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Abstract

Motivation

Local protein structure is usually described via classifying each peptide to a unique class

from a set of pre-defined structures. These classifications may differ in the number of struc-

tural classes, the length of peptides, or class attribution criteria. Most methods that predict

the local structure of a protein from its sequence first rely on some classification and only

then proceed to the 3D conformation assessment. However, most classification methods

rely on homologous proteins’ existence, unavoidably lose information by attributing a pep-

tide to a single class or suffer from a suboptimal choice of the representative classes.

Results

To alleviate the above challenges, we propose a method that constructs a peptide’s struc-

tural representation from the sequence, reflecting its similarity to several basic representa-

tive structures. For 5-mer peptides and 16 representative structures, we achieved the Q16

classification accuracy of 67.9%, which is higher than what is currently reported in the litera-

ture. Our prediction method does not utilize information about protein homologues but relies

only on the amino acids’ physicochemical properties and the resolved structures’ statistics.

We also show that the 3D coordinates of a peptide can be uniquely recovered from its struc-

tural coordinates, and show the required conditions under various geometric constraints.

Introduction

Due to fast development of machine learning and statistical inference methods, recent years

brought significant progress in protein local structure classification and prediction [1, 2]. The

predicted structure of local protein fragments serves as a critical component in most global

protein folding models, along with homology information and physicochemical properties of

amino acids [3].
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In the context of local structure prediction, the ultimate goal is to reconstruct the atomic

coordinates of a protein fragment as precise as possible, given its amino acid sequence. A lot

of information can be drawn from the known structures of the fragments with similar char-

acteristics. For that reason, many local structure prediction methods rely on these fragments’

classification into certain structural classes. These can be secondary structure-based classifi-

cations, as well as classifications based on so-called structural alphabets or protein blocks

(PBs) [4].

Secondary structure assignments predominantly exploit hydrogen bond information to

group protein fragments. One of the widely used such methods, DSSP, clusters protein 5-mers

into eight classes: Seven of the groups reflect certain structural patterns, such as α-helices, β-

sheets, 3/10 helices et.c., and the eighth “blank” group is used if no other structural pattern

applies [5]. In another structural assignment method STRIDE, Frischman et al. extend the

DSSP definition of individual secondary structures: Apart from the hydrogen bonds, it

includes criteria based the dihedral angle frequencies [6]. The DSSP and STRIDE assignments

yield interpretable structural classes, and methods such as PSIPRED and SSpro8 predict sec-

ondary structure from the protein sequence with high accuracy [7, 8].

On the other hand, a structural alphabet may suffer in terms of interpretability, but it

does not usually contain a “blank” undefined class. The aim here is to cover the full range of

known conformations with a relatively small set of representative structures. There are vari-

ous approaches to do so: Some exploit the distance matrix between Cα atoms of the back-

bone fragment and use the cumulative distance between the corresponding matrix elements

to measure dissimilarity between two protein fragments [9, 10]. Sander et al, for instance,

proposed a structural alphabet containing 27 clusters of 7-mer fragments [9]. Using a

slightly different approach, Hahn et al. first cluster fragments based on their sequence

similarity, and then examine structural variation within clusters [11]. The ones with high

within-cluster variation are discarded, while others are kept to represent sequence neigh-

bourhoods. One of the most used structural alphabets at the moment has been developed

by de Brevern et al. [12] There, the authors clustered all non-redundant five-mer peptides

available in the PDB at that time into 16 groups based on the RMSDA (root mean square

deviation of angle) distance between the peptides. The authors refer to this alphabet as pro-

tein blocks (PB).

Joseph et al. review various applications of the Protein Blocks (PB): Multiclass local protein

structure prediction (LOCUSTRA), structural alignment (PB-ALIGN and iPBA), identifica-

tion of functional structural motifs in proteins et.c. [2, 13–15].

These and most other methods for local structure prediction available in the literature are

multiclass predictions: Namely, a protein fragment is assigned to the most similar protein

block. However, there is significant variation in structure within some clusters: Even if cor-

rectly classified, two protein fragments may have the same cluster assignment but be notably

different in structure. This may hamper the use of Protein Blocks or other structural alphabets

when atomic coordinates of a protein fragment need to be reconstructed with high resolution.

Here we propose a new approach for using alphabets of basic structures, which aids at

recovering the 3D coordinates of a protein fragment. By representing a query fragment in

terms of distances to each of the basic structures in the alphabet structures, we retain the infor-

mation needed to reconstruct the 3D coordinates unambiguously. We also show that this

approach yields better multiclass prediction accuracy than the current gold-standard. Addi-

tionally, we present a simple lower bound for the number of basic structures needed for unam-

biguous coordinate reconstruction, which depends on the length of the protein fragment and

whether certain bond length, bond angles and dihedral angles are assumed fixed.
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Results

Relation of RMSD- and RMSDA-based assignments

For local structure classification and prediction, one of the most used sets of protein structures

is a set of the 16 protein blocks (PBs) presented by De Brevern et al. [12]. These PBs serve as

cluster centres: A given protein structure is classified according to its nearest protein block

and assigned the corresponding cluster label. In the original article, the authors use the

RMSDA (root mean square deviation of angular values) between the corresponding backbone

atoms to define the distance between two protein fragments of the same length.

