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A B S T R A C T

Objectives: The purpose of this study was to explore the temporal and spatial characteristics of COVID-19
transmission and its influencing factors in China, from January to October 2020.
Methods: About 81,000 COVID-19 confirmed case data, Baidu migration index data, air pollutants,
meteorological data, and government response strictness index data were collected from 31 provincial-
level regions (excluding Hong Kong, Macao, and Taiwan) and 337 prefecture-level cities. The spatio-
temporal characteristics of COVID-19 were explored using spatial autocorrelation, hot spot, and spatio-
temporal scanning statistics. At the same time, Spearman rank correlation analysis and multiple linear
regression were used to explore the relationship between influencing factors and confirmed COVID-19
cases.
Results: The distribution of COVID-19 in China tends to be stable over time, with spatial correlation and
prominent clustering regions. Spatio-temporal scanning analysis showed that most COVID-19 high-
incidence months were from January to March at the beginning of the epidemic, and the area with the
highest aggregation risk was Hubei Province (RR = 491.57) which was 491.57 times the aggregation risk of
other regions. Among the meteorological variables, the daily average temperature, wind speed,
precipitation, and new COVID-19 cases were negatively correlated. The air pollution concentration and
migration index were positively correlated with new confirmed cases, and the government response
strict index was strongly negatively correlated with confirmed COVID-19 cases.
Conclusions: Environmental temperature has a certain inhibitory effect on the transmission of COVID-19;
the air pollution concentration and migration index have a certain promoting effect on the transmission
of COVID-19. The strict government response index indicates that the greater the intensity of government
intervention, the fewer COVID-19 cases will occur.
© 2021 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

Introduction

At the end of 2019, a novel Coronavirus (SARS-COV-2)
pneumonia outbreak appeared in Wuhan, China (Alberti and
Faranda, 2020). On 7 February 2020, the National Health

Commission, People's Republic of China (PRC) tentatively named
it Novel Coronavirus Pneumonia; On 11 February, the World Health
Organization (WHO) officially named it "Novel Coronavirus 2019"
(COVID-19) with an expected incubation period of approximately
2–10 days (Li et al., 2020). Due to the widespread epidemic, the
development of COVID-19 has drawn increasing global attention.
According to the COVID-19 Programme of the National Health and
Family Planning Commission (version 4), the symptoms of COVID-
19 are fever, fatigue, dry cough, and, in some patients, are
accompanied by nasal congestion, runny nose, and diarrhea. The
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early COVID-19 outbreak in China and the large population flow,
could increase the spread of COVID-19 and pose a severe threat to
human life. The Chinese governments quickly adopted emergency
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easures to reduce and prevent the spread of the virus, and
nnounced on 23 February 2020, in Wuhan to halt the city public
ransportation, and limit unprecedented personal mobility. One
onth later, the effect of isolation gradually emerged, proving that
trict restrictions on population movement can play a positive role
n curbing the spread of the epidemic (Manevski et al., 2020).

As of October 2020, there were more than 39.96 million
umulative confirmed cases of COVID-19 globally. However, the
OVID-19 situation in China has been brought under control and
ignificantly improved. With the rapid increase in confirmed
OVID-19 cases globally, the COVID-19 epidemic shows no signs of
lowing down. It is essential to support global cooperation and
ollaborative prevention and control of COVID-19 (Lazarus et al.,
020). Therefore, it has become an urgent scientific issue to
dentify the temporal and spatial changes of COVID-19 transmis-
ion and clarify its driving mechanisms.
Shortly after the outbreak of COVID-19, some scientists

onducted extensive research on the epidemic from the aspects
f pathogenesis, virology, biology, and clinical medicine and
chieved fruitful results, providing a scientific basis for the
revention and control of COVID-19 (J et al., 2020). Xie and Zhu
2020) explored the nonlinear relationship between ambient
emperature and confirmed COVID-19 cases, using a generalized
dditive model. The results indicated that higher temperature
ight not limit the transmission of this novel Coronavirus. Zhu
t al. (2020a, b) explored the relationship between environmental
ir pollutants and newly confirmed cases of COVID-19 each day,
roving that there was a statistically significant relationship
etween air pollution and COVID-19 infection. The results showed
hat short-term exposure to high concentrations of PM 2.5, PM 10,
O, NO 2, and O 3 was associated with an increased risk of COVID-
9 infection (Zhu et al., 2020b). Sannigrahi et al. (2020) found a
trong positive correlation between income/population and
OVID-19 cases/deaths, suggesting that these two factors may
e key control variables for estimating overall human casualties
aused by COVID-19 in European countries (Sannigrahi et al.,
020). Wu et al. (2020), based on confirmed COVID-19 cases and
esidents' travel by train, plane, and road, published a mathemati-
al model used to predict the trend of the epidemic; the results
howed that about 75,815 people in Wuhan would be infected in
he early stage of the epidemic (Wu et al., 2020). Chen et al. (2020)
tudied the correlation between migration index and the number
f confirmed COVID-19 cases from 23 January 2020 to 12 February
020. The results suggest that Wuhan may have played a positive
ole in controlling COVID-19 by blocking and activating the first-
evel emergency response to this significant public health crisis
Saqib, 2020). Although some scholars have discussed the
ransmission law of COVID-19 from the perspective of geography,
nly natural or social factors were considered when discussing the
ransmission factors of COVID-19, and the influencing factors of all
spects were not considered comprehensively. Therefore, they
annot have an in-depth understanding of the space-time pattern
nd influencing factors of the COVID-19 epidemic, which is of great
ignificance for the prevention and control of the epidemic.
In this study, the number of newly confirmed COVID-19 cases

