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A B S T R A C T

Aging is a complex phenomenon and its impact is becoming more relevant due to the rising life expectancy and
because aging itself is the basis for the development of age-related diseases such as cancer, neurodegenerative
diseases and type 2 diabetes. Recent years of scientific research have brought up different theories that attempt
to explain the aging process. So far, there is no single theory that fully explains all facets of aging. The damage
accumulation theory is one of the most accepted theories due to the large body of evidence found over the years.
Damage accumulation is thought to be driven, among others, by oxidative stress. This condition results in an
excess attack of oxidants on biomolecules, which lead to damage accumulation over time and contribute to the
functional involution of cells, tissues and organisms. If oxidative stress persists, cellular senescence is a likely
outcome and an important hallmark of aging. Therefore, it becomes crucial to understand how senescent cells
function and how they contribute to the aging process. This review will cover cellular senescence features related
to the protein pool such as morphological and molecular hallmarks, how oxidative stress promotes protein
modifications, how senescent cells cope with them by proteostasis mechanisms, including antioxidant enzymes
and proteolytic systems. We will also highlight the nutritional status of senescent cells and aged organisms
(including human clinical studies) by exploring trace elements and micronutrients and on their importance to
develop strategies that might increase both, life and health span and postpone aging onset.

1. Introduction

In 1952 Peter Medawar published a paper entitled “An unsolved

problem in biology”, originally presented as a lecture at University
College of London, aging being the subject of his discussion.
Nowadays, some mechanisms behind this “unsolved problem” have been
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unraveled, but it is still far from being solved. Aging is within the focus of
research worldwide due to its increasing impact on the whole population.
As we are confronted with an ever aging population in most of modern
societies, the study of aging became a hot topic for scientific research and
the number of publications regarding aging has steadily increased over
the years (Fig. 1).

Recently, different hallmarks of aging have been identified and put
together, cellular senescence and loss in proteostasis being two among
several described [1]. But how can we explain aging from a cellular and
molecular perspective?

In this review we aim to provide a state of the art literature on aged/
senescent cells regarding how they arise, how they cope with oxidative
stress and how this is related to the loss of proteostasis. This is of
utmost importance to develop strategies that might extend not only life
span but in particular health span. The review covers three main
hallmarks of aging i) oxidative stress, ii) proteostasis, and iii) cellular
senescence.

We provide a brief description of oxidative stress and antioxidant
defense mechanisms and describe how the main proteostasis mechan-
isms related to protein turnover are affected in the course of aging. In
addition we focus on cellular senescence and provide insights to
nutritional issues such as trace elements and micronutrient status
and how they can play a role in both, senescence-promotion and on
senescence-avoidance features and how they influence proteostasis. We
close the review with some insights on new ideas and therapies that
might promote life and health span extension in the future.

It is not the intention of this review to extensively describe each
protein, process or consequence, but rather to give a comprehensive
overview of the different topics related to the field of oxidative stress,
proteostasis and senescence/aging. This educational review and the
accompanying illustrations are aimed to provide an introduction to the
field of aging focusing on the above mentions hallmarks.

2. Aging, senescence and cellular damage

2.1. Aging and senescence

Aging is defined as the time-dependent persistent change of
functionality and reproducibility, affecting all higher organisms.
Biologically, it is considered a time-associated cellular (and also
systemic) functional decline, related with an increased probability of
morbidity and mortality. Since most cellular functions are performed
by proteins, aging may be (in part) the consequence of a dysregulation/
malfunction of the cellular proteome (proteostasis). This has also
take into account that due to age-associated DNA damage not all
proteins might be replaced accordingly. So, aging is characterized by
the accumulation of cellular damage, in turn, leading to increased

susceptibility to diseases including cancer, type 2 diabetes and cardi-
ovascular disease and finally death. These diseases have their root on
the aging process itself, since aging is known to be single highest risk
factor for their development. Thus, it becomes crucial to understand
aging mechanisms. The process of aging involves different interdepen-
dent hallmarks on cellular, molecular and organ level. One major
contributor is the development of cellular senescence [1,2]. The
possible link between aging and senescence was first described by
Leonard Hayflick and Paul Moorhead in 1961 after observing a limited
proliferation capacity in cultured human primary fibroblasts [3]. This is
known as the Hayflick limit and originates from the inability of
telomeres to maintain their lengths due to the replication process
and a decline in the protection systems against stressors during aging.
Consequently, cells lose their proliferative capacity and enter a state of
irreversible cell cycle arrest, termed replicative senescence [4–6]. In
addition to shortened telomeres, various other triggers exist including
non-telomeric and non-genotoxic stress generated by various physico-
chemical signals, such as mitochondrial deterioration and oxidative
stress (further described in chapter Protein oxidation and aggregation
in aging), DNA-replication stress or activated oncogenes such as rat
sarcoma (Ras)- and rapidly accelerated fibrosarcoma (Raf)-proteins.
All of them lead to senescence or, if triggered by an excess of stressors
also summarized as premature cellular or damage-induced senescence
[6–10]. These triggers stimulate various signaling pathways, including
DNA damage response (DDR), transforming-growth-factor-β (TGFβ),
alternate reading frames (ARF) or mitogen-activated protein kinase
kinase 3 (MAP2K3), leading to an upregulation of cell cycle inhibitor
p53, its downstream target p21 and the tumor suppressor protein
p16INK4aINK4a, representing the cascade from pre- to acquired-
senescence [11–15].

When senescence is established, cells undergo widespread changes
and develop specific characteristics, serving as senescence markers.
However, no marker identified so far is entirely specific for cellular
senescence, but evaluating a series of these markers can help to define
the senescent state (Fig. 2). Phenotypically, senescent cells increase in
size and protein content [3,16,17], they develop enlarged nuclei and
lysosomes which possess elevated senescence-associated β-galactosi-
dase activity (SA-β-Gal). This marker is one of the most widely used for
the identification of senescence in cells and tissues [16–18]. Moreover,
based on the stable growth arrest, markers of proliferation like Ki-67
and 5-bromodeoxyuridine (BrdU) are other beneficial tools for the
detection of cellular senescence [14,19]. Additionally, the main reg-
ulators of the senescence program, p53/p21 and p16INK4aINK4a

proteins are upregulated and quantifiable components for the char-
acterization of the senescent state [12,15,20,21] and are, consequently,
more and more used as reliable senescence markers. Dependent on the
expression of p16INK4aINK4a, senescence-associated heterochromatic
foci (SAHF) are generated during the establishment of oncogene-
induced senescence [22]. Another important feature of senescence is
the formation of the so called senescence-associated secretory pheno-
type (SASP). SASP is characterized by an increased expression and
secretion of pro-inflammatory cytokines and chemokines (e.g. the
interleukins IL-6, IL-1 and IL-8), growth factors (IGF-binding pro-
teins, their regulators and transforming growth-factors), components
of extracellular matrix (matrix metalloproteinases, serine proteases),
fibronectin and reactive oxygen/nitrogen species (ROS/RNS), leading
to the activation of the immune response and elimination of senescent
cells [23–31]. Due to intercellular communication of senescent cells,
factors of the secretory phenotype may also induce the generation of
senescence in functional normal neighboring cells in a paracrine
manner. Altogether, the SASP can act both as a tumor suppressor or
a promoter mechanism and alter cellular and tissue homeostasis
[23,32–34].

Besides this, other imbalanced factors, in particular deficiencies in
proteostasis, such as the accumulation of oxidized proteins and
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Fig. 1. Publications per year related to “aging”. The search term “aging” was
entered on PubMed on October 7th, 2016. Results were plotted as publications per year.
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declined protein turnover are involved in the induction and/or the
development of senescence (Figs. 3, 4) and will be discussed in the
following chapters.

3. Oxidative stress in aging and senescence

The consequences of oxidative stress have raised several theories
proposed over the years to explain the aging phenomena, but there is not
a prevailing one yet. The most widely accepted one is the The Free
Radical Theory of Aging proposed by Denham Harman in 1956 [35],
stating that “aging may be related to the deleterious side attacks of free
radicals (which are generally produced during metabolic processes) on
cell constituents”. Over the years, different updates, such as the
mitochondrial free radical theory of aging proposed in the early 80s by
Miquel and later updated in a paper entitled “An update on the oxygen
stress-mitochondrial mutation theory of aging: genetic and evolutionary
implications” [36], were proposed and the concept of free radicals as the
cause of aging evolved. Helmut Sies, one of the founders of the oxidative
stress definition, initially suggested oxidative stress as a likely cause of the
age-related damage. “A disturbance in the pro-oxidant-antioxidant
balance in favor of the former”, this was how oxidative stress was initially
viewed, and known to promote damage in different cellular constituents
[37]. However, it should be kept in mind, that recent insights on specific
redox regulatory effects of oxidants support the idea that, when balanced,
ROS play an important role in signal transduction cascades enhancing or
suppressing cellular fates such as proliferation or differentiation [37,38].

