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Abstract: In this paper, we propose a power allocation scheme for non-orthogonal multiple access
(NOMA) in underwater acoustic sensor networks (UWASNs). The existing terrestrial sum-rate
maximization (SRM) power allocation scheme suffers from the degradation of the overall sum-rate in
UWASNs due to wasteful resource created by unequal transmission times between each transmission
path. To address this issue, we propose the equal transmission times (ETT) power allocation scheme,
which can prevent wasteful resource generation by guaranteeing equal transmission times between
each transmission path. ETT considers the number of packets waiting for transmission in the
sender’s buffer for creating equal transmission times. Numerical results show that the proposed ETT
outperforms SRM in terms of the overall sum-rate, while having nearly identical maximum sum-rate
to the SRMs.

Keywords: power allocation; non-orthogonal multiple access (NOMA); underwater acoustic sensor
networks (UWASNs)

1. Introduction

Among the envisioned medium access control (MAC) protocols for the fifth generation of mobile
communication, the non-orthogonal multiple access (NOMA) protocol is one of the most promising
candidate techniques, as it has been shown to increase cell capacity. To support multiple users,
the NOMA protocol allocates two-dimensional time-frequency resources that are superposed and
transmitted to multiple users whose channel gain differences are very large. Each receiver node can
decode an individual packet from packets that are superposed in the power domain, by using the
method of successive interference cancellation (SIC). Consequently, the NOMA protocol can achieve
high cell capacity. On the other hand, conventional orthogonal multiple access (OMA) protocols
allocate resources to each user either in time or in frequency or in code, which limits the cell capacity.

In underwater environments, acoustic waves are used for communications instead of radio
frequency (RF) waves due to the absorption and diffusion of RF waves. Additionally, underwater
ambient noise is not white noise, i.e., it has frequency-dependent characteristics. Thus, underwater
acoustic channels suffer from low propagation speed, narrow frequency bandwidth, and low data
rate. These unique channel conditions necessitate the modification of conventional terrestrial MAC
protocols before they are applied to underwater acoustic sensor networks (UWASNs).

The paper examines the feasibility of the NOMA protocol in an underwater channel that has
distance/frequency-dependent attenuation and frequency-dependent ambient noise. Additionally,
the performance degradation issues found in existing sum-rate maximization (SRM) power allocation
schemes for downlink underwater NOMA are addressed. Wasteful resources caused by unequal
transmission times between NOMA-paired channels may have an adverse effect on the data rate of
multiplexed channels. Hence, this paper proposes a new scheme named equal transmission times
(ETT) power allocation to eliminate wasteful resources. To guarantee equal transmission times, ETT
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first calculates the data rate required for each path, based on the number of packets waiting in the
sender’s buffer. Subsequently, ETT calculates the transmission power required to achieve the calculated
data rate. Equal transmission times are guaranteed, and the proposed ETT can prevent generation of
wasteful resources. In terms of the overall sum-rate, which is defined as the mean of the sum of the
data rates for two paired channels during a total transmission time, we observe that ETT outperforms
existing SRM scheme irrespective of the number of packets for each path in the sender’s buffer.

This paper is organized as follows. First, we provide an overview on the characteristics of the
underwater channel and on the clustered UWASNs in Section 2. Section 3 gives a brief overview of
problems with the existing SRM in underwater environments. The details of the proposed ETT are
described in Section 4. Numerical results are presented in Section 5. Finally, conclusions are drawn in
Section 6.

2. An Overview of the Characteristics of the Underwater Channel and the Clustered UWASNs

2.1. The Characteristics of the Underwater Channel

In this paper, we consider Thorp’s underwater channel model [1], which is based on empirical
data. Thorp’s model provides the attenuation and the ambient noise for the underwater channel.
The attenuation of an acoustic wave is influenced by the frequency and the communication distance
between the sender node and the receiver node. Hence, the overall attenuation can be expressed as a
function of the distance (l) and the frequency ( f ), which is given by Equation (1),