er day in mainland China was used as the measurement index;
patial statistics and spatio-temporal scanning methods were used
o describe the spatio-temporal distribution of epidemic trans-
ission. Secondly, traditional statistical methods were used to

dentify the key factors affecting the spread of the COVID-19

Data and methods

Data sources

The study used data sets from five different sources, including
confirmed COVID-19 case data, Baidu Migration Index data, air
quality and meteorological data, and government Response Strict
Index data.

Data sets of 31 provinces (excluding Hong Kong, Macao, and
Taiwan) and 337 prefecture-level cities were collected from the
National Health Commission, PRC (http://www.nhc.gov.cn/) and
(https://ncov.dxy.cn/) for the cumulative and daily confirmed cases
of COVID-19 in China from January to October 2020, with about
81,000 entries. ArcGIS software was used to realize a visualization
of the epidemic situation, in which the coordinate system is
GCS_Beijing_1954, and the projection is LAMBERT_CONFORMAL_-
CONIC.

The Migration Scale Index data was derived from Baidu
migration data (http://qianxi.baidu.com/). This study used the
population migration scale indicators of 339 prefecture-level cities
in China, including intra-city travel intensity, emigration index,
and immigration index.

Average daily air quality data were extracted from the online air
quality monitoring and analysis platform (https://www.aqistudy.
cn/) during the study period, including air quality index (AQI),
sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter
with aerodynamic diameter <10 um (PM10) and 2.5 um (PM2.5),
carbon monoxide (CO) and ozone (03). The meteorological data
comes from the China Meteorological Data Service Center (http://
data.cma.cn/en), including the average temperature, air pressure,
precipitation, and wind speed.

Government Response Strictness Index (www.bsg.ox.ac.uk/
covidtracker) is the Oxford COVID-19 government response
tracking system (OxCGRT) provided by a system of measures
across countries and across time to understand the government's
response in the evolution of the epidemic spread (Sannigrahi et al.,
2020). Typical measures include a series of standardized indicators
such as school closures, travel restrictions, bans on public
gatherings to track government policies and interventions to
contain the spread of the virus, strengthen health systems, and
manage the economic consequences of these actions (Kim and
Castro, 2020).

Research methods

Exploratory spatial data analysis method
Spatial statistics and the modeling tool of ArcGIS 10.6 were used

to test whether the confirmed provincial and municipal cases had
significant global or local spatial autocorrelation. Spatial autocor-
relation, which measures spatial autocorrelation based on feature
locations and eigenvalues, can be divided into global spatial
autocorrelation and local spatial autocorrelation (Eryando et al.,
2020), using global Moran's I statistics to assess whether the
cumulative number of confirmed COVID-19 cases in each region is
spatially relevant. Moran's I statistics obey normal distribution and
test significance based on a Monte Carlo simulation of a stochastic
permutation process (Briz-Redon and Serrano-Aroca, 2020). I
ranges from -1 (dissimilar value clustering) to +1 (similar value
clustering), with 0 indicating that there is no spatial autocorrela-
tion. The greater the absolute value of I, the stronger the spatial
pidemic from the two dimensions of social factors and natural
actors, to provide a scientific basis for clarifying the spread law of
he epidemic and formulating relevant prevention and control
easures (Booth et al., 2020).
67
autocorrelation.

I ¼ nXn

i¼1

Xn

j¼1
wij

Xn

i¼1

Xn

j¼1
wij xi�xð Þ xj�xð ÞXn

i¼1
xi � xð Þ2
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Where n is the total number of samples, regarding the xi, i is
confirmed cases, x is the average, Wij is the spatial weight matrix

between i and j,
Pn
i¼1

Pn
j¼1

wij xi�xð Þ xj�xð Þ is a covariance, that is to

measure the overall error of the number of adjacent confirmed
cases, so the value of I depends on the size of the i and j values for
the mean deviation symbol; if the adjacent position, xi, and xj have
the same number, then I is positive, or negative.

