomer’s feature vector: FAB =

FAmA + FBmB: FA and FB are feature vectors for monomers A and B, respectively. mA and mB are

molar-weighted ratios of monomers A and B, respectively. This representation considers the copol-

ymer’s composition information, but ignores the information of copolymers’ sequence distribution.

For the other three ML models, by stacking the feature vectors of two monomers into a feature ma-

trix, the sequence distribution of copolymers is considered explicitly.

Repository download and environment installation

Timing: <30 min

1. Use a computer hardware that supports the installation of anaconda python 3.7.

Note: The computer used in this protocol is a DELL Precision 3650 TowerWorkstation with the

following hardware: 11th Generation Intel Core i7-11700 (16 MB Cache, 8 Core, 2.5 GHz–4.9

GHz), 32 GB (2 3 16 GB) DDR4 UDIMM non-ECC Memory, and Nvidia RTX A4000 (16 GB, 4

DP), 256 GB PCIe NVMe Class 40 M.2 SSD. This specification is recommended but not

required. GPU is not necessary but recommended. The download and installations times

may vary based on specific computing resources.

2. Clone the GitHub repository which includes the training scripts and datasets.

3. Install Anaconda3 and the necessary packages.

a. Find anaconda installation instructions here.

b. Activate anaconda, navigate to the directory of the repository and create an environment with

the required packages using:

c. Check the new environment using:

d. Activate the environment using:

e. Check whether all packages in requirements.txt are installed.

> conda create –name copolymer –file requirements.txt –channel conda-forge

> conda env list

> conda activate copolymer

> conda list
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If not, please use the following command to install the missing package.

f. Add conda environment into Jupyter notebook.

g. Start Jupyter Notebook using:

h. Set the kernel to use the created environment to run the Jupiter Notebook file.

CRITICAL: RDKit is only supported with python versions <3.8.

KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

All original code can be found at https://github.com/figotj/Copolymer. There are four .py files to be

executed to build and train the ML models. To showcase the workflow of the model, a Jupyter Note-

book file demonstrating the main steps of the model building can be found at https://github.com/

figotj/Copolymer/blob/main/Protocol_Copolymer_19F%20MRI.ipynb.

Import dependencies

Timing: <1 min

1. Import the necessary python packages as well as setting TensorFlow to use available GPU hard-

ware.

Note: The dependencies contained within these cells are included in the requirements.txt file

contained in the repository and are necessary to train the following models.

> conda install package-name or > pip install package-name

> python –m ipykernel install –user –name (environment name) –display-name (environment name)

> jupyter notebook

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Dataset 2 GitHub https://github.com/figotj/Copolymer

Software and algorithms

Anaconda 3 Anaconda Inc. https://www.anaconda.com/products/distribution

Python version 3.7 Python Software Foundation https://www.python.org

Tensorflow 2.3.0 Open-source software https://tensorflow.org

RDKit Open-source software https://rdkit.org

Model Codes GitHub https://github.com/figotj/Copolymer

>import pandas as pd

>import numpy as np

>import pickle

>from rdkit import Chem
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Construct datasets

Timing: <1 min

2. Load, visualize, and pre-process the dataset from the original publication.

Note: The dataset contains the Nuclear Magnetic Resonance Signal-to-Noise Ratio (NMR

SNR) which will serve as the target property for training and predictions.

>from rdkit.Chem import AllChem

>from rdkit.Chem import Descriptors

>from rdkit.Chem import rdMolDescriptors

>from rdkit.Chem.Draw import IPythonConsole

>from rdkit.Chem import Draw

>from rdkit.Chem.Draw import rdMolDraw2D

>from keras.layers import Input, Dense

>from keras.models import Model

>from keras.utils import plot_model

>from keras.layers.merge import Concatenate

>from tensorflow.keras.models import Sequential, save_model,

> load_model

>from tensorflow.keras.layers import Dense, Flatten, LSTM,

> Embedding, Bidirectional, TimeDistributed, Reshape

>from tensorflow.keras.optimizers import Adam

>from tensorflow import keras

>from tensorflow.keras.layers import Conv2D, MaxPooling2D,

> Conv1D, MaxPooling1D, Dropout

>import tensorflow as tf

>from sklearn.model_selection import train_test_split

>from sklearn.metrics import r2_score, mean_squared_error,

> mean_absolute_error

>import seaborn as sns

>from sklearn.model_selection import train_test_split

>import matplotlib.pyplot as plt

>import random

>import time

> DF_MRI = pd.read_excel(open(’./datasets/Dataset 2.xlsx’, ’rb’), sheet_name=’Data orga-

nized fluoro-monomer’)
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3. Construct a table containing the SMILES and molar ratio of every monomer in each copolymer.