A(l, f ) = A0lka( f )
l

103 (1)

where l is a distance (m) between the sender and the receiver node, f is signal frequency (kHz), A0 is
the normalizing constant, and k is the spreading factor. The spreading factor has a value between 1
and 2 depending on the depth. k = 1 means a cylindrical spreading which characterizes shallow water
communications. k = 2 means a spherical spreading which characterizes deep water communications.
Generally, k = 1.5 is often considered as practical spreading. We therefore assume the spreading factor
as 1.5 and the normalizing constant as 30 dB. a( f ) is the absorption coefficient and is expressed in
decibels per kilometer,

10 log a( f ) = 0.11
f 2

1 + f 2 + 44
f 2

4100 + f 2 + 2.75 × 10−4 f 2 + 0.003. (2)

For lower than a few hundred Hz, the following formula may be used:

10 log a( f ) = 0.002 + 0.11
f 2

1 + f 2 + 0.011 f 2. (3)

Figure 1 illustrates the ambient noise sources. There are four ambient noise sources in the ocean:
turbulence, shipping, waves, and thermal noise of the molecules. Equation (4) gives the power
spectrum density (PSD) of these noise sources in dB re µ Pa2/Hz [2],

10 log Nt( f ) = 17 − 30 log f
10 log Ns( f ) = 40 + 20(s − 0.5) + 26 log f − 60 log( f + 0.03)
10 log Nw( f ) = 50 + 7.5w

1
2 + 20 log f − 40 log( f + 0.4)

10 log Nth( f ) = −15 + 20 log f

. (4)

where Nt( f ), Ns( f ), Nw( f ), and Nth( f ) denote the noise components of turbulence, shipping, waves,
and thermal noise, respectively. The PSD of total ambient noise Ntotal( f ), which is sum of the PSDs of
four sources, can be described by
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Ntotal( f ) = Nt( f ) + Ns( f ) + Nw( f ) + Nth( f ). (5)
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Figure 1. The ambient noise sources: turbulence, shipping, wave, and thermal.

The ambient noise decays with a frequency that is limiting the system bandwidth. By considering
the attenuation A(l, f ) and the ambient noise Ntotal( f ), the signal to noise ratio (SNR) can be
calculated by

SNR(l, f ) =
Psender

A(l, f )Ntotal( f )
(6)

where Psender is a PSD of the transmitted signal by the sender node. The frequency dependent part
of the signal to noise ratio (SNR), A(l, f )Ntotal( f ), is called the AN product. Figure 2 shows the AN
product according to communication distance and frequency.
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2.2. Clustered Underwater Acoustic Sensor Networks (UWASNs)

In UWASNs, the energy efficiency is widely considered as the most important challenge.
To prolong the network lifetime, various approaches have been proposed to solve this issue in clustered
networks [3–5]. Figure 3 shows the clustered UWASN considered in this paper. The clustered UWASN
comprises a surface sink node and the underwater sensor nodes. Every sensor node has the same
capabilities such as storage, processing power, communication range, and battery life. Each sensor
node can become a cluster header (CH) node or a cluster member (CM) node, depending on the
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situation. The CM nodes gather event or environmental information and forward this data to its CH
node. i.e., as a coordinator node of the cluster, the CH node aggregates data from the CM nodes in their
cluster or sometimes transmits data to its CM nodes for controlling the cluster. Periodically, each CH
node transmits aggregated data to the surface sink node through single-hop or multi-hop transmission.
Finally, the surface sink node transfers aggregated data to the control center using RF waves.
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The intra-cluster and inter-cluster communications are different from the communication between
the surface sink node and the control center. Because of the half-duplex property and space-time
uncertainty [6] of the underwater channel, a variety of MAC protocols are proposed for UWASNs
to prevent collisions. The underwater MAC protocols can be classified into three broad types [7]:
contention-free MAC protocol, contention-based MAC protocol, and hybrid MAC protocol. However,
most of these OMA protocols are operated in a manner that the resource is temporarily unavailable
to other nodes except communicating nodes. Thus, if a NOMA protocol is applied to UWASNs by
exploiting the attenuation and noise characteristics of the underwater channel which is mentioned
above, multiple nodes can share the same two-dimensional time-frequency resource according to the
channel gain difference.