Recently, Sies reviewed and altered his own definition to “A disturbance
in the prooxidant-antioxidant balance in favor of the former leading to a
disruption in redox signaling” [37]. When an oxidative state is reached
and if prolonged, senescence might arise, thus, ROS have been described
as important mediators for cellular senescence progression [39]. In fact,
when exogenous hydrogen peroxide (H2O2), a major intracellular ROS,
was experimentally added, a strong senescent-phenotype established
across different cell types, suggesting that H2O2 can act as a potent
inducer of cellular senescence (Fig. 3, experimental set-up 3) [8].
Whereas senescence can be achieved by exogenously adding H2O2,
endogenously formed ROS, such as superoxide (O2

•−) and the highly
reactive hydroxyl radical (•OH), can also contribute to the maintenance
of the common senescence feature of irreversible growth-arrest. Under
pathological levels, ROS have been implicated in an induction of
senescence-like phenotypes as also found in oncogene-induced senes-
cence and p16INK4aINK4A-induced senescence [39–42].

ROS are among others mainly produced by mitochondria during
the normal metabolism. Thus, mitochondria are considered the most
prominent source of cellular ROS. Dysfunctional mitochondria leak
electrons and generate O2

•− as by-products, especially, on the complex
I (NADH dehydrogenase) and complex III (Cytochrome bc1 complex)
[43]. High ROS levels produced by dysfunctional mitochondria have
been suggested as the main cause of aging [44], resulting from error
accumulation impinged on biomolecules. Extensive description on the
characteristics and different sources of free radicals is not within the
scope of this review but can be found elsewhere [45].

Fig. 2. Features of senescent cells: Several markers were identified to characterize the senescent state in relation to morphology and proteostasis. During the development of
senescence, cells show morphological changes by extension of their size and protein content or nuclei enlargement. Also, their lysosomes size and number increase resulting in an
elevated activity of SA-β-Gal, the most widely used marker for senescence. The cells enter a proliferative arrest state, detected by cell cycle inhibitor levels such as p53/p21 and tumor
suppressor p16INK4a, the latter is correlated with the formation of the SAHF. Other factors secreted during senescence are cytokines and chemokines, growth factors, proteases,
fibronectin as well as ROS and RNS, altogether these are summarized as the SASP. Additionally, proteostasis changes during senescence shown by an increase in modified proteins,
accumulation of protein aggregates and reduced functionality of the proteasomal and autophagy systems.
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The phenomenon of oxidative stress is associated with aging and
senescence. In fact, this is supported by two lines of research. One is
directed towards the analysis of increased levels of oxidative stress
products in senescent cells, aged tissues or organisms. For example,
Stadtman and Levine gathered data from several reports, showing that
carbonylated proteins, a marker for severe and chronic oxidative stress,
were found to be dramatically elevated in the last third of life analyzing
different samples such as: human dermal fibroblasts in tissue culture,
human lens, human brain obtained at autopsy, rat liver and whole flies
[46]. The other line of research is based on challenging cells with
oxidants in order to generate oxidative stress. In the model, named
Stress-Induced Premature Senescence (SIPS) (Fig. 5), cells are chal-
lenged with sub-toxic concentrations of an oxidant, such as H2O2, or
oxidant generators, such as paraquat [47], UV [48], iron or copper
[49]. Thus, a chronic stress response is induced that culminates in a
senescence-like phenotype, exhibiting common features of senescence
such as p21 and p16INK4a overexpression, increased SA-β-Gal activity
and increase in cellular volume and rounding. Moreover, submitting
cells to hyperoxia, known to induce chronic oxidative stress [50], led to
a similar gene expression pattern when compared to aged fibroblasts
[51]. Another ways exist to reproduce single cellular aging hallmarks,
e.g. as protein accumulation by exposing cells to artificial lipofuscin
(described in chapter Protein modifications in aging) [52].

So, several strategies were developed to investigate senescence cells
(Fig. 5). Each of the models is useful according to the underlying
scientific question.

Therefore, it seems to be established that oxidative stress is one of
the key events in senescence progression and development. However,
during evolution cells were equipped with antioxidant defense mechan-
isms that can prevent or recover cells from an oxidative to a reductive
state.

3.1. Antioxidants

In the prevention of oxidative stress the organism and the cells are
equipped with an antioxidative defense network. This network contains
both endogenous and exogenous defense molecules (see Fig. 6). The
endogenous defense consists of enzymatic antioxidants, such as thiol
peroxidases, superoxide dismutases, catalase, and non-enzymatic anti-
oxidants, such as glutathione. The exogenous antioxidant system
comprises micronutrients, e.g. lipid- and water-soluble vitamins, as
well as the trace elements zinc and selenium (involved in enzymatic
functioning). Both systems act hand-in-hand and rely on each other to
be effective.

In the following, we will describe partially those particular classes of
antioxidant enzymes named thiol peroxidases and methionine sulf-
oxide reductase (Msr), since these are involved in direct protection of
the protein pool. The thiol peroxidases have recently gained special
attention in the aging process. They essentially comprise two families
of proteins: the glutathione peroxidase (GPx)-type enzymes and the
peroxiredoxins (Prxs) [53]. Prxs are thiol-dependent peroxidases,
present in all organisms. They all contain a conserved cysteine (Cys)
residue that undergoes a cycle of peroxide-dependent oxidation and
thiol-dependent reduction during catalysis. Mammalian cells express
six isoforms of Prx (Prx I to VI), which are classified into three
subgroups (2-Cys, atypical 2-Cys, and 1-Cys) based on the number and
position of Cys residues that participate in the catalysis [54]. During
the catalytic cycle, Prxs can be overoxidized to cysteine sulfinic acid,
and be rescued by the specific enzymatic reduction by sulfiredoxin (Srx)
in an ATP-dependent manner [55]. Increasing evidence suggest that
Prx hyperoxidation is a potential mechanism to explain the age-
related oxidative stress that disrupts normal physiological signaling.
Mitochondrial-derived Prx III plays a major role in the control of the
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Fig. 3. Cellular and molecular features of young and aged cells. Comparing to young, aged cells often exhibit marked features. For example, it is known that their nucleus is
often enlarged. Their proteolysis mechanisms suffer a major reduction in functionality, found by evaluating the activity of both proteasomal and lysosomal mechanisms. The
consequence is the accumulation of oxidized proteins and the formation of insoluble material such as lipofuscin, a hallmark of aged cells as well and altogether contributing to a loss in
cellular proteostasis. Furthermore, recent years have brought us evidence of a secretory phenotype acquired by senescent cells (SASP), which is characterized by the release of several
inflammatory cytokines into the surrounding cells and tissues, resulting in low-grade chronic inflammation over time causing tissue and organism dysfunction.
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mitochondrial level of reactive oxygen species. In a mouse model, the
knockout of Prx III causes an accelerated decline of physical strength at
the age of 10 months [56] and overoxidized (inactive) Prx III was found
to be accumulated in aged rat liver mitochondria [57]. Caloric
restriction, an intervention that prolongs life span in different organ-
isms, reduces age-related mortality in rhesus monkeys [58], stimulates
Prx activity through augmented Srx1-repair and slows replicating aging
[59]. Moreover, decreased levels of Prx I accelerate aging by promoting
severe haemolytic anaemia and several malignant cancers in rodents
[60]. In another study, comparing chondrocytes isolated from young
adults to chondrocytes isolated from older adults, the old ones
exhibited higher levels of Prx I-III hyperoxidation, basally and under
conditions of oxidative stress.

Tsa1, the homolog of mammalian Prx I in yeast, is able to multi-
merize upon hyperoxidation, gaining molecular chaperone activity and
inhibiting the aggregation of insulin in vitro [61]. Given its abundance
and high reactivity towards peroxides, Prxs are preferential targets in
H2O2-induced signaling [62]. In this context, it has been recently found
that this enzyme is able to recruit the Hsp70 chaperones and the
Hsp104 disaggregase to misfolded and aggregated proteins during
aging, which reveals a new concept on peroxide signaling in proteos-
tasis and life span control [63].

Glutathione peroxidases are selenium or sulfur-dependent perox-
idases that reduce H2O2 to water, using glutathione (GSH, reduced
form) as electron donors [53]. The fact that GPxs compete with Prxs for
peroxides [53], their abundance and localization may at least indirectly
impact in the aging process. Mammals have eight GPxs, including five
selenoproteins. GPx1 is the first identified and one of the best studied
selenoproteins. The naked mole rat, a rodent model of delayed aging

because of its unusually long life span ( > 28 years), is characterized by
the reduced utilization of selenium due to a specific defect in GPx1
expression. The reducing substrate for these enzymes, GSH, is the most
abundant although slow reacting towards peroxides [62]) intracellular
antioxidant and plays a role in signal transduction, gene expression and
apoptosis [64,65]. GSH in whole blood of healthy subjects (18–84
years) declined while GSSG (oxidized glutathione) increased with age
[65], leading to a decreased antioxidative capacity [66]. In mice,
increased hepatic GSH concentrations resulted in a protection against
apoptosis [67].