Note: Figure 1 shows the summarized table for the copolymer dataset of 271 copolymer data

points. The chemical structure of each monomer is shown in Figure 2.

Train feed-forward neural network (FFNN)

Timing: <1 min

4. Prepare the input for the training of the FFNN model.

a. Calculate the feature vector of a copolymer FAB as the molar-weighted summation of each

monomer’s feature vector: FAB = FAmA + FBmB:

Note: There are 271 copolymers. The feature vector for one monomer has a length of 80, and

a molar-weighted summation of two feature vectors also has a length of 80. Therefore, the size

of the input matrix is 271 3 80, as shown in Figure 3.

5. Build FFNNmodel using the TensorFlow package and train the model on the copolymer dataset.

a. Employ Keras RandomSearch to optimize hyperparameters such as the number of layers, the

number of neurons in each layer, and the learning rate.

b. Add 2 hidden layers with 24 neurons in the first layer and 64 neurons in the second layer. Use

the ‘ReLU’ activation function for all neurons. The model architecture is illustrated in Figure 4.

c. Train the model for 100 epochs with batch sizes of 128.

Figure 1. Copolymer datasets containing the SMILES and molar ration of every monomer in each copolymer
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d. Output the training R2, MAE, and RMSE as well as the test R2, MAE, and RMSE after the

training is completed.

6. Visualize results using matplotlib.

Note: The results visualization compares the predicted values from the FFNN model against

the ground truth. A parity plot is the outcome of the model training/validation.

Train convolutional neural network (CNN)

Timing: <5 min

7. Prepare the input for the training of the CNN model.

a. Stack feature vectors into a feature matrix based on the sequential distribution of the copol-

ymer :

b. Reshape the size of the feature matrix to be suitable for the CNN architecture.

Note: There are 271 copolymers. The feature vector for one monomer has a length of 80, and

100 feature vectors are stacked to represent a copolymer. The number of eachmonomer is set

in the same proportion as their composition in the copolymer, e.g., stacking 55 FA and 45 FB if

the molar ration of the copolymer A:B is 55:45. Finally the size of the input matrix is

271 3 100 3 80, as shown in Figure 5.

8. Build CNN model using the TensorFlow package and train the model on the copolymer dataset.

a. Employ Keras RandomSearch to optimize hyperparameters such as the number of layers, the

number of neurons in each layer, and the learning rate.

Figure 2. The chemical structure of each monomer using a SMILES to molecules function

>model = keras.models.Sequential()

>model.add(Dense(units = 24, input_dim =

> x_train.shape[1],activation=’relu’))

>model.add(Dense(units = 64, activation=’relu’))

>model.add(Dense(units = 1))

>model.compile(optimizer=keras.optimizers.Adam(

> learning_rate=0.001), loss="mean_squared_error",

> metrics=["mean_squared_error"])

>Model = model.fit(x_train, y_train, epochs = 1000,

> batch_size = 128, validation_data = (x_test, y_test),

> verbose=2)
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b. Add 3 2D Convolutional layers with 8 filters in each layer. Use the ‘ReLU’ activation functions

and change kernel sizes. The model architecture is illustrated in Figure 6.

c. Apply a dropout rate of 0.3 during the training process which involves 200 epochs.

d. Output the training R2, MAE, and RMSE as well as the test R2, MAE, and RMSE after the

training is completed.

9. Visualize results using matplotlib.

Note: The results visualization compares the predicted values from the CNN model against

the ground truth. A parity plot is the outcome of the model training/validation.

Train recurrent neural network (RNN)

Timing: <2 min

10. Prepare the input for the training of the RNN model.

Figure 3. The numerical input of copolymers for the CNN model

>model = Sequential()

>model.add(Conv2D(8, (10, 10), activation=’relu’,

> input_shape=X_train.shape[1:]))

>model.add(Conv2D(8, (4, 4), activation=’relu’))

>model.add(Conv2D(8, (3, 3), activation=’relu’))

>model.add(MaxPooling2D(pool_size=(2, 2)))

>model.add(Dropout(0.3))

>model.add(Flatten())

>model.add(Dense(1))

>optimizer=keras.optimizers.Adam(lr=0.005)

>model.compile(optimizer=optimizer,

> loss=’mean_absolute_error’)

>Model=model.fit(x=X_train, y=y_train, epochs=200,

> batch_size=64, validation_split=0.2)
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Note: Similar to CNN model, the feature vector for one monomer has a length of 80, and 100

feature vectors are stacked to represent a copolymer. The size of the input matrix is

271 3 100 3 80, as shown in Figure 5.