The expression of score ZI is:

ZI ¼ I � E I½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E I2
h i

� E I½ �2
r

Where, E I½ � = -1/(n-1), the significance of the index is evaluated by
calculating Moran's I value, score Z, and P-value. Statistical Z scores
and P-values must be combined with Moran's I index to determine
statistical significance (Briz-Redon and Serrano-Aroca, 2020). The
global spatial autocorrelation technique was used to detect the
spatial characteristics of the confirmed cases and analyze the
overall spatial correlation within the entire study area, i.e., China.

Local spatial autocorrelation is usually characterized by local
Moran's I and Getis-Ord Gi*. Local Moran's I is the decomposition of
global Moran's I into sub-regional units. In this study, ArcGIS was
used to detect the local spatial autocorrelation characteristics of
COVID-19 cases and to identify areas with significant-high/low

aggregation. In addition; the hot spot analysis (Getis-Ord Gi*) was
used to identify hot spots and cold spots of COVID-19 cases at
different spatial scales, with statistical significance (Islam et al.,
2020).

A retrospective spatio-temporal scanning statistical method
was used to include a time dimension in the analysis and
determine when and where, the cluster occurred (and for how
long) (Vadrevu et al., 2020). Because COVID-19 is transmitted from
person to person, and more cases are likely to occur in densely
populated areas, we selected the Poisson model in SaTScan to
calculate each area's population. The spatio-temporal scanning
statistics base is positioned around a possible center in the entire
area, with the radius changing continuously from zero to a
specified maximum (Vadrevu et al., 2020). Due to the virus's
infectivity, the number of daily cases increases rapidly, and the
time interval for this study is one day. The maximum spatial
clustering scale was set to 15% of the risk population, and the
maximum temporal clustering scale was set to 35%, in order to
avoid super-large (and therefore meaningless) clustering.

Exploratory influencing factor analysis method
Secondly, the Spearman rank correlation analysis method was

used to analyze the relationship between confirmed COVID-19
cases and migration index, air quality, meteorological data, and the
government response strict index. Descriptive statistical results
Figure 1. Spatial distribution of cumulative confirmed cases of COVID-19.
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howed that COVID-19 outbreaks and related data did not meet the
earson correlation analysis preconditions and were mainly
anifested as a non-Gaussian normal distribution, spatial
utocorrelation, and possible nonlinear relations. In general,
pearman's rank correlation is an appropriate nonparametric
stimator for estimating the correlation between two variables
ith unknown or non-Gaussian statistical distributions, and the
elationship between these variables does not need to be linear
Rahman et al., 2020). It is usually measured in terms of
pearman's rank correlation coefficient r; the formula is as
ollows:

r ¼ Pn
i¼1ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � x
q

Þ2 Pn
i¼1 ðyi � yÞ2

 is the total number of samples, xi and yi are the ranks of X i and Yi,
espectively, r represents the Spearman rank correlation coeffi-
ient. This coefficient varies between -1 and + 1; the greater the
bsolute value of r, the stronger the relationship between the two
ariables. Like Pearson's coefficient, Spearman's absolute value of r
n the range of 0.8–1 indicates a very strong correlation, 0.6�0.8 a
trong correlation, 0.4�0.6 a medium correlation, 0.2�0.4 a weak
orrelation, and 0�0.2 an uncorrelation (Rahman et al., 2020).

esults

patial distribution characteristics

ArcGIS software was used to classify the cumulative number of
onfirmed COVID-19 cases in China into the following five
ategories: 1–50; 51–100;101–500; 501–1000; > 1000 (Figure 1).
As shown in Figure 1, as of 31 January, the cumulative number of

OVID-19 cases at the beginning of the outbreak was 15, 2, and 1,
espectively, in the 101–500, 501–1000, and >1000 ranges. Hubei
rovince (7037 cases) accounted for 61.43% of the total cases, and
uhan city (3215 cases) had the most confirmed cases, accounting