The other antioxidant enzymes protecting the protein pool directly
are the methionine sulfoxide reductases (Msr). Cysteine and methionine
oxidation into cysteinyl derivatives and methionine sulfoxide, respec-
tively, are known to be involved in several cellular processes [68–71].
This view is supported by the high number of enzymes that can reverse
the oxidation state back to its reduced form, to enable continuous
pathway activation/deactivation according to required processes.
Cysteinyl derivatives can be reverted back to cysteine by assistance of
enzymes such as glutaredoxin or thioredoxin [72] and methionine
sulfoxide to methionine by the methionine sulfoxide reductases [73]. In
fact, Picot and colleagues have shown that the gene expression of the two
isoforms MsrA and MsrB2, is decreased during replicative senescence of
WI-38 fibroblasts, and this decline was related to modifications in its
catalytic activity and accumulation in oxidized proteins [74].

However, if the system is not sufficient, oxidative stress and the
accumulation of oxidized proteins can occur. The following chapter
will be devoted to protein oxidation and how can this lead to the
accumulation of insoluble non-degradable protein aggregates commonly
seen in aging.

Fig. 4. Proteostasis changes in a senescent cell. The scheme shows the overall changes of the cellular systems maintaining protein homeostasis (proteostasis) and thus, cellular
functionality during aging. The main proteolytic systems, responsible for recognition and degradation of un/misfolded or oxidatively damaged proteins are the proteasomal system,
involving the ATP-dependent 26S proteasome as well as the ATP-independent 20S proteasome, and autophagy (including both autophagy (MA) as well as the chaperone mediated one
(CMA)). Damaged proteins can be directly recognized as substrates by the 20S proteasome, resulting in proteolytic removal from the cell. Furthermore, they can be recognized by
chaperones or heat shock proteins that keep their substrates in a soluble state, preventing the formation of aggregates. Another fate might be the formation of aggregates, driven by
hydrophobic residues exposure. Such aggregates can be incorporated into an autophagosome and fusing with lysosomes, resulting in proteolytic degradation by lysosomal proteases, or
they can be removed from the cell via excretion as exosome. Modified from [115] and according to [122].
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3.2. Protein modifications in aging

The harmful effects of imbalanced ROS levels on proteins during
oxidative stress are a main research topic for the scientific community.
But why, amongst different biomolecules prone to damage such as
lipids and DNA, should proteins be considered so relevant? Practically,
every cellular process requires the involvement of a protein. Therefore,
studies on how oxidative stress can modulate proteins, either reversibly
or irreversibly became an attractive and important field of study. How
does oxidative stress modulate protein function? Remarkably, depend-
ing on several factors such as the type of ROS, their concentration and
half-life, and also the affected amino acid, different outcomes can occur
[75].

As discussed before, ROS play a crucial role in redox signaling [37],
and it might be dependent on reversible redox switches by amino acids
oxidation/reduction cycles.

In contrast to reversible methionine and cysteine oxidation as
discussed above, there is no enzymatic or non-enzymatic way to revert
types of protein oxidation such as protein carbonylation. In fact, due to
its irreversibility, it has been used as a marker for severe chronic
oxidative damage [76–78] as those found in many disorders that
impair cellular function and survival [46,79] and in experimental
conditions upon cells challenged with oxidants such as H2O2 [80,81].
Thus it is not surprising to find a positive correlation of carbonylated
proteins with oxidative stress, age, and severity of disease [46,82].
Protein carbonyls can be formed by the direct oxidant attack mediated
by a metal-catalyzed oxidation (Fenton reaction) on proline, threonine,
lysine and arginine. The most abundant products from this reaction on
proteins are glutamic semialdehyde for proline and aminoadipic
semialdehyde for lysine [83]. Increased carbonylation leads to protein
unfolding followed by exposure of hydrophobic residues and decreas-
ing solubility, resulting in an increased risk for aggregation [76,83,84].

Secondary reactions generating carbonyls on proteins can also occur.
For example, protein carbonylation can result from modified aldehydes
(from lipid peroxidation) such as 4-hydroxynonenal (4-HNE) [85].
This is thought to play a major role in metabolic diseases displaying
increased levels of oxidative stress [86–88]. The evaluation of protein
carbonyl content in several cells, tissues and organisms has shown that
in the last third of life, these oxidative modified proteins increase,
dramatically [82]. In fact, muscle adult stem cells accumulate carbo-
nylated proteins in several, crucial cellular pathways such as carbohy-
drate metabolism, protein maintenance, cellular motility and protein
homeostasis [89]. Moreover, Baraibar and Friguet have shown that
carbonylation of enzymes affects intermediate metabolism in several
tissues [90]. There is a large body of evidence supporting the
accumulation of oxidized proteins in senescent cells and aged tissues.
The risk for their accumulation lies in the formation of insoluble
protein aggregates. Therefore, carbonylated proteins and other irre-
versibly modified proteins must be degraded in order to prevent them
from forming aggregates.

Protein aggregates result from the accumulation of abnormal or
oxidized proteins. Their accumulation can result from exceeding
formation compared to degradation rates, e.g. by inhibition of one of
the major proteolytic turnover mechanism, the proteasomal system.
Over the years, it has been distinctly shown that the proteasome deals
efficiently with oxidized/abnormal/misfolded protein turnover [91–
93]. However, it may be the case that the formation of damaged
proteins overwhelms their degradation and contributes to their accu-
mulation. In fact, we have shown that upon oxidative stress, part of
carbonylated actin is degraded by the proteasome, but depending on
the intensity or duration of stimulus, carbonylated actin can form
protein aggregates that inhibit the proteasome [80,94]. Oxidative
modifications in proteins such as protein carbonyls, increase the
surface hydrophobicity of proteins, dramatically [95]. Carbonylated

Fig. 5. Cellular aging models. Primary cells can be isolated from young and old donors. (1.) Cells isolated from an old donor are called in vivo aged cells and can be investigated directly to
study aging. In case of using cells from a young donor there a several options to study aging: (2.) After a multitude of subcultures, the young cells reach their replicative limit and stop dividing.
These cells are called senescent or in vitro aged cells and are the most frequently used cellular aging model. (3.) Treatment of young cells with different oxidants or stressors for several days
leads to the so-called stress-induced premature senescence (SIPS). After a short recovery phase these SIPS cells can be used for aging research. (4.) Finally young cells can be incubated with
aggregates such as AGEs or lipofuscin. These cells mirror several important features of aged cells. Therefore, these aggregate-fed cells are an additional useful aging model.
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proteins are more prone to unfold and expose their hydrophobic core,
usually concealed inside a folded native protein. At this point, oxidized
proteins can interact amongst each other, contributing to an increase in
insoluble protein aggregates [76,95–97]. The formation of a Schiff-
base, resulting from the reaction of a carbonyl group of a carbonylated
protein with an amino group of another protein, can further contribute
to aggregate formation. This demonstrates an interesting feature of
aggregate enlargement without the involvement of any further oxida-
tion [94]. Taken together, these events contribute to the aggregation-
proneness of carbonylated proteins.

Protein aggregates and their relation to aging have been known for
more than a century and were first described by Hannover in 1842,
when visualizing the cytosol of old neurons. These aging-related
protein aggregates are named “lipofuscin” from the Greek “lipo”
meaning fat (with other words hydrophobic) and “fuscus” dark
[98,99]. Other names used include “age fluorophore” or “age pigment”
[100,101]. This insoluble material is composed by highly oxidized
crossed-linked material, such as proteins, lipids and sugars. Moreover,
transition metal ions can bind to lipofuscin and further mediate ROS
production by Fenton reaction. This can extend the damage caused by
lipofuscin as it becomes an intracellular ROS source itself. However,
cells normally engulf this material by macroautophagy to prevent, at
least partially, aggregate-toxicity.

Moreover, the idea that protein aggregates are functionally inert is
long gone. Recent studies have shown that protein aggregates have the
ability to change gene expression dynamics, resulting in a regulation at
transcriptional level [102,103]. Interestingly, protein aggregates have
been described to be highly involved in aging progression across
different species, emphasizing their role as a hallmark of aging [104].
This has been shown in bacteria [105,106], yeast [107], C. elegans

[108] and mammalian cells [109].
The presence of lipofuscin has been detected in several tissues

including heart, liver, kidney and skin. In fact, different tissues
comprising heart, liver, cerebellum, skeletal muscle and testis from
old rats were found to display more lipofuscin content comparing to
young rats [110,111], lipofuscin can also be seen in aged and SIPS
fibroblasts models comparing to young cells (Fig. 7). A fact that is more
pronounced in post-mitotic tissue such as in neurons or muscle cells,
since they no longer divide and are able to dilute the accumulated
damage. Remarkably, hearing loss induced by cochlear degeneration in
the aging mouse model SAMP-8 (senescence accelerated mouse prone
8) was found to be related to the accumulation of lipofuscin in spiral
ganglion neurons [112].

Furthermore, age-related neurological disorders, such as
Alzheimer's (AD) and Parkinson's Disease (PD), are mostly character-
ized by the accumulation of insoluble protein aggregates [113]. The
accumulation of the proteins amyloid-β and tau in AD and α-synuclein
in PD is toxic to the hippocampus and Substantia nigra neurons,
respectively, inducing cell death and corresponding cognitive ability
loss. Taken together, these studies clearly demonstrate a link between
organism aging and the formation/accumulation of protein aggregates/
lipofuscin, suggesting a loss in proteostasis mechanisms.