11. Build RNNmodel using the TensorFlow package and train the model on the copolymer dataset.

a. Employ Keras RandomSearch to optimize hyperparameters such as the number of layers, the

number of neurons in each layer, and the learning rate.

b. Call the custom function getRNNmodel() to build units for the RNN model.

c. Add 2 bidirectional long short-term memory (LSTM) layers with 20 neurons per layer, 1 time-

distributed layer, and 1 reshape layer. The model architecture is illustrated in Figure 7.

d. Train the model for 120 epochs on batch sizes of 4.

e. Output the training R2, MAE, and RMSE as well as the test R2, MAE, and RMSE after the

training is completed.

Figure 4. FFNN model’s architecture

>def getRNNmodel(LSTMunits):

> RNNmodel = Sequential()

> RNNmodel.add(Bidirectional(LSTM(LSTMunits,

> return_sequences=True), input_shape=(100, 80)))

> RNNmodel.add(Bidirectional(LSTM(LSTMunits,

> return_sequences=True)))

> RNNmodel.add(TimeDistributed(Dense(int(LSTMunits/2),

> activation="relu")))

> RNNmodel.add(Reshape((int(LSTMunits/2*100),)))

> RNNmodel.add(Dense(1))

> return RNNmodel
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12. Visualize results using matplotlib.

Note: The results visualization compares the predicted values from the RNN model against

the ground truth. A parity plot is the outcome of the model training/validation.

Train fusion model

Timing: <2 min

>LSTMunits = 20

>RNNmodel = getRNNmodel(LSTMunits)

>RNNmodel.compile(loss=’mse’, optimizer=’adam’,

> metrics=[’mean_squared_error’])

>Model = RNNmodel.fit(X_train, y_train, validation_split=0.2,

> epochs=200, batch_size=64)

Figure 5. The numerical input of copolymers for the CNN model
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13. Prepare the numerical input for the training of the Fusion model.

a. Calculate the weighted sum of feature vectors to consider molecular composition in the

FFNN component.

b. Prepare a vector of 1/0 bit to represent the sequence distributions of copolymers in the RNN

component.

Note: If using ‘‘1’’ for monomer ‘‘A’’ and ‘‘0’’ for monomer ‘‘B’’, then stacking 100 bits of 1/0

can represent the sequence distribution of copolymers.

14. Build the fusion model by combining the FFNN architecture and RNN architecture.

a. Employ Keras RandomSearch to optimize hyperparameters such as the number of layers, the

number of neurons in each layer, and the learning rate.

Figure 6. CNN model’s architecture
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b. Add the Recurrent Neural Network (RNN) components of the Fusion model. Each unit has 2

bidirectional LSTM layers with 20 neurons each and 1 time-distributed layer.

c. Add the Feed Forward Neural Network (FFNN) component which contains 2 hidden layers

with 8 neurons each with the ‘ReLU’ activation function.

d. Combine the two components using a concatenate layer and a final layer of 8 neurons with

the ‘ReLU’ activation function. The model architecture is illustrated in Figure 8.

e. Train the model for 300 epochs on batch sizes of 32.

f. Output the training R2, MAE, and RMSE as well as the test R2, MAE, and RMSE after the

training is completed.

Figure 7. RNN model architecture

># define two sets of inputs

>inputA = Input(shape=(100,1))

>inputB = Input(shape=(80))

># the first branch operates on the first input

>RNNmodel = Sequential()

>RNNmodel.add(Bidirectional(LSTM(LSTMunits,

> return_sequences=True), input_shape=(100,1)))

>RNNmodel.add(Bidirectional(LSTM(LSTMunits,

> return_sequences=True)))

>RNNmodel.add(TimeDistributed(Dense(int(LSTMunits/2),

> activation="relu")))
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15. Visualize results using matplotlib.

Note: The results visualization compares the predicted values from the Fusion model against

the ground truth. A parity plot is the outcome of the model training/validation.

EXPECTED OUTCOMES

This protocol describes a step-by-step workflow to build four MLmodels to establish structure-prop-

erty relationships for copolymers. Both monomer composition and sequence distribution are neces-

sary information for ML models to learn the features of copolymers. Focusing on the different data-

sets, we build four ML model including FFNN, CNN, RNN, and Fusion model. The outcome of the

protocol is a reliable ML model suitable for copolymer informatics. Different models’ training loss

and validation loss versus the number of epochs are shown in Figure 9. It is illustrated that the

most difficult model to converge is the Fusion model considering the high peaks in its loss value

curves. Since the Fusion model is a combination of FFNN and RNN models, it has a more complex

architecture and contains more parameters to optimize during the gradient descent process. The

two peaks indicate the complexity of the loss function and the difficulty of the convergence. One

possible cause of the two peaks is there is a tradeoff between the convergence of its FFNN compo-

nent and RNN component. Once the gradient descent leads to a more local minimum of the FFNN

component, the loss of the RNN components may be increasing, and when it is corrected to a more

local minimum of the RNN component, the loss of the FFNN components may start soaring. It is ex-

pected that after some adjustments, a balanced minimum for both FFNN and RNN components are

obtained as the final global minimum.