The sharing of resources can enhance the performance of underwater communications.
The performance of NOMA highly depends on node pairing and power allocation schemes [8].
Thus, when we find the power allocation ratio for paired nodes, calculating the received power and
the expected data rate at each paired node is essential. However, conventional power allocation
schemes for the terrestrial NOMA are not suitable for the underwater channel which has low data
traffic. Therefore, in this paper, we propose a novel power allocation scheme that can be used for
downlink NOMA for clustered UWASNs. This scheme assumes that the cluster header has already
chosen the paired cluster member nodes. In other words, the node pairing scheme does not fall within
the scope of this paper.

3. SRM Power Allocation Scheme in Underwater Channels and Their Issues

The conventional OMA protocols have some weakness when they are applied in the underwater
channel. Time division multiple access (TDMA) needs accurate timing synchronization and a guard
time to avoid collisions. These degrade the performance of the TDMA because of low channel
utilization. Frequency division multiple access (FDMA), which use frequency bands exclusively at the
same time, is not suitable for the narrow bandwidth underwater channel. In the case of code division
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multiple access (CDMA), the near-far problem is one of the major issues. In the near-far problem,
the receiver cannot detect the weak signal in the presence of a strong signal. To overcome this issue,
the sender node requires an extra overhead for the power control technique to ensure equal received
power. In contrast, NOMA exploits the gain difference between the receiver nodes. This characteristic
is suitable for the underwater channel that has a severe attenuation.

Regarding resource allocation, there is a significant difference between the OMA and NOMA
protocol as shown in Figure 4 where the resource allocated to different user is colored differently.
OMA protocols in Figure 4a exclusively allocate resources such as time, frequency, and code to each
user. Theoretically, there is no interference among users so a receiver can simply detect each user’s
packet. Hence because of exclusive resource allocation, the maximum number of users being supported
is limited. In contrast, as illustrated in Figure 4b, the NOMA protocol allocates same two-dimensional
time-frequency resource to multiple users in the power domain. The NOMA protocol allocates the
same resource exploiting the characteristics of channel difference, which allows multiple users who
have a significant channel gain difference to share the same resource. Therefore the number of users
being supported is not strictly limited. Unlike the OMA protocol, the NOMA protocol needs an
elaborate user signal detection process named SIC at the receiver node side. Through the SIC, each
user can decode an individual packet from the superposed packets in the power domain and therefore
a high cell capacity is achieved.
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Figure 5 provides an example of the downlink NOMA transmission via power domain
multiplexing between a sender node S and two receiver nodes G and B. Among the two receiver
nodes, G has good channel quality as it is located near to S, and B has bad channel quality because of
severe attenuation commensurate with its distance from S. In general, node S pairs two receiver nodes
that have large differences in their channel gains and then transmits data packets to the paired nodes
concurrently at the same frequency. To achieve collision-free concurrent transmissions, the paired
nodes’ packets are superposed in the power domain, wherein S allocates a larger transmission power
(Pb) to the bad quality channel transmission and a smaller transmission power (Pg) to the good quality
channel transmission without exceeding the transmission power constraint (Ptx), as shown in the
upper-left part of Figure 5. There is a direct association between the power allocation ratio (γ = Pg/Ptx)
and the sum-rate, which is defined by Rg + Rb, where Rg and Rb are the data transmission rates of
the good and bad quality channels, respectively. Therefore, finding the optimized γ in terms of the
sum-rate is critical for NOMA performance. Superposed packets are decoded in the following manner.
Node B decodes its packet by considering G’s packet as interference. On the other hand, node G has to
decode B’s packet first. Subtracting the decoded packet from the superposed packets, node G can then
decode its packet from the subtracted packet, which is the summation of its packet and the ambient
noise. This procedure is called SIC [9].
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Most studies on power allocation for NOMA have focused on maximizing the sum-rate. In [10]
the authors proposed two sub-optimal power allocation schemes based on the users’ instantaneous
channel state information (CSI) in a sub-carrier based NOMA system. In [11] the authors first studied
the ergodic capacity maximization problem for the Rayleigh fading multiple-input multiple-output
(MIMO) NOMA systems. In this literature, the authors proposed both optimal and low complexity
sub-optimal power allocation schemes to maximize the ergodic capacity under the conditions with
a total transmit power constraint and minimum rate constraint of the weak user. The sum rate
maximization of a multiple-input single-output (MISO) downlink NOMA system has been studied
in [12]. The authors used a minorization-maximization algorithm to solve the downlink sum-rate
maximization problem. In [13] the authors proposed a sub-optimal water filling based power allocation
scheme to improve the total achieved system throughput. This scheme is operated in two stages: the
water filling–based inter sub-band power allocation and the adaptive intra sub-band power allocation.
The formulation of an optimization problem for maximizing the sum capacity has been studied in [14]
for the single-input single-output (SISO) method. This paper considered maximizing the sum capacity
under a total power constraint and a quality of service (QoS) condition of each user.