4. Proteostasis in aging

Proteostasis refers to a balanced and functional cellular proteome,
meaning that the requirement of proteins of a cell is optimized to each
situation, either by re-localization or by fine-tuned cycles of protein
synthesis/turnover. During aging, there is an increased risk of protein
damage, either by oxidation or misfolding, that requires either their

Endogenous Antioxidants
• glutathione
• superoxide dismutase
• peroxiredoxin
• catalase
• thioredoxin
• uric acid
• albumin
• bilirubin
• glucose
• Fe- and Cu-binding proteins 

(Ferritin, Transferrin, etc.)
• coenzyme Q
• metallothioneins
• melatonin
• L-carnitine

Exogenous Antioxidants
• vitamin E
• vitamin C
• carotenoids
• ubiqinol
• α-lipoic acid
• flavonoids, polyphenols, 

anthocyanidins, 
isoflavones

• trace elements (Zn, Se)

Antioxidants

Fig. 6. Overview of endogenous and exogenous antioxidants. This figure gives a broad overview of antioxidants. Endogenous antioxidants comprise proteins, low-molecular
weight molecules and enzymes, among others. Exogenous (dietary) sources of antioxidants include animal products, fruits, vegetables and grains (see chapter on micronutrients).
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refolding or degradation. Proteostasis is maintained by an array of
cellular mechanisms such as proteasomal degradation, autophagy
clearance and molecular chaperones. However, aging correlates with
a marked loss in proteostasis, evidenced by several age-related diseases
exhibiting the accumulation of dysfunctional proteins into large
insoluble aggregates. This suggests that the mechanisms decrease their
efficiency allowing the formation of toxic protein aggregates. The loss of
proteostasis is therefore a likely and strong contributor to senescence
and aging [114–116] (Fig. 4).

The following chapters will explore how aging affects proteostasis in
terms of proteasomal system and autophagy-lysosome-pathway (ALP).

4.1. Proteasome and aging

The most important cellular machinery catalyzing the degradation
of proteins that are no longer needed, (oxidatively) damaged or even
un-/misfolded proteins with reduced function is the proteasomal
system [117,118].

The proteasomal system is composed of different parts with various
functions. The central part is the 20S core proteasome, a large
cylindrical protease, containing an overall of six different proteolytic
centers with different specificities. Several regulator proteins can bind
to the 20S core, changing its activity or substrate specificity. Since the
20S is not able to degrade natively folded proteins, its main substrates
are already unfolded dysfunctional proteins. These proteins are recog-
nized as substrates via damage-exposed hydrophobic structures that
are normally buried inside globular soluble proteins. The 20S-mediated
proteolysis of an (partially) unfolded substrate does not consume any
ATP. In order to enable also the degradation of natively folded

substrates, the proteasome can bind a 19S regulator – forming the
so-called 26S proteasome – that enables substrate degradation in an
ATP-dependent and -consuming manner. In this case ATP is not
necessary for proteolysis; it rather delivers the energy necessary for
unfolding of the substrate. In order to label functional proteins for 26S
proteasomal degradation, the substrate must be marked by a short
chain of ubiquitin (Ub)-molecules. This is realized in a very specific
manner by the so-called ubiquitin-system a highly complex machinery,
that recognized substrates and labels them for terminal proteolysis
[119].

Another important form of the 20S proteasome is the immunopro-
teasome (i20S) that can be induced by tumor necrosis factor alpha
(TNF-α), interferon gamma (IFN-γ), lipopolysaccharides or other
forms of stress. On the one hand, it plays an important role in the
production of short oligopeptides that can be presented by the major
histocompatibility complex-I (MHC-I) on the cell's surface during the
immune-response. On the other hand, i20S shows higher proteolytic
activity towards oxidized proteins compared to 20S [120]. In inflam-
matory processes, always accompanied by oxidative stress and there-
fore increased protein oxidation, the immunoproteasome and its co-
expressed 11S regulator contribute significantly to preserving func-
tional proteostasis [121].

In order to prevent an accumulation of oxidatively damaged
proteins in phases of (mild) oxidative stress, the so-called “heat shock
proteins” (Hsps) are induced, that are able to prevent accumulation of
damaged proteins. One of these proteins is Hsp70, able to keep
damaged proteins soluble and to interact with the 20S proteasome at
the same time. Substrate recognition is assumed to be similar to the
proteasome: exposed hydrophobic protein-sequences. Reeg et al. [122]

A. Young fibroblast B. Aged fibroblast C. SIPS fibroblast

Fig. 7. Lipofuscin accumulation in young, aged and SIPS fibroblasts. One hallmark of aged cells is the formation of lipofuscin, which consists of highly oxidized proteins and
lipids. A special characteristic of lipofuscin is its stable autofluorescence which can be used for the detection as well as quantification. Aged human dermal fibroblasts, obtained from an
81-year old donor (panel B) are marked by a strong accumulation of lipofuscin compared to fibroblasts from a 1-year old donor (panel A). To investigate the aging process in cell culture
systems the so-called model of stress-induced premature senescence (SIPS) can be used. During SIPS, cells are treated chronically with a low dose of an oxidant to generate cells with a
senescent phenotype. Panel C shows fibroblasts which were incubated with 40 µM paraquat as stressor for 10 days leading to the accumulation of lipofuscin. Lipofuscin autofluorescence
was measured at 408 nm excitation and 420 nm emission wavelengths using a laser scanning microscope. Fibroblasts are cultivated as described in König et al. [314].
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demonstrated an interaction of Hsp70 with both, oxidatively damaged
substrate proteins and the 20S proteasome, indicating a role of Hsp70
in the proteasomal degradation after mild oxidative stress. Besides this,
Hsp70 is involved in proper protein folding during de novo synthesis.
After binding to Hsp70, an (partially) unfolded substrate may either
refold into native conformation and is released or remains bound to
20S, kept in a soluble state, unable to form aggregates with other
unfolded proteins. Interestingly, in phases of stress detachment of the
19S regulator cap from the 20S “core” proteasome is mediated by
Hsp70 binding to the 19S, resulting in a decline of 26S-proteolytic
capacity, while the pool of free 20S is increased resulting in enhanced
degradation of unfolded proteins [123].

Another heat shock protein involved in response to oxidative stress
is Hsp90. One of its functions is the protection of 20S from inactivation
by oxidative damage [124], other functions are the assistance in the
late stages of proper protein folding, especially on signaling proteins
involved in development and cell division: substrates include steroid
hormone receptors, kinases, as well as key oncogenic proteins such as
p53 [125], a group termed as “Hsp90 client proteins”. Furthermore,
Hsp90 also assists the proteasomal degradation of substrates [126].

Therefore, molecular chaperones play a decisive role in proteostasis
and life extension, but are known to decline in aging [116,127].
Interestingly, the amount of i20S increases during aging. In mice a
3- to 6-fold increased amount was found, as well as significant shifts in
the 20S to i20S ratio in rat livers [128]; similar changes were found in
astrocytes, neurons and endothelial cells in the aged human hippo-
campus (average 70 years) compared to a younger control (average 42
years) group. Also i20S accumulates with aging in tissues that contain
normally only the constitutive form of 20S – especially postmitotic
aging tissues such as muscles and nerves are affected. Whether this
results in a changed cleaving preference of the core proteasome or a
changed activity is still under discussion. Also, an overall age-depen-
dent decrease of proteasomal activity was found in different tissues:
spinal cord, liver (up to 50% decrease [129]), adipose tissue, heart,
brain (cortex and hippocampus), while in other regions such as brain
stem or cerebellum, proteasomal activity did not decrease [130]).
During the aging process, both the 20S and the 26S proteasome were
affected, and in extraordinary long-lived species such as the naked
mole-rat a significantly higher proteasomal activity (both 20S and 26S),
higher amount of the 19S regulator and more immunoproteasomes
were found compared to mice, which are of comparable size but have a
much shorter life span [131].

Though, even if proteasomal activity declines, the reasons are still
discussed. According to some authors, the amount of proteasomes
found in the aged cell declines, as well as specific proteasomal activities
– the reasons given are changes in its composition and/or structure,
partly mediated by oxidative damage; furthermore an increase of both
oxidatively damaged and polyubiquitinated substrate proteins was
found [132]. This increase may be due to declined proteasomal activity,
another cause may be the intracellular accumulation of oxidized
protein aggregates over the whole lifetime of the organism, resulting
in structures, that are recognized as proteasomal substrates, but that
became resistant to proteolytic degradation by covalent ROS-mediated
cross-linking, thus, distracting proteasomal activity. In turn, the
resulting decrease of proteasomal activity as well as an age-related
increase in cellular ROS contributes to enhanced formation of such
proteasomal pseudo-substrates.