or 45.69% of the total cases in Hubei province. In terms of spatial
istribution, the regions with a high number of confirmed cases are
ainly located around Hubei Province, indicating that the COVID-
9 epidemic has been confirmed. On 29 February, the cumulative
umber of cases in 101–500 (29 cases), 501–1000 (seven cases),
nd > 1000 (eight cases), have risen sharply, reflecting the fact that
he epidemic’s geographical scope has expanded significantly.
xcept for the 1�50-people interval it was found that all other
nterval percentages of the city are on the rise, indicating that the
utbreak has reached the epidemic stage. In terms of spatial
istribution, it has the highest number of confirmed cases
ccumulated; there is a clear trend of a continuous distribution,
ainly concentrated in Wuhan and economically developed cities
earby (for example, Shanghai and Beijing). While the number of
ases with less area coverage is relatively stable (for example,
inghai, Tibet, and Xinjiang), the differences between them show
hat the spread is increasing. Due to the closure of cities in
ebruary, the epidemic has been effectively brought under control.
rom 31 March to 30 April, except for Beijing, Shanghai, and
uangdong, the cases in other regions remained basically
nchanged, which means that the spread of the epidemic has
een initially contained. As of 31 July, the rapid increase of cases in
rumqi city, Xinjiang province (552 cases) was effectively
ontrolled by 31 August.

geographical adjacency was selected, and the global Moran's I
index, P test value, and Z statistical score were used to determine
the number of confirmed cases with different types of neighbors
(Vadrevu et al., 2020). To investigate whether there is a spatial
correlation between confirmed COVID-19 cases in China,

Figure 2 shows the Moran's I index and Z statistical scores of the
cumulative confirmed COVID-19 cases in China's prefecture-level
cities from 15 January to 1 October. On January 15, the global
spatial autocorrelation (p > 0.05, Z < 1.96) was not significant,
while on January 23, there was a significant global spatial
autocorrelation (p < 0.05, Z > 1.96). On 31 January, solstice, and 1
October, the cumulative confirmed cases at the prefecture-level
showed a significant global spatial autocorrelation (p < 0.0001,
Z > 9.58), indicating that the cumulative confirmed cases at the
prefecture-level showed a very significant spatial dependence. In
Figure 2, the trend change characteristics of Moran's I index are
presented in two stages: they first increase and then decrease from
23 January, indicating that this may be a turning point. This means
that, although the degree of clustering is lower than before, the
global spatial correlation is still dominated by clustering character-
istics and tends to develop in a decentralized manner.

Local spatial correlation characteristics
Different from global spatial autocorrelation, local spatial

autocorrelation analysis deals with heterogeneous regions. Clus-
tering and outlier analysis was conducted on the data of
cumulative confirmed COVID-19 cases in China's prefecture-level
cities from 15 January to 1 October. The results are shown in Figure
3. High-high is represented in pink and represents the high-value
aggregation class; High-Low is shown in red, representing high-
value elements and is surrounded by Low-value elements. Low-
high is shown in dark blue, representing low-value elements and
surrounded by high-value elements; Low-low, shown in light blue,
represents the low-value cluster classes.

According to Figure 3, most cities in Hubei Province, China
belong to the "high-high" clustering region, in addition to the
surrounding cities (Xinyang City, Henan Province; Lu an and
Xuanzhou, Anhui Province; Changde city, Hunan Province;
Yueyang and Changsha City; Nanchang, Yichun And Jiujiang City,
Jiangxi Province). In contrast, some regions close to these
prefecture-level cities have significant "low-high" clustering
regions." High-low" clustering areas appeared in Kunming city,
Yunnan Province, on 31 January and Urumqi city, Xinjiang Province
on 31 July. There is a continuous distribution trend in "low-low"
clustering regions, mainly located in Inner Mongolia, Gansu,
Ningxia, Qinghai, Tibet, and Xinjiang. From the perspective of
Figure 2. Global Moran's I index of the cumulative number of cases.
patial correlation characteristics

lobal spatial correlation characteristics
In this paper, the cumulative number of confirmed COVID-19

ases was taken as a variable, the spatial weight matrix based on
678
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quantity change, the number of units in all clustering areas has
decreased. This suggests that, despite a weakening clustering
trend, the local spatial correlation characteristics of confirmed
COVID-19 cases are also predominantly positive.

Based on the hot spot analysis (Getis-Ord Gi*) results given on
15 January, the initial stage of the outbreak in Hubei province as the
center of the area and the surrounding adjacent urban areas, a total
of 32 cities present hot spots (90% Confidence). But by the end of
January, hot spots quickly covered most of the city; as well, Henan,
Hunan, Anhui, and Jiangxi provinces become significant hot spots
(99% Confidence). By 29 February, the number of hot spots in
Henan and Anhui had decreased, becoming an important hot spot
(95% Confidence), while the remaining areas remained unchanged.
On 31 March, Anqing city in Anhui Province became an extremely
important hot spot area again, and the hot spot area remained
unchanged after April (Figure 4).