>RNNmodel.add(Reshape((int(LSTMunits/2*100),)))

># the second branch opreates on the second input

>y = Dense(8, activation="relu")(inputB)

>y = Dense(8, activation="relu")(y)

>y = Model(inputs=inputB, outputs=y)

># combine the output of the two branches

>combined = Concatenate()([RNNmodel.output, y.output])

># apply a FC layer and then a regression prediction on the

># combined outputs

>z = Dense(8, activation="relu")(combined)

>z = Dense(1, activation="linear")(z)

># our model will accept the inputs of the two branches and

># then output a single value

>model = Model(inputs=[RNNmodel.input, y.input], outputs=z)

>model.compile(optimizer=keras.optimizers.Adam(lr=0.001),

> loss="mean_squared_error",

> metrics=["mean_squared_error"])

>Model = model.fit(x=[xtrain_A, xtrain_B], y=ytrain_B,

> validation_data=([xtest_A, xtest_B], ytest_B),

> epochs=300, batch_size=32, verbose=2)
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The parity plot comparing the ML prediction and experimental ground truth is demonstrated in

Figure 10. Given a copolymer whose monomer composition and monomer sequence patterns

(random, block, or gradient) are known, the ML model can provide reliable property predictions

efficiently.

LIMITATIONS

The model architectures demonstrated in this protocol have been designed and tested for the

polymer types and datasets referenced. Random, block, and gradient copolymers are investigated

and tested, but branched and graft copolymers are not considered because of their complex chain

architectures. As ML model performance is highly problem-dependent, further test is required in

terms of the applicability of the investigated four ML models for other properties. This protocol

demonstrates ML models for copolymers at monomer level by considering the monomer compo-

sition and monomer sequence patterns, but it doesn’t encode microscale or macroscale level fea-

tures of polymer such as average chain length, molecular weight, chain topology, crystallization,

etc. As the performance of copolymers is determined by their features at different levels, the

development of a multi-level ML model is preferred to better address the copolymer informatics

challenges.

Figure 8. Fusion model’s architecture
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TROUBLESHOOTING

Problem 1

Create environment using requirements.txt may output conflict or error because of different OS of

computers (step Import Dependencies).

Potential solution

Create an environment and install each package manually.

� Download and install Anaconda https://www.anaconda.com/

� Create a new python 3.7 environment:

� Pip install required packages (change package version may cause code errors):

Figure 9. Training loss and validation loss of the ML models versus the number of epochs

> conda create -n myenv python=3.7

>pip install RDkit

>pip install numpy==1.18.5

>pip install pandas==1.2.4

>pip install scipy=1.4.1

>pip install scikit-learn

>pip install matplotlib

>pip install –user keras==2.4.3

>pip install –user tensorflow==2.2.0

>pip install –user tensorflow-gpu==2.2.0
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Problem 2

If plots appear only as text while running in Visual Studio code (step Construct Datasets).

Potential solution

Selecting the ellipsis next to the text, change the renderer to ‘image/png’.

Problem 3

Looking for GPU but it shows no GPU error while calling the tensorflow GPU function (step Import

Dependencies).

Potential solution

GPU is recommended but not required. Ignore and using the default CPU setup for the model

training.

Problem 4

When processing the python dataframe, there may be warning message SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame (step Construct Datasets).

Figure 10. The parity plot of the four ML predicted SNR versus the experimental values

> physical_devices = tf.config.list_physical_devices(’GPU’)

> tf.config.list_physical_devices(’GPU’)
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Potential solution

It is a chained assignment warning and can be turned off using.

Problem 5

Load python pickle file error when python package version is not compatible. ValueError: unsup-

ported pickle protocol: 5 (step Construct Datasets).

Potential solution

Pip install pickle5 in the anaconda environment.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Dr. Ying Li (yli2562@wisc.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available data from publications and open website.

All original code has been deposited at https://github.com/figotj/Copolymer and archived at Zen-

odo (DOI) https://doi.org/10.5281/zenodo.7226849. They are publicly available as of the date of

publication.

Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon reasonable request.
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