An age related decrease of proteasomal activity was shown in
several different tissues like rat liver (−50% in the peptidylglutamyl
hydrolase) and brain: decrease of chymotrypsin like activity in cortex,
hippocampus and spinal cord of 12 month old animals, while no
change was detected in brain stem or cerebellum, while at the same
time an increase in protein oxidation was accompanied by reduced
proteasomal activity in this areas [130]. In rat muscle an upregulation
of the immunoproteasome was found, as well as increased oxidation of
proteasomal subunit oxidation. The induction of proteasomal activity

by 19S and proteolysis of polyubiquitinated substrates were also
reduced. In the hind limb muscles from 30 month old Sprague-
Dawley rats the levels of both beta1 and beta5 subunits were found
to be increased up to three-fold like the 19S regulator subunits Rpt5
and Rpt6, though, the proteasomal activity was not measured in this
study, suggesting a response to the increased amounts of oxidatively
damaged proteins [19]. In contrast, other studies using F344 rats also
revealed significant decrease in proteasomal activity (−30% for chymo-
trypsin like activity) for both 20S and 26S, but no reduction of the
proteasomal amount compared to young rats [133]. In contrast, in the
hearts of senescent rats both a loss of proteasomal amount as well as
loss of proteolytic capacity were found [132]. Similar decrease of all
three proteasomal activities was also found in human BJ fibroblasts
[134,135]. Detailed investigation of proteasomal subunits in human
fibroblasts (WI 38) also revealed that only the expression of catalytic
beta subunits was reduced, as well as proper proteasomal assembly,
since a considerable amount of alpha subunits was detected in a free
state [136]. Interestingly early works demonstrated that the 20S
proteasome is inhibited by cross-linked substrate proteins [137,138].
Furthermore, the reduction of proteasomal activity found in aged
retina cells was shown to be reproducible by exposing young cells to
N-ethyl-maleimide (NEM), that modifies the sulfhydryl-group of
cysteine-residues: after NEM-exposure of young retina cells the
chymotrypsin-like activity decreased to about 65%, the caspase-like
activity to about 80% compared to untreated ones [139].

Thus in recent studies, despite of decreased activity, in many cases
also reduced expression and/or amount of UPS-subunits was detected
during the aging process [130,140].

Also in aging, an increased formation of Ubiquitin-B+1 (Ubb+1), a
misframed mutant of ubiquitin protein is found, leading to accumula-
tion of polyubiquitinated proteins, causing proteasome malfunction
[141], apoptosis and likely playing a role in AD progression [142] and
other age-related diseases [143]. Furthermore, a variety of different
enzymes, involved in substrate-polyubiquitination are affected by aging
[144], thus influencing several essential cellular functions in favor of
the progression of neurodegenerative diseases, accelerated senescence
[145], reduced life span, carcinogenesis, genomic instability, increased
susceptibility to (oxidative) stress, formation of protein aggregates
[146] such as lipofuscin. As described before, lipofuscin is a highly
oxidized material containing covalently cross-linked proteins, lipids
and sugars that is very resistant to mammalian proteases and
accumulates especially in post-mitotic cells over time, showing a strong
negative correlation with the remaining life span [119,147–149].
Furthermore, lipofuscin was shown to inhibit the proteasome and
contribute to intracellular ROS-formation as described before [52,94].
Besides lipofuscin, the formation of the so-called advanced glycation
end-products (AGEs, glycated proteins and lipids) is a life span limiting
factor, since AGEs showed similar effects on the UPS as lipofuscin
[150]. Further discussed causes for decreased UPS-function are
oxidative damage to UPS-subunits, defective expression of regulatory
subunits, reduced assembly of 26S that may originate from a decreased
availability of ATP, as well as a shifted cellular redox state, that may
induce posttranslational modifications of UPS-subunits (e.g. S-glu-
tathionylation or phosphorylation), inducing changes in activity [151]
and activity of the poly (ADP-ribose) polymerase 1 (PARP1) [152,153].

Taken these results together, induction/restoring of the UPS and its
compounds were suggested as possible strategies to counteract the
aging process [145,154,155]. Overexpression of single catalytic pro-
teasomal subunits also increased the amount of other active subunits
(via a hitherto unknown regulatory loop) [136]. Cells, stable over-
expressing active proteasomal subunits, showed reduced amounts of
protein aggregation after oxidative stress [136], improved resistance to
oxidative stress (H2O2, menadione, 4-HNE), enhanced viability, and
even an increase of replicative life span by 15–20% (human fibroblasts
[156]), while the restoration of proteasomal activity in senescent
cells (via a lentivirus gene-delivery system) decreased the amount of
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aging-markers SA-β-Gal and p21 [157]. Similar results – an overall
increase of proteasomal activity – were achieved by overexpression of
the proteasome maturation enzyme ubiquitin-mediated proteolysis 1
(Ump1) in both yeast and mammalian cells [158,159]. Also, activation
of the redox-sensible transcription factor “nuclear-erythroid factor 2”
(Nrf2), which induces the expression of several antioxidative enzymes,
amongst other subunits of the UPS. Nrf2 turned out to be down-
regulated by about 45–65% in (replicative) senescent cells [160];
together with induction of Nrf2 by 18α-Glycyrrhetinic acid (18α-GA),
proteasomal activity was also enhanced, however this shift in protea-
somal activity (and also enhanced resistance to oxidative stress and life
span extension) was massively suppressed by Nrf2-knockdown via the
according siRNA [161].

Finally, induction of the UPS in (even terminal) senescent cells may
not increase life span dramatically, but it may restore the ability of cells
to respond/adapt to changed (environmental) conditions in an appro-
priate manner, resulting in decreased apoptosis and prolonged “healthy
aging” (also in animals). This will indirectly affect life span, and
focusing on the role of the UPS in maintaining cellular proteostasis.
Moreover, “healthy aging” may – at least partially – result from
enhanced regulation of the proteome and thus, cellular functionality.

4.2. Age-related changes in autophagy

Together with the UPS, the ALP belongs to the main intracellular
degradation systems, responsible for the removal of dysfunctional
cellular constituents and their recycling. One part of the ALP is
autophagy which initiates the degradation of long-lived proteins and
damaged organelles (mitophagy, peroxiphagy) by the delivery of the
cargo into lysosomes. To maintain the cellular equilibrium by autop-
hagy three different forms exist: chaperone-mediated autophagy
(CMA), microautophagy (MiA) and macroautophagy (MA) (reviewed
in [162]). CMA can be activated by different stressors, such as
starvation, oxidative stress or exposure to toxic compounds.
Subsequently, substrate proteins interact with the constitutive heat
shock cognate 70 (Hsc70) [163–165] followed by the binding of the
chaperone-substrate complex to lysosome-membrane associated pro-
tein type 2A (Lamp2A), a receptor protein on the lysosomal membrane.
After unfolding, the substrate can enter through the lysosomal mem-
brane. CMA is limited to soluble proteins, so no organelles can be
degraded. Regarding MiA less information is currently available [166].
During MiA cytosolic proteins are directly sequestered by the lyso-
somes, followed by their degradation in the lumen. The lack of specific
markers to measure MiA makes it difficult to follow this process and its
changes during aging. MA, often simply referred to as autophagy, is
also considered to be a stress-inducible form, sequestering cytoplasmic
constituents by a double membrane-bound vacuole, the so called
autophagosome. The autophagosome further fuses with the lysosome,
generating a single-membrane-bound vacuole, the autolysosome,
where the degradation by acid hydrolases takes place. Initiation of
the autophagosomal membrane, elongation, maturation to the autop-
hagosome and its fusion with the lysosome are mediated by different
autophagy-related proteins (ATGs) [163,167]. Further causes of age-
related changes in autophagy will be more specified in the following
paragraph by summarizing the current facts about autophagy and
aging.

4.2.1. Decline of CMA, macroautophagy and mitophagy during aging
During aging, in contrast to other lysosomal membrane proteins,

such as Lysosomal-associated membrane protein 1 (LAMP1), levels of
lysosomal protein receptor Lamp2A decrease in such extent that CMA
activity can no longer be preserved [168]. Initially, the decrease of
Lamp2A can be compensated by the increasing number of lysosomes
during senescence. Immunofluorescence detection and immunoblot

analysis of Lamp1 have confirmed the rising number of lysosomes in
aged cells [168–170]. Regarding the lysosomal activity several studies
postulated that lysosomal activity increases during cellular aging
[17,147,169], while others reported the opposite direction [171,172].
The limitation in CMA is that only Hcs70 containing lysosomes,
responsible for substrate translocation, are active for CMA [165]. In
the middle-aged state, CMA is maintained by increasing chaperone-
levels while in advanced age, levels of Lamp2A are so low that they can
no longer be compensated by chaperones [164,173]. However, other
studies also described a decline in Hsc70 protein expression, resulting
in an insufficient content of the chaperone and unfeasible lysosomes for
CMA. If instability of the receptor or impaired recovery from the lumen
is responsible for the decrease of Lamp2A needs to be further
investigated. In the case of MA the decreased formation and clearance
of autophagosomes may be one reason for the decline of autophagy
during aging [174]. Several studies have shown that i) formation of
autophagosomes is decreased due to an overall decline in autophagy-
related proteins (ATGs) but also that ii) clearance of autophagosomes is
impaired by, either inability of autophagosome to fuse with lysosomes
or a decrease in lysosomal activity [135,175]. Additionally, mammalian
target of rapamycin (mTOR), particularly mTORC1 has been described
to inhibit the initiation of autophagy due to ATG1/ULK1-2 phosphor-
ylation [176] (Fig. 8). Furthermore, it was reported that mTORC1
activity is enhanced in aged tissue and linked to mitochondrial
dysfunction independent of growth factor signaling [177,178]. ALP-
related proteins, demonstrating reduced MA in aging are summarized
in Table 1.