Spatio-temporal scanning analysis

Spatio-temporal clustering of confirmed COVID-19 cases was

aggregation. Daily scanning analysis showed that 6 April to 19
April was a high incidence month in Heilongjiang province, 27
July to 2 August was a high incidence month in Xinjiang Province,
and the rest of the high incidence months were concentrated in
the early phase of the epidemic from January to March. Also, the
relative risk (RR) and likelihood ratio (LLR) of the first three
aggregation regions were all >3, and all P < 0.05. The aggregation
region with the largest RR (491.57) was located in Hubei Province.
This region's aggregation risk was 491.57 times that of other
regions, and its LLR value (280453.82) was also the highest
(Table 1).

Analysis of influence factors

Generally, there are three links in the epidemic process of
infectious diseases (source of infection, route of transmission,
susceptible group) and two influencing factors (social factors and
natural factors) (Zhu et al., 2020a). In this study, social factors
(population migration index, government response severity index)
and natural factors (air pollutants and climate factors) were

Figure 3. Local spatial correlation Characteristics of the cumulative number of cases.
explored using the spatio-temporal scanning analysis method,
and a total of six clustering areas were detected through SaTScan
software, including 17 provinces (Figure 5). It was found that the
actual number of COVID-19 cases increased abnormally compared
with the theoretical number during the period from 27 January
2020 to 1 March 2020, indicating a high incidence of COVID-19
679
analyzed and studied together with daily confirmed cases of
COVID-19.

This study adopted the Chinese migration index to trace
population flows, The intensity of its migration in (out) is the ratio
of the number of individuals moving in (out) in a unit of time to the
total number of individuals in the region.
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First, ArcGIS software was used to map the migration intensity
f the outflow population from Wuhan to cities across the country
Figure 6). It can be seen that the cities of Hubei Province are the
opular migration destinations from Wuhan, followed by East

January and the closure of Hubei Province on 27 January (except for
the Shennongjia area), the scale of population emigration in
Wuhan decreased significantly in February, only the movement of
supplies and epidemic prevention and control personnel are left.

Figure 4. Hotspot (Getis-Ord Gi) analysis of the cumulative number of cases.

able 1
patial-temporal scan statistics on the cumulative number of cases.

Number Time Concentrated areas The actual number
of cases

Number of
theoretical cases

LLR RR P

1 2020/1/27�2020/3/1 Hubei 65,680 599.39 280453.82 491.57 <0.001
2 2020/7/27�2020/8/2 Xinjiang 455 50.38a 597.66 9.07 <0.001
3 2020/1/27�2020/2/9 Beijing 269 87.29 121.24 3.09 <0.001
4 2020/1/27�2020/2/9 Fujian, Zhejiang, Shanghai,

Hunan
Anhui, Guangdong

5145 1997.95 1780.53 2.68 <0.001

5 2020/4/6-
2020/4/19

Heilongjiang 381 152.88 120.09 2.50 <0.001

6 2020/1/27�2020/2/9 Gansu, Ningxia
Shaanxi, Sichuan
Chongqing, Shanxi
Henan

2090 1640.77 57.77 1.28 <0.001
hina (including Shandong, Jiangsu, Anhui, Zhejiang, Fujian, and
hanghai), South China (including Guangdong, Guangxi, and
ainan), Central China (including Hunan, Henan, and Jiangxi),
nd North China (including Beijing, Tianjin, Hebei, Shanxi, Inner
ongolia). The greater the intensity of migration, the greater the

isk of disease in the region. Due to the closure of Wuhan city on 23
68
China lifted its last urban blockade of Wuhan on 7 April, after
reopening other cities in March, so the migration index gradually
rose in March and April.

Secondly, a visual diagram of average air quality (AQI), average
precipitation (PRCP), average wind speed (WDSP), and tempera-
ture (TEMP) detection factors were drawn (Figure 7).
0
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The government response strictness index codes qualitative
policies into numbers and then obtains the average value of these
specific policies, such as school closures, business closures,
cancellation of public events, and generalized codes to represent
the scope of specific policies (Sannigrahi et al., 2020). The index is,

migration index. From January to October, the study included more
than 85,000 cases, the mean value was 338.34 cases per day. The
daily average concentrations of PM2.5, PM10, SO2, CO, NO2 and O3

were 29.32 mg/m3, 53.95 mg/m3, 9.43 mg/m3, 0.68 mg/m3,
21.02 mg/m3 and 69.22 mg/m3, respectively; the average values

Figure 5. Spatial-temporal scan shows the cumulative number of cases.

Figure 6. Population migration index of Wuhan and the whole country in January. February and April.
therefore, a good indicator of the government's response to the
current crisis. Table 2 summarizes the descriptive statistics for
COVID-19 confirmed cases and government response strictness
index variables.