However, since SRM is based on the assumption that paired transmissions last until the end
of transmissions, the maximum sum-rate cannot be sustained in the case of unequal transmission
times between the paired channels when one of the paired channel completes the transmission before
the other. Hence, resource waste occurs while only one channel is in transmission. Resource waste
means the resource is available but cannot be used by any other nodes (including the sender node).
Especially in UWASNs, resource waste may severely degrade the performance due to the low data
rate and long propagation delay.

Figure 6 shows an example where resource waste is generated due to unequal transmission times.
For simplicity, the packet size in number of bits, Lp, is considered to be constant. Packet transmission
times of nodes G and B, which are denoted by τg and τb, respectively, are obtained by

τg =
Lp
Rg

τb =
Lp
Rb

. (7)

Thus, the total transmission times of G and B, which are denoted by Tg and Tb, respectively, are
obtained by

Tg = τg × Mg

Tb = τb × Mb
, (8)

where Mg and Mb are the number of packets transmitted to nodes G and B in the current transmission,
respectively. The discrepancy in transmission times, δT

(
=
∣∣Tg − Tb

∣∣), causes the aforementioned
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resource waste. In this case, even though one of the transmissions is complete, to avoid a collision
the other nodes cannot use resources for transmitting until the sender nodes’ total transmission time
(max

(
Tg, Tb

)
) elapse. In general, the sum-rate is maximized when Rg is much greater than Rb (i.e.,

τg << τb) [15]. Even under such conditions, if the number of packets destined for G and B in the buffer
of node S is very large, we can easily make δT small enough to be negligible by adjusting Mg and Mb.
However, in UWASNs where the traffic generation is infrequent, the number of packets is likely to be
small, and thus δT could become large, as shown in Figure 7, where Mg = 3, Mb = 4, and τg << τb.
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Since SRM allocates transmission power without considering Mg and Mb, the discrepancy δT is
unavoidable, and sometimes can be very large. In our proposed ETT, we determine the transmission
power that makes Tg and Tb equal, depending on Mg and Mb, to eliminate wasteful resources.

4. Proposed ETT Power Allocation Scheme

Figure 8 presents the equal transmission times of nodes G and B in the proposed ETT under the
same condition as Figure 7. To make δT equal to 0 (i.e., Tg = Tb), the transmission power allocation
ratio (γ) should be determined to satisfy the following relationship:

Rg

Rb
=

Mg

Mb
. (9)

However, the γ obtained from Equation (9) should be located within an operating range of γ,
which guarantees the minimum SNR at which both the nodes, G and B, are capable of decoding the
received signal. Thus, we first find the operating range and then choose within the operating range an
appropriate γ associated with Equation (9).