In addition aging is accompanied by the slow accumulation of
dysfunctional mitochondria [179–183]. Since dysfunctional mitochon-
dria contribute to an elevated intracellular ROS formation, their
adequate degradation is essential for cellular homeostasis. The process
of mitochondrial degradation is performed by the lysosomal system,
through a special form of MA termed mitophagy. However, before the
lysosomal system can catabolize mitochondria, several steps are
necessary for the recognition of damaged organelles and their further
targeting for the autophagy-machinery. In this context two proteins
play a key role: PTEN-induced putative kinase 1 (PINK1) and Parkin.
PINK1 is responsible for the identification of damaged mitochondria.
In healthy mitochondria PINK1 is continuously cleaved and degraded
by different proteases keeping low endogenous PINK1 levels under
normal conditions. In contrast, damaged mitochondria are marked by
an accumulation of PINK1 at the outer mitochondrial membrane. This
stabilization of PINK1 leads to the recruitment of the ubiquitin ligase
Parkin which ubiquitinates several outer membrane proteins and
initiates, therefore, the engulfment of mitochondria by the autophago-
some [184]. MA in general but also mitophagy in particular have been
shown to decline during aging [185–188]. However, the reasons for
this reduction in mitophagy seem to be diverse. Interestingly, it has
been shown that PINK1 expression decreases with age in murine lung
tissue [186,189] and PINK1 deficiency is marked by dysfunctional and
swollen mitochondria [189,190], a mitochondrial phenotype which can
also be found in aged cells [191]. Furthermore, it was shown that
PINK1 knockdown in HeLa cells affected the translocation of Parkin to
mitochondria resulting in interrupted mitochondrial clearance [192].
Nevertheless, it was also shown that this effect can be rescued by the
overexpression of Parkin [193]. Furthermore, Parkin overexpression
experiments indicate a special relevance of this protein during aging.
Rana et al. investigated the effects of Parkin overexpression on
different aging parameters in Drosophila. They found a reduced
protein aggregate formation in the brain and in flight muscles as well
as an increased mitochondrial function in aged Parkin-overexpressing
flies. Moreover, Parkin overexpression was able to extend the life span
of these flies [194]. These data are consistent with the finding that
Parkin-null mice have a reduced life span and accumulate more tau
protein aggregates in the brain compared to wild-type animals [195].
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Table 1
Age-related changes in protein levels of the Autophagy Lysosomal Proteolysis.

Protein Expression in aging Function Transcription-factors Ref.

Sirtuin1 ↓ NAD-dependent protein deacetylase, Autophagy induction – [315–317]
ATG5 ↓ Autophagosome formation MiT/TFE, AFT4, CHOP [318–321]
Beclin 1 ↓ Initiation of Autophagy NF-κB, E2F, JUN [318],[322–324]
Bcl-2 ↑ Anti-apoptotic, inhibition of autophagy via interacting/suppressing

of Beclin 1
NF-κB, [325]

LAMP2a ↓ Substrate uptake into lysosomes during CMA TFEB [168,326]
Hsc70 ↓ Chaperone, responsible for substrate translocation in CMA HSF1 [165]
LC3 ↓ Formation autophagosomal membrane FOXO3, GATA1, AFT4, CHOP,

JUN
[321,322,324,327,328]

ULK1 ↓ Initiation of Autophagy FOXO3, AFT4 [322,329]
P62 ↓↑ Binds LC3, promotes selective autophagy, associates with protein aggregates

in several neurodegenerative diseases
Nrf2 [330–334]

Sestrin1 ↓ Stress-inducible, inhibitor of mTORC1 FOXO, p53 [335,336]
BAG3 ↑ Interaction with p62, co-chaperone of HSP70 HSF1 [337–340]
mTORC1 ↑ Suppression of autophagy ATF5 [341]
PINK1 ↓ Targeting mitochondria for mitophagy NRF2 [342]
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Age-related changes in the autophagy-lysosome pathway

Fig. 8. Age-related changes in the autophagy-lysosome pathway. The autophagy-lysosome pathway (ALP) is one of the main intracellular degradation systems, responsible for
the removal of dysfunctional cell constituents and their recycling. One part of the ALP, macroautophagy can be subdivided into different phases, each of them can be negatively affected
in aging. Phase I includes different autophagy-related genes (ATGs), which are mainly responsible for the initiation and development of the autophagophore. During the aging process,
ATGs, such as Beclin-1, ULK1, ATG5 and ATG12 decrease; resulting in a decline in the initial steps of autophagy. In addition up-regulation of Bcl-2 and mammalian target of rapamycin
(mTOR), enhanced by decreased levels of Sestrin1, involved in AMPK activation, aggravate the impaired initiation of autophagy. The potential decrease of p62 and Parkin, both involved
in the delivery of either dysfunctional, ubiquitinated proteins or Pink1-tagged mitochondria, can support the accumulation of dysfunctional proteins and organelles in aging. Finally,
reduced conversion of unbound LC3-I into the membrane-bound LC3-II demonstrates the impairment of the initiation phase. In the second phase, the number of autophagosomes and
lysosomes increase in aging, reported by several studies, analyzing lysosomal-associated membrane protein 1 (LAMP1) and the autophagosomal marker monodansylcadaverine (MDC),
related to total cellular protein. But an increased autophagosome and lysosome number is not able to explain decreased protein degradation and increased protein aggregation as well as
accumulation in aging, assuming that fusion of both is likely to be impaired, a process which is not known yet and needs further investigation. In addition to impaired mito- and
macroautophagy also chaperone-mediated autophagy is reduced in aging, demonstrated by reduced levels of Lamp2a and HSC70.
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5. The role of trace elements and micronutrients in aging

5.1. Trace elements in aging

Trace elements (TE) are one of the key regulators of both metabolic
and physiological pathways and are also known to be altered during the
mammalian aging process. In order to preserve the cellular home-
ostasis and thus functionality, an optimal intake of TEs is required.
Consequently, TE deficiencies but also overloads are found to be
associated with functional changes, increasing the risk of incidence
and severity of several (also age associated) diseases.

TE act on age-affected processes such as functionality of the
immune system (selenium (Se), zinc (Zn), copper (Cu)) [196] and
oxidative stress (iron (Fe), manganese (Mn), Zn, Se, Cu) [197]. The
ability of TEs to both ameliorate oxidative damage and to promote
repair processes and recovery is mediated by their function as essential
co-factors for various antioxidative enzymes such as Cu, Zn-superoxide
dismutase, Mn-superoxide dismutase, catalase (Cu, Fe), and different
types of glutathione peroxidases (Se). These antioxidative enzymes are
necessary for limiting lipid peroxidation, assisting the repair of
oxidative base-modifications as well as restoring the functionality of
(oxidatively) modified proteins that accompany both, several diseases
(especially the ones associated with inflammation) and the aging-
process. Since TEs can also act pro-oxidative in high concentrations, a
delicate balance is crucial for cellular function.

During the aging process low concentrations of Se and Zn, and high
concentrations of Cu have been reported in several studies [198].
Furthermore, serum Cu/Zn ratio was found to be significantly in-
creased in senescent individuals compared to middle-aged adults
[199]. Interestingly, the ratio of Cu/Zn was significantly increased in
elderly patients suffering from age-related diseases compared to the
healthy ones. The ratio found in healthy elderly was due to high copper
values, whereas in the patients, as well high amounts of copper and low
amounts of zinc were found in the serum. The Cu/Zn ratio was
significantly and positively correlated to products of lipid peroxidation,
suggesting a relationship between the Cu/Zn ratio and (increased)
systemic oxidative stress. Furthermore, the intracellular accumulation
of iron is widely accepted as an important feature of the aging process
particularly in post-mitotic tissues [200], whereas both heme-Fe and
heme biosynthesis are known to decline significantly with age [201].
Additionally, low serum Se levels seem to be a useful predictor of
mortality as shown in two independent studies in elderly people
[202,203].

Though, until now only a few analyses have investigated the
connection between trace elements and aging/senescence at a cellular
level. An extension of replicative life span in bovine adrenocortical cells
after selenium supplementation (20 nM) has been reported by Hornsby
et al. [204]. Also, in hepatocytes high doses of Se (0.5 and 2.5 μM) were
found to be able to extend telomere length, prolonging the cellular life
span, too [205]. This may be mediated by incorporation of Se into
selenoproteins with antioxidative function, since the balance between
oxidative stress and a performing antioxidative defense preserves
proteostasis and cellular function and also affects the rates of aging
and telomere shortening amongst others.

However, already in the nanomolar range, Se concentrations should
be sufficient to optimize the expression of selenoproteins. Furthermore,
it seems that the levels of selenium affect both the regulation of entry
into replicative senescence and are able to modulate characteristic
markers of senescence: while selenium-supplementation (45 nM)
increases the number of population doublings, its deficiency (3 nM)
impairs significantly the proliferative capacity as found in WI-38
fibroblasts [206]. Also, the long-term deficiency of Se causes a decrease
in the cellular antioxidative capacity by dysregulation of selenoprotein-
expression.