Table 3 lists the statistics of daily new COVID-19 cases and the
air pollution concentration, meteorological variables, and the
681
of temperature (Temp), wind speed (Wdsp), precipitation (Prcp)
and gusts (Gust) were 62.43 �F = 16 �C, 4.79 knots = 2.46 m/s,
0.14 in. = 3.556 mm and 9.89 knots = 5.08 m/s, respectively. The
average daily immigration index (IM), emigration index (EM), and
inner-city travel intensity (Inner) were 0.83, 0.83, and 3.99,
respectively.
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As the variables are not normally distributed, the Spearman
ank correlation test was performed. Table 4 shows the correlation
oefficient between the newly increased COVID-19 cases per day
nd the air pollution concentration and meteorological variables.
mong the meteorological variables, the daily average tempera-

stringency index was strongly negatively correlated with con-
firmed cases of COVID-19, with P < 0.05, which was statistically
significant.

Table 5 shows the analysis of air pollution concentrations and
weather information data from the date of the daily report of new

Figure 7. Spatial distribution of Average air Quality (AQI), average precipitation (PRCP), average wind speed (WDSP), and Temperature (TEMP) In China.

able 2
escriptive statistics of categorical variables.

Variable Descriptive Coding instructions

C1 School closing 0: No measures; 1: Recommended to close; 2: Request to close; 3: Ask to close all
C2 Workplace closing 0: No measures; 1: Recommended to close; 2: Request to close; 3: Ask to close all
C3 Cancel public events 0: No measures;1: Recommended to close; 2: Request to close
C4 Restrictions on gathering size 0: Unlimited; 1: Limit more than 1000 employees; 2. Limit within 101�1000; 3: Limit

within 11�100; 4: Limitless than 10 people
C5 Close public transport 0: No measures; 1: Recommended to close; 2: Request to close
C6 Stay at home requirements 0: No measures; 1: Don't leave home; 2: Ask not to leave home except for "essential" travel;

3: Ask not to leave the premises, but with very few exceptions
C7 Restrictions on internal movement 0: Unlimited; 1: Screening arrival; 2: Some areas are isolated from arriving;
C8 International travel controls 0: Unlimited; 1: Screening arrival; 2: Some areas are isolated from arriving;

3: No access to certain areas; 4: Prohibition of all areas or complete closure of borders
ure, wind speed, and precipitation were negatively correlated
ith the daily new cases (Zhu et al., 2020a). Maximum wind speed
as positively correlated with newly confirmed cases. Air pollution

ndexes (CO, PM2.5, PM10, and SO2), air quality index (AQI), and
igration index were positively correlated with newly confirmed
ases. International travel control (C8) in the Government response
68
COVID-19 cases (lag 0, lag 03, lag 07, and lag 014, i.e., the incubation
period of COVID-19).

The results of multiple linear logistic regression showed that
temperature and control of international travel were strongly
negatively correlated with the confirmed cases of COVID-19 among
the remaining factors after removing the factors affected by
2
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collinearity. The maximum wind speed has a weak negative
correlation. The intensity of Inner city travel is positively
correlated, and its regression equation is y=-0.749* TEMP-0.300
*Gust+0.434*Inner-0.774*C8 (Table 6).

Discussion

This paper studied the spatio-temporal variation of COVID-19 in
China and the key influencing factors of its transmission, which
should be of significance to contain the spread of the COVID-19
epidemic, to provide a reference for the formulation of public
health policies, and to promote productive recovery.

The mining of geospatial information can not only reveal the
spatio-temporal transmission and clustering characteristics of the
epidemic but also uncover the spatial risk factors that have a
significant influence on the spread of the epidemic and identify the
hot spots with high transmission risk, which is helpful for the
scientific prevention and control of the epidemic. This paper
shows the spatial distribution of the cumulative confirmed cases
of COVID-19, and it can be seen that the areas with more cases have
an obvious continuous distribution trend, with Hubei Province as
the center for diffusion, while the areas with fewer cases have a
relatively stable coverage. Moran's I is usually an important index
to measure spatial correlation, which can be divided into global
Moran's I and local Moran's I. The global Moran's I can only
indicate whether space is clustered or an outlier, not where it is
located, while the local Moran's I will indicate where the outlier or
cluster appears. Hafner (2020) fitted the spatial autoregressive
model for the global COVID-19 propagation process and found that
the estimated spatial correlation was highly significant, consistent
with our results. As shown in Section 3.2, the global Moran's I
index, p-test value, and Z-statistical score were used to determine
a significant spatial association among the confirmed COVID-19
cases in China. Secondly, local Moran's I was helpful to effectively
detect the significant clustering/outlier areas and significant hot
spots at different spatial levels in China. Hot spot analysis was
used to identify hot spots and cold spots of COVID-19 cases at
different spatial scales. As far as China is concerned, the first-
generation epidemic transmission pattern is from the South
China seafood market to the whole city of Wuhan. In the second
generation epidemic transmission mode, the epidemic spread
from Wuhan to the counties and cities in Hubei Province, the key
cities outside Hubei Province and abroad; as the epidemic spread
into the critical cities outside Hubei Province, it further spread
within them. The third-generation epidemic transmission model
was imported from other countries to China. The results show
that the closer to a high-risk area, the greater the risk, especially
at the prefecture-level city scale. This finding is helpful for
governments at all levels to take effective classified prevention
and control measures.