Figure 9 illustrates the relationship between power allocation and operating range. The lower
bound and the upper bound of the operating range are denoted by γlow and γup, respectively. γlow is the
point where the SNR of node G (SNRg) becomes the minimum SNR. At the point γlow, the transmission
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powers toward nodes G and B are denoted by Plow
g and Plow

b

(
= Ptx − Plow

g

)
, respectively. Similarly,

γup is the point where the SNR of node B (SNRb) becomes the minimum SNR. The corresponding
transmission powers to nodes G and B are Pup

g and Pup
b , respectively. In the following paragraphs, we

show how by Plow
g and Plow

b can be determined.
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The SNR of node G at γlow is obtained by

SNRlow
g =

∫
B Slow

g ( f )A−1(lg, f
)
d f∫

B N( f )d f
, (10)

where B is the frequency bandwidth, Slow
g ( f ) is the PSD of the transmitted signal toward G, A(l, f ) is

the attenuation with respect to the distance l and the frequency f , lg is the distance between S and G,
and N( f ) is the PSD of the ambient noise. The PSD of transmission power follows the water-filling
principle [16] given by

S( f ) + A(l, f )N( f ) = k, (11)

where k is a constant depending on the allocated transmission power. Using Equation (11),
Equation (10) can be rewritten as

SNRlow
g =

∫
B [k−A(lg , f )N( f )]A−1(lg , f )d f∫

B N( f )d f

= k
∫

B A−1(lg , f )d f∫
B N( f )d f − 1

. (12)
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Therefore, from Equation (12), k is obtained by

k =
∫

B N( f )d f∫
B A−1(lg , f )d f

×
(

SNRlow
g + 1

)
≡ klow

g

, (13)

where k is newly denoted by klow
g . Then, the transmission power Plow

g that corresponds to the minimum
SNR at node G is given by

Plow
g =

∫
B

Slow
g ( f )d f = klow

g × B −
∫

B
A
(
lg, f

)
N( f )d f . (14)

Consequently, the transmission power Plow
b at γlow is obtained by

Plow
b = Ptx − Plow

g . (15)

As a next step, we find the data rates associated with γlow. According to the Shannon capacity [17],
the data rate Rg and Rb at γlow are given by

Rlow
g =

∫
B

log2

[
1 +

Slow
g ( f )/A

(
lg, f

)
N( f )

]
d f , (16)

Rlow
b =

∫
B

log2

[
1 +

Slow
b ( f )/A(lb, f )

Slow
g /A(lb, f ) + N( f )

]
d f , (17)

where Slow
b ( f ) is the PSD of the transmitted signal to node B at γlow, and lb is the distance between S

and B. Similar to the case of γlow, we find the corresponding power and the data rate at γup. First, the
SNR of node B at γup is obtained by

SNRup
b (dB) =

∫
B Sup

b ( f )A−1(lb, f )d f∫
B Sup

g ( f )A−1(lb, f ) + N( f )d f
. (18)

Unlike the case of the γlow, the denominator of Equation (18) is the overall noise at B, which is the
sum of the attenuated Pup

g and the ambient noise. If we substitute the denominator of Equation (18)
with

∫
B Noverall

(
lg, lb, f

)
d f , Equation (18) can be rewritten as

SNRup
b (dB) =

∫
B Sup

b ( f )A−1(lb , f )d f∫
B Noverall(lg ,lb , f )d f

= kup
b

∫
B A−1(lb , f )d f∫

B Noverall(lg ,lb , f )d f
− 1

, (19)

where kup
b is the parameter k of Equation (13) for the case of γup. Then, kup

b is obtained as

kup
b =

Pup
b +

∫
B A(lb , f )Noverall(lg ,lb , f )d f

B

=
Ptx+

∫
B A(lb , f )N( f )d f

B

. (20)

Thus, the Pup
b and the Pup

g are obtained by

Pup
b =

∫
B

Sup
b ( f )d f = kup

b × B −
∫

B
A(lb, f )Noverall

(
lg, lb, f

)
d f , (21)

Pup
g = Ptx − Pup

b . (22)

The data rates Rup
g and Rup

b are obtained in the same way as Equations (16) and (17).
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Figure 10 shows the change of the data rates ratio (Rg/Rb) with varying γ. If the ratio, Rg/Rb,
obtained from Equation (9) when Mg and Mb are chosen to carry all the packets waiting in the buffers
destined for nodes G and B, respectively, falls within the operating range of γ (case (b)), we only have
to choose the corresponding transmit power. On the other hand, if the ratio Rg/Rb falls outside the
operating range (left-hand side of γlow (case (a)) or right-hand side of γup (case (c))), we keep reducing
Mb for case (a) or Mg for case (c) by 1 until the ratio Rg/Rb falls within the operating range.Sensors 2017, 17, 2465  11 of 14 
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5. Numerical Results

In this section, we analyze the performance of ETT compared to SRM. The parameters we used
are summarized in Table 1.