After an incubation period for two passages in Se-depleted medium,
both a decrease of almost all selenoproteins as well as an increase in

senescent characteristics was found in cells. On the other hand, in
MRC-5 fibroblasts treated with methylselenic acid (up to 10 μM), it was
revealed that Se compounds can also induce senescence mediated by a
DNA damage response and increased amounts of SA-β-Gal were found
[207]. Furthermore, sodium selenite treatment (20 µM) attenuates the
interaction of the heat shock protein Hsp90 with the IκB-Kinase (IKK)
in tumor cells – thus promoting inactivation of the NF-κB pathway and
inhibition of autophagy via downregulation of Beclin 1 expression,
inducing a cell signaling switch from autophagy to apoptosis [208].

Growing evidence points to zinc as a positive regulator of autop-
hagy. In vitro studies have consistently shown that Zn is critical for
both basal as well as induced autophagy [209–211]. High doses of Zn
in the culture medium 20–200 μM) have shown to induce autophagy in
MCF-7 breast cancer cells [209], in astrocytes [211] and also in human
hepatoma cells [210]. Zn depletion either caused by treatment with the
cell permeable Zn chelators TPEN or Chelex-100 was able to suppress
basal and induced autophagy [209,211]. Also, a possible role of Zn as
modulator of the SASP was suggested [212]. The fact that a Zn
deficiency develops during aging raises the suspicion that there may
be a possible connection between Zn and senescence.

In colon cancer cells cultured in a low Zn environment for six
weeks, morphological changes and also typical markers of senescence
were detectable [213], while in contrast addition of Zn induced
increased formation of ROS, causing senescence in vascular smooth
muscle cells. Zn also decreased the cells’ antioxidative capacity by
downregulation of catalase expression [214]. Furthermore, an imbal-
anced intracellular Zn homeostasis mediates both oxidative damage
and neuronal cell death in neurodegenerative diseases [215,216]. Thus,
oxidative damage and cellular senescence may be promoted by
unbuffered regulatory mechanisms of intracellular/cytosolic Zn.

Copper is another TE that is known to induce (premature)
senescence. It plays an important role as a cofactor of different
enzymes, but free ionic copper is cytotoxic, because it mediates the
formation of the highly reactive hydroxyl radical (•OH) via Fenton
reaction, that is virtually capable of damaging any cellular biomolecule.
Recent studies in cellular models showed, that Cu can induce the
appearance of senescent characteristics [49]. Copper can also inhibit
the proteasomal β5-subunit (resulting in a decrease of proteasomal
activity) and induce apoptosis in human cancer cells [217].

The available literature regarding Mn and aging mainly addresses
the notion of Mn as a risk factor for Parkinsons’ disease (PD), yet the
mechanism of manganese neurotoxicity is still unclear. Dysfunction of
the ubiquitin proteasomal system (UPS) was shown to play a funda-
mental role in PD pathogenesis, as well as in increased oxidative stress
(chronic low-grade inflammation), that may be induced by Mn. In
PC12 cells treated with different concentrations of MnCl2, the protea-
somal activity decreased with increasing concentrations of MnCl2
implying that the proteasomal dysfunction may be associated with
Mn-induced cytotoxicity [218,219].

An accumulation of Fe is known as a function of age in several
tissues in vivo and is associated with the pathology of several age-
related diseases. The according changes may be caused by a dysregula-
tion of iron homeostasis at a cellular level, but the mechanism is still
poorly understood. In IMR-90 fibroblasts the total iron content was
shown to increase exponentially during cellular senescence, resulting in
10-fold higher levels of Fe compared to young cells. Furthermore, low-
dose exposure to hydrogen peroxide (H2O2) also induced early
senescence in IMR-90 cells and accelerated the senescence-associated
accumulation of Fe [220]. This accumulation may also contribute to the
increased amounts of oxidative stress and the decrease of cellular
function that characterizes senescent cells.

However, the association between TE status, age-related diseases
and cellular senescence is only poorly described. Additionally, there is
limited knowledge about the interactions of different TEs especially
during aging. Cellular responses to changes in both single TE and TE
patterns and how these (synergetic) changes affect senescent cells,
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organs or the whole organism are less investigated. Finally, it is
important to focus on the mechanisms of signaling driving these
changes.

5.2. The human situation: protein carbonylation in age-related
diseases and its possible prevention by antioxidant micronutrients

Human intervention studies assessing the effect of nutritional
antioxidants on biomarkers of protein oxidation are scarce, with few
studies showing a positive effect (reduction of protein carbonyls) [221–
223], and some showing no effect [224–226]. Similarly to TE, micro-
nutrients are also crucial for cellular homeostasis. Micronutrients are
nutritional compounds distinct from the macronutrients (protein,
carbohydrates and fat). They comprise numerous substances which
are only required in small quantities and include vitamins, trace
elements, minerals and other diet-derived compounds such as flavo-
noids and carotenoids. Although micronutrients play key roles as
antioxidants and in physiological maintenance their impact on pre-
venting oxidative stress in human trials has been disappointing.

Elevated levels of protein carbonyls in serum, plasma, and tissues
have been observed in various age-related diseases and in aging in
general. Whether they are the cause or consequence is under discussion
and may vary depending on the type of disease.

In Fig. 9, we give an overview of (age-related) diseases associated
with protein oxidation. Most evidence exists for neurodegenerative
diseases such as Alzheimer's disease [227–236] and Parkinson's
disease [237], where carbonylation of proteins has been demonstrated
in brains of AD patients [238,239], dementia patients with Lewy bodies
[240], and whole brain of PD patients [241]. Furthermore, protein
carbonyls were found in various diseases such as acute/adult respira-
tory distress syndrome [242,243], chronic lung disease [244–247],
amyotrophic lateral sclerosis [248,249], rheumatoid arthritis and
juvenile chronic arthritis [250,251], severe sepsis [252,253], cystic
fibrosis [254,255], cataractogenesis [256], age-related macular degen-
eration [257], chronic renal failure, uremia [258–261], Diabetes
mellitus Type I and Type II [262–266], inflammatory bowel disease
[267], ischemia-reperfusion [268], systemic amyloidosis [269], and
essential arterial hypertension [270].

The prevention of age-related diseases by dietary antioxidants seems
plausible since one way to increase health span is by having a healthy life
style which includes physical activity and a healthy diet. It seems that a
healthy diet rich in micronutrients is an easy, safe, cheap and effective
way to reduce the risk for different age-related diseases. The cellular
micronutrient status depends only on the diet or nutritional supple-
ments; in cell culture, the status is dependent on the medium. Studies
on the impact of different micronutrient concentrations and their role in

Cancer

Eye Diseases
• Age-related macular 

degeneration
• Cataracts

Protein Oxidation in Age-related Diseases

Inflammation
• Inflammatory bowel disease
• Sepsis
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• Arterial hypertension

Brain Ageing and 
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Fig. 9. Protein oxidation in age-related diseases. This figure shows the numerous diseases in which protein oxidation has been demonstrated so far. Protein oxidation may be the
cause or consequence of these diseases which affect nearly all organ systems.
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young compared to senescent cells are rare. For this reason, in this part
of the review we will focus on the role of micronutrients in aging,
cognition and cardiovascular diseases (CVD) in animal studies and
human trials.

The assessment and interpretation of the micronutrient status of
older individuals is quite difficult since inter-individual differences
increase with age and the group of aged people is highly heterogeneous
in terms of physical and mental health status, nutritional habits,
weight, anthropometrics, life style etc. Various human studies show
that there is a decline and/or an inadequacy of most micronutrients
during aging concerning both, intake as well as the status [271–273].
These changes are likely due to altered dietary habits with an
inadequate intake of micronutrient-rich foods such as fruits, vegetables
and whole grains but also due to a reduced bioavailability and an
increased turnover of micronutrients. Lipid-soluble vitamins (A, D, E,
and K) are affected by these changes as are the water-soluble vitamins
(C, B1, B2, B6, B12, and folate). The recommended dietary allowance
(RDA) and sources of these vitamins for elderly people ≥65 years in
relation to adults 18–65 years are shown in Table 2, collected from
[274–277].

Vitamin E (α-tocopherol) exhibits antioxidant and anti-inflamma-
tory properties and modulates signaling pathways involved in neuro-
degeneration thus acting neuroprotective and being crucial for normal
neurological function [278]. α-Tocotrienol has been shown to attenuate
glutamate-induced activation of phospholipase A2 arachidonic acid
release in murine hippocampal neural cells [279]. In humans, low
concentrations of tocopherols and tocotrienols are associated with AD
and mild cognitive impairment (MCI) [278]. AD-, MCI- and control-
patients ( > 70 years) had significantly different plasma vitamin E
concentrations with higher tocopherols, tocotrienols and total vitamin
E being associated with a reduced prevalence of AD [280], and all 8
vitamin E isoforms were lower in subjects with MCI or AD compared to
healthy subjects [281]. Cognitive decline during 18 months was less
pronounced in older persons consuming higher amounts of vitamin E
[282].