Identifying the key factors affecting the spread of the COVID-19
epidemic is of great significance for containing the spread of the
COVID-19 epidemic. Generally speaking, the factors that affect the

Table 3
Descriptive statistics of continuous variables.

Minimum Maximum Mean � SD.

New confirmed �1 14,106 338.34 � 1165.36
Meteorological factors
Temp (�F) 32.94 80.42 62.43 � 14.49
Wdsp(knots) 3.42 6.53 4.79 � 0.62
Prcp(inches) 0.005 0.43 0.14 � 0.09
Gust (knots) 4.25 22.63 9.89 � 3.68
The concentration of air pollutants
AQI 29.21 104.69 52.04 � 16.36
PM2.5(mg/m3) 12.50 77.64 29.32 � 13.36
PM10(mg/m3) 25.84 98.52 53.95 � 17.60
NO2(mg/m3) 10.21 37.00 21.02 � 4.75
SO2(mg/m3) 7.02 17.26 9.43 � 1.71
CO(mg/m3) 0.54 1.21 0.68 � 0.13
O3 (mg/m3) 38.51 102.03 69.22 � 11.34
migration index
Im 0.24 2.29 0.83 � 0.43
Em 0.24 2.20 0.83 � 0.41
Inner 2.09 5.41 3.99 � 1.02

Table 4
Association between confirmed cases of COVID-19 and influencing-factor variables.

variable correlation coefficient P value

CO 0.450** <0.001
PM2.5 0.354** <0.001
PM10 0.205** <0.001
SO2 0.286** <0.001
AQI 0.424** <0.001
wdsp �0.137* <0.05
temp �0.449** <0.001
prcp �0.270** <0.001
gust 0.453** <0.001
C8 �0.628** <0.001
Im 0.323** <0.001
Em 0.323** <0.001
Inner 0.471** <0.001

Table 5
Variables associated with confirmed cases of COVID-19 in different days of lag.

variable Lag 0 Lag 03 Lag 07 Lag 014

CO 0.450** 0.455** 0.423** 0.424**
NO2 �0.146* �0.158* �0.186** 0.008
O3 �0.552** �0.530** �0.551** �0.485**
PM2.5 0.354** 0.367** 0.363** 0.389**
PM10 0.205** 0.207** 0.183** 0.266**
SO2 0.286** 0.276** 0.240** 0.287**
AQI 0.424** 0.409** 0.376** 0.383**
wdsp �0.137* �0.124 0.087 �0.016
temp �0.449** �0.462** �0.490** �0.514**
prcp �0.270** �0.263** �0.281** �0.360**
gust 0.453** 0.424** 0.415** 0.428**

Table 6
Multiple linear logistic regression.

Model Unstandardized coefficients Standardized coefficients t Sig.
B Std.Error Beta

(Constant) 3467.569 679.181 5.106 <0.001
temp �62.550 8.204 �0.749 �7.624 <0.001
gust �105.026 32.241 �0.300 �3.258 <0.001
Inner 19.815 2.810 0.434 7.050 <0.001
C8 �863.962 83.534 �0.774 �10.34 <0.001
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utbreak and transmission of an epidemic occur mainly through
he influence on the source of infection, the route of transmission,
nd the susceptible population. The spread of COVID-19 may be
losely related to some natural, social, and economic factors as well
s prevention and control policies, such as controlling the source of
nfection and cutting off transmission routes. Recently, researchers
ave shown that meteorological parameters such as temperature
nd humidity are potential environmental factors affecting the
utbreak of COVID-19. This is consistent with the research results
f meteorological parameters in this paper. After controlling
opulation flow for the first time, (Liu et al., 2020) compared the
elationship between meteorological parameters and COVID-19,
nd the results showed that low weather conditions, moderate
emperature range, and low humidity were conducive to the
pread of COVID-19. Fattorini and Regoli (2020) studied the
elationship between atmospheric pollutants (NO2, O3, PM2.5, and
M10) and the transmission of COVID-19 in Italy, showing that
ong-term exposure to atmospheric pollution may be a favorable
nvironment for the transmission of the virus. This is also
onsistent with this paper's research results, which show that
ir pollution concentration plays a positive role in the transmission
f COVID-19.
In our society, most of these factors need to function through