Table 1. Parameters for numerical analysis.

Parameters Unit Value

Bandwidth (B) kHz 10–15
Distance between S and G (lg) m 100
Distance between S and B (lb) m 900

Transmission power (Ptx) Watts 2
Minimum SNR dB 10

Data packet size (Lp) bits 8000

Figure 11 shows the variation of each receiver node’s SNR with varying γ. In this analysis, for
the minimum SNR of 10 dB, we observe that the operating range of γ for the underwater NOMA to
be a very narrow range (rectangular outline in Figure 11), unlike the terrestrial NOMA, because of
the severe attenuation related to the communication distance and the frequency, which are prevalent
issues in the underwater channel.

Figure 12 shows a comparison of SRM and ETT in terms of sum-rate varying the packet ratio
(Mg/Mb). The numbers on the top of the bars indicate the sum-rate normalized by the maximum
sum-rate of SRM. Meanwhile, the numbers on the side of the bars indicate the ratio of data rate of
Rg(upper) and Rb(lower). The numbers on the botton of the bar indicates the packet ratio Mg/Mb.
It is shown that the normalized sum-rate of ETT is approximately equivalent to that of SRM even
supporting various data rate ratios (Rg/Rb) led by the packet ratio (Mg/Mb). On the other hand,
SRM can achieve the maximum sum-rate under a specific condition of data rate which is 3.7:1 in this
example regardless of Mg/Mb. Thus, if the packet ratio does not meet the data rate ratio 3.7:1, SRM’s
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sum-rate cannot be fully utilized. Note that the reason why ETT has comparatively low sum-rate at 0.5
of Mg/Mb in this analysis is that NOMA inherently shows a better performance when a higher power
is allocated to a good quality channel.Sensors 2017, 17, 2465  12 of 14 
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Naturally, the transmission times Tg and Tb are different. Thus, from the point of view of this
paper, the overall sum-rate is defined by

Roverall =
τgRg Mg + τbRb Mb

max
(
Tg, Tb

) . (23)

Figure 13 shows the comparison in terms of the overall sum-rate. We observed that ETT
outperforms SRM; especially when Mg/Mb is small, the performance difference becomes larger
because the transmission times discrepancy, δT , becomes larger under the condition of τg << τb.
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ETT finds the appropriate γ, depending on the number of packets, as well as guaranteeing equal
transmission times and thus mitigates the occurrence of wasteful resources.

Sensors 2017, 17, 2465  13 of 14 
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6. Conclusions

In this paper, we proposed an ETT power allocation scheme for resolving the overall sum-rate
degradation issues related to the SRM power allocation scheme in UWASNs. Unlike SRM, the
proposed ETT finds an appropriate transmission power for each paired channel to guarantee equal
transmission times considering the number of packets to each transmission path. As a result, ETT can
eliminate wasteful resources through equal transmission times. Numerical analysis shows that while
the sum-rate is analogous to that of SRM, the overall sum-rate of ETT is much larger than that of SRM
for varying packet ratio scenarios.

Most studies on MAC protocols for UWASNs have focused on how to apply OMA protocols to the
underwater channel. Thus, these studies have exclusively provided the solution for assigning and using
limited resources. However, we believe that the NOMA protocol that allows a simultaneous sharing of
an identical resource according to the channel gain difference can present an advanced solution for
UWASNs which experience a severe attenuation according to distance. The performance of NOMA is
determined by node pairing and power allocation. Our proposed power allocation scheme will be
helpful in solving the issues of overall sum-rate degradation for the low traffic underwater channel.

In this paper, we dealt with the situation of two receiver nodes downlink NOMA. However,
with the same concept of ETT, N receiver nodes downlink NOMA will be able to operate without
significant complexity. To further our research, we intend to extend ETT to general N receiver nodes
downlink NOMA.
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