Vitamin A (retinol) and its biological active form retinoic acid (RA)
are essential for brain development and cognitive functions, such as the
memory process, by modulating synaptic plasticity and improving
neurogenesis [283]. Treatment with RA reduced the number of
senescent cells, the expression of p21 and the inflammatory signaling
as well as led to an extension of the life span in a senescent mouse
model [284]. Young rats displayed better memory than old rats and
retinol supplementation of old rats improved memory; in addition
there was a positive correlation between serum retinol and spatial
memory in young and old rats [283]. In an aging rat model, plasma
retinol was significantly reduced in old compared to young and
middle-aged animals [285]. In humans, some studies demonstrated a

significant decline in plasma vitamins A and E with age, but in contrast,
significantly higher vitamins A and E were observed in healthy
centenarians compared to younger subjects, implicating a possible role
of these vitamins in longevity [286]. A meta-analysis showed signifi-
cantly lower vitamin A and E in AD patients compared to healthy
controls [287]. In a case-control study, plasma vitamin E and β-
carotene in patients with AD and multi-infarct dementia as well as
plasma vitamin A concentrations of AD patients were significantly
lower than in healthy patients [288]. Elderly MCI and AD patients had
significantly lower plasma vitamin A and E as well as some carotenoids
(lutein, α-carotene, zeaxanthin and β-cryptoxanthin (only for AD))
compared to healthy subjects [289]. The consumption of a diet rich in
luteinandzeaxanthin was associated with a slower age-related cognitive
decline [290]. Carotenoids are plant-derived antioxidants and anti-
inflammatory compounds suggested to prevent age-related diseases
including CVD, cognitive impairments and different forms of cancers
[291]. Lutein and zeaxanthin are the most prominent carotenoids in
the central nervous system and in the human brain tissue with
proposed neuroprotective function which is due to decreased oxidative
stress and activation of anti-inflammatory pathways [290].

Vitamin D, which can be synthesized endogenously by UV-B
radiation, exerts its function by its biological active form 1,25(OH)2
vitamin D3. It functions as steroid hormone, in the regulation of the
immune system, seems to be involved in the cell cycle regulation, in the
protection against free radicals in the central nervous system and thus
may play a role in senescence and aging [292]. Vitamin D receptor
knockout mice develop signs of premature aging, i.e. infertility, muscle
atrophy, reduced immune function, and osteoporosis and have a
shorter life span [293]. Vitamin D deficiency, which is highly prevalent
especially in house-bound or hospitalized elderly, is linked to age-
related disease such as neurodegenerative diseases and CVD [273,292].

Water-soluble vitamins are also related to cognitive function.
Vitamin B1 (thiamin) plays an important role as a cofactor in several
biochemical pathways and especially high concentrations are found in
heart, liver, kidney, brain and skeletal muscle. Inadequate thiamin has
been observed in older subjects [294] and abnormal thiamin-depen-
dent processes appear in AD [295]. Vitamin B2 (riboflavin) is a cofactor
in metabolic redox reactions, amino acid and lipid metabolism.
Furthermore it functions as an antioxidant, due to its involvement in
the glutathione redox cycle (in glutathione reductase), the prevention
of lipid peroxidation and by affecting antioxidant enzymes [296]. In
animal studies, riboflavin deficiency increased lipid peroxidation and
the administration of riboflavin decreased MDA and protein carbonyls
[297]. In humans riboflavin intake and plasma MDA were negatively
correlated [298]. Pyridoxine (vitamin B6) helps to reduce homocysteine
concentrations thus protecting against CVD. Homocysteine is a non-
proteinogenic amino acid which occurs under normal physiologic

Table 2
Recommendations for daily micronutrient intake [274–277].

Vitamin Dietary sources RDA (≥65 years) Recommendation for persons aged ≥65 years (in percent to
adults)

Men Women

Thiamin (B1) meat, especially pork, grains 1.2 mg 1.1 mg 100
Riboflavin (B2) dairy products, eggs, whole grain, leafy vegetables 1.3 mg 1.1 mg 100
Pyridoxine (B6) milk, meat, grains 1.7 mg 1.5 mg 131
Folate green leafy vegetables, grains and liver 400 µg 400 µg 100
Cobalamin (B12) animal products, fortified breakfast cereals (USA) 2.4 µg 2.4 µg 100
Ascorbic Acid (C) citrus fruits, green vegetables 90 mg 75 mg 100
Vitamin A (Retinol) animal products 900 µg 700 µg 100
Vitamin D fatty fish, fish liver oil and egg yolk, fortified milk

(USA)
20 µg 20 µg 133

Vitamin E (α-Toc.) vegetable oils, whole grain, nuts, fruits, vegetables,
meat

12 mg 12 mg 80

Vitamin Ka green vegetables, broccoli, Brussels sprouts 120 µg 90 µg 100

a Adequate intake.
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conditions. It is an essential intermediate in protein synthesis as it
accepts a methyl-group from methyl-tetrahydrofolate (via methionine
synthase, which contains cobalamin) to form methionine, the starter
amino acid. A high homocysteine blood concentration is an important
risk factor for atherosclerosis and cardiovascular diseases, since some
human studies have shown a clear correlation between serum homo-
cysteine and the incidence of carotid, coronary, and peripheral vascular
disease [299], yet the mechanism behind this remains to be fully
elucidated.

Furthermore, pyridoxine has been shown to act as an antioxidant in
isolated rat hepatocytes by inhibiting iron-induced O2

•− production,
thus preventing lipid peroxidation, protein oxidation, and DNA da-
mage [300]. Rats receiving a diet deficient in pyridoxine for one year
developed abnormal walking-track patterns, however, when these rats
received pyridoxine they partially recovered [301].

Tetrahydrofolate (THF), the biological active form of folic acid is
involved in purine and pyrimidine synthesis, namely in 1-carbon
transfer reactions and helps to reduce high homocysteine concentra-
tions [302] which, together with reduced folate and vitamin B2 were
associated with an increased risk for coronary artery disease [303]. In
aged rats, memory and also oxidative stress status, assessed as the
activity of SOD and catalase, the glutathione concentration as well as
MDA, significantly improved in folic acid supplemented animals [304].
In another study, folate deficiency in mice was associated with hearing
loss and significantly increased homocysteine concentrations [305].
Vitamin B12 (cobalamin) functions as a cofactor for both the methyl-
malonyl CoA mutase and the methionine synthase which is involved in
homocysteine re-methylation and folate cycle [306]. Subsequently
vitamin B12 deficiency leads to elevated homocysteine, and impaired
folate metabolism [306]. Decreased vitamin B12 concentrations have
been demonstrated in postmortem human frontal cortex from patients
with autism and schizophrenia, as well as to decline with age (range
from 19 weeks pregnancy to 80 years) [307].

Vitamin C (ascorbic acid) and dehydroascorbic acid form a redox
system functioning as antioxidant which recycles vitamin E and
tetrahydrobiopterin. It is required for carnitine biosynthesis and the
synthesis of neurotransmitters. In the central nervous system, intra-
cellular ascorbate acts as an antioxidant, and it is necessary for peptide
amidation, myelin formation, and in protecting against glutamate
toxicity [308]. More amyloid-β plaque deposits have been observed
in mice with moderate intracellular vitamin C deficiency [309]. Thus it
has been suggested that populations at increased risk for epilepsy and
seizures, such as in AD should avoid vitamin C deficiency [310]. It is
known that aged individuals consume poor amounts of vitamin C
[294], furthermore it declines with age and individuals with lowest
intake seem to have the highest stroke mortality rate [311].

Since micronutrients play key roles in cellular homeostasis, in
general physiologic maintenance and in the protection against oxida-
tive stress, they can help to prevent or ameliorate detrimental age-
related changes. Some, but not all, micronutrients possess antioxidant
properties which are responsible for their beneficial actions.
Antioxidants seem to influence cerebral functioning by reducing
ROS-induced damage and stabilizing membranes [287], are positively
associated with an improved cognitive function in healthy elderly
adults and were decreased in patients with MCI and AD [290].
Epidemiological studies imply that individuals with a high intake of
fruits and vegetables, and thus high antioxidant consumption have a
reduced risk of CVD [312], AD and cognitive impairments [287,313].
Therefore, it is highly recommended to consume a lifelong diversified
diet including an abundance of foods rich in antioxidant nutrients.

6. Conclusions and future directions

This educational review focuses on the main proteostasis mechan-
isms current knowledge and their changes during aging. Due to the
frequency of disturbances in proteostasis during aging, resulted in

modified protein accumulation, one can only imagine the effects of
attempts to improve the age-related failure of protein maintenance
mechanisms. Especially in post-mitotic and slowly dividing tissues, this
should keep a working cellular metabolism for substantially longer
time, therefore, postponing senescence hallmarks and premature
aging. Furthermore, from the organismal side, this would lead to the
preservation of organ functions, including brain, skeletal and cardiac
muscle, and, therefore, prolong healthy aging.

The attempts to achieve this are quite limited, although some
studies on micronutrients and trace elements are promising to follow
this line further. Future strategies to improve the selective and efficient
removal of damaged or aggregated proteins need to be developed,
which might also include the use of hormones or endocrine factors.
Besides animal and human studies, in order to reveal the mechanism of
action of these interventions in aged cells, more suitable models have to
be employed. Regardless, of the importance to do so, only a few groups
have been used such as postmitotic cells or developed aging models to
study proteostasis maintenance.
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