he population, so the spread of the COVID-19 epidemic is highly
orrelated with population movements, which may exacerbate the
pread of novel coronavirus and pose a severe threat to human life
nd public health. Based on the migration intensity of the outflow
opulation in Wuhan, this study describes the population flow in
anuary, February, and April. Due to the blockade, the population
utflow scale index in Wuhan decreased significantly in February,
ut after the blockade was lifted in March and April, the migration
cale index began to rise gradually. Ran et al. (2021) showed that
arge-scale social unrest in the United States may be related to the
ebound of COVID-19's transmission power. However, previous
tudies only analyzed the influencing factors of the COVID-19
pidemic on a spatial scale. This study elaborates on the natural
nd social influencing factors of the epidemic change in prefecture-
evel cities in China. Surprisingly, due to the mutual restriction of
ultiple factors, the factors removing collinearity may lead to
refecture-level city differences, showing a certain spatial scale
ffect, thus removing many potential influencing factors. There-
ore, the causes and mechanisms of the spatial scale effect are
orth further study.
This paper also has some limitations. The factors that affect the

pread of the epidemic are very complex. Based on the available
ata, this paper constructed an indicator system that affects the
pidemic's multi-factors (Pei et al., 2020). Other non-quantitative
ndicators may have been ignored, which increases the inadequacy
f the evaluation of the study results. Without access to detailed
nformation (such as age, sex, medical history, and smoking status)
bout those patients diagnosed with COVID-19, it is impossible to
etermine how the underlying health problems may have
ontributed to the spread of the COVID-19 infection; this may
ave weakened the study results. In addition, regional differences
n medical capacity and socio-economic status may also affect the
umber of COVID-19 patients. However, attempts to analyze
ossible external environmental impacts are essential for protect-
ng healthcare professionals and the containment of the COVID-19
pidemic (Lian et al., 2020). Future studies may be helpful in
onsidering the epidemiological parameters and social context of

was established to study the COVID-19 epidemic. This paper used
the ArcGIS spatial statistical method to analyze the spatial-
temporal pattern of the COVID-19 epidemic and explore various
influencing factors to analyze the outbreak and transmission of the
epidemic in China from January to October 2020, and reached the
following conclusions.

(1) Global spatial autocorrelation was used to confirm that there
was a spatial correlation among the confirmed cases of COVID-
19 in China, and the correlation characteristics were firstly
increased and then decreased. However, considering local
spatial autocorrelation, the correlation characteristics tend to
be stable with the passage of time, and are mainly composed of
high/low aggregation regions. The hot spots have also
stabilized over time in the provinces surrounding Hubei
(Henan, Hunan, Anhui, and Jiangxi).

(2) Spatial and temporal clustering, high incidence area, and time
of confirmed cases of COVID-19 were explored by using a
spatial and temporal scanning analysis method. Hubei
Province (2020/1/27-2020/3/1) had the highest RR(491.57);
that is, the clustering risk in this region was 491.57 times
higher than that of other regions.

(3) Among social factors, the migration index was positively
correlated with confirmed cases of COVID-19. It shows that in
the early stage of the epidemic, with the expansion of the scale
of migration, the probability of disease is greater. The
government response strictness index is negatively correlated
with international travel restrictions, indicating that under the
current situation of effective control of the epidemic in China, it
is necessary to pay close attention to population migration,
especially international travel, thereby limiting human-to-
human transmission and ultimately helping to contain the
outbreak in China.

(4) For natural factors, the correlation test between the new cases
of COVID-19 every day and the concentration of air pollution
and meteorological variables showed that temperature was
negatively correlated with the newly confirmed cases,
indicating that the ambient temperature had a particular
inhibitory effect on the transmission of COVID-19. Air pollution
indicators (CO, PM2.5, PM10, SO2) and air quality index (AQI)
were positively correlated with newly confirmed cases.
Meanwhile, in the lag effect, the average temperature increases
with the increase of cumulative lag days.

In conclusion, the transmission rate of COVID-19 in China has
evident spatial variation, and the spatio-temporal aggregation is
also apparent. Research shows that population migration, air
pollution concentration, and temperature on the spread of COVID -
19 played a positive role; government response strictness index,
namely the related policy-making plays an inhibitory effect on
COVID-19 spread.
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