Protein Blocks are five-residue long structural fragments defined through their dihedral

angles. Alternatively, one can represent PBs with their 3D coordinates under a common

assumption that the bond angles and bond lengths have their standard values, and the omega

angle is 180 degrees.

Here we use the same PBs as cluster centres, but utilise their representation via 3D coordi-

nates. The assignment is then based on the RMSD distance: Namely, a query protein fragment

is assigned the labels of its RMSD-closest protein block. We then compared the RMSD-based

assignment (referred to in capital letters) with the assignment calculated using the RMSDA

(lower case letters), utilising a set of protein fragments from the PDB30 (further referred to as

training-PDB30 and described in Methods). Remarkably, the two assignments agree only for

69.6% of the 5-residue fragments.

To investigate the assignments’ difference, we first assessed if the coarse characterisation of

a cluster depends on the distance choice. For that, we used the characterisation used in the

original article. As expected, the RMSD-clusters’ coarse characterisation agrees with the one

presented by de Brevern et al.: Namely, if a cluster consists of N-cap β structures in its RMSDA

composition, the same holds for the RMSD composition (see Table 1). Similarly, if a cluster

consists mainly of coils, it will hold for both RMSD- and RMSDA- based compositions.

Further, we investigated each cluster separately. For the clusters that describe the major reg-

ular structures, such as α–helices (M) and β–strands (D), the clusters’ relative compositions

differ only slightly between RMSDA and RMSD (Fig 1A–1C): The RMSD-assignment of the

fragments agrees with their RMSDA labels by 97,4% and 88% correspondingly. However, one

may note that this relation is one-sided, i.e. if a fragment was classified as M or D using RMSD,

it will most likely be assigned m or d respectively by RMSDA. The reserve is not true: Far not

every m fragment (RMSDA) will be attributed to cluster M by RMSD (Fig 1C). We believe this

asymmetry is due to the following fact: A five-residue fragment has 8 dihedral angles; a change

in the central ones may cause a larger RMSD between the two fragments, while the same

change in one of the flanking angles would influence the distance less. In both cases, the

RMSDA between the fragments would be the same. This consideration would be even more

valid for non-regular structures further.

For the clusters that describe less regular structures but relatively similar to those above (K,

L, N being the closest to the α− helices, and C, E, F to the β–strands), the agreement between

RMSDA- and RMSD-assignments is weaker (Fig 1C). However, most of the varying classifica-

tions for these clusters usually fall within the group of β-sheet-like (C, D, E, F) or α-helix-like

(K, L, M, N) structures. We have also observed that the RMSD between the central structures

PBc, PBd and PBe is small, explaining some of the assignment discrepancies within the beta-

sheet group (S6 Table and S5 Fig in S1 File). Similarly, the RMSD between PBm and PBn

explains why some of the m–fragments from the RMSDA assignment are classified as N by

RMSD.

Finally, the most considerable discrepancy between RMSDA- and RMSD- assignments

appears for clusters that cover irregular structures: (G, H, I, J). Fig 1A shows that for the G-
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fragments that deviate from PBg by 0.5Å or more, it is unclear to which of the RMSDA-clusters

it can be assigned, both regular or irregular. A similar assignment discrepancy can be observed

for the remaining irregular clusters I, J and E. In comparison, the distance between almost any

two cluster centres (PBs) is larger than 1Å(see S6 Table in S1 File).

While RMSDA- and RMSD-assignments agree well for regular structures and compact

clusters (such as m or d), the less regular the structure, the higher the discrepancy between the

two assignment systems is. In the context of the clusters that cover irregular structures, the two

distances have a qualitatively different meaning, and the choice of the distance has to be con-

sidered with care. Since further we will aim at the coordinate reconstruction rather than frag-

ment classification, we will need to approximate distances between atoms. For this purpose,

we will utilise RMSD.

RMSD recovers ambiguity of RMSDA

Dihedral angles of a protein fragment represent one of the most important characteristic of the

structure, and researchers often rely on this characteristics to classify structures. For instance,

the standard alpha-helical fragment of five residues would have the following dihedral angles:

ϕi = −57, ψi = −47, i = 1, . . ., 5. Therefore, it is only logical to use an angle-based distance

(RMSDA) between protein fragments to assess their similarity.

However, we have noticed that two protein fragments may have the same RMSDA to the

standard helical structure but their actual alignment in 3D may differ significantly. Fig 2 shows

an example to illustrate so: Four protein fragments of 5 residues (in green) aligned to the stan-

dard helical fragment (red). For the fragments in (A)-(C), RMSDA of the green and the red

structures is the same (14 degrees is a relatively small value of RMSDA for both data sets we

Table 1. Description of protein clusters in terms of RMSD.

RMSDA RMSD

PB PB freq % PB freq % mean Å sd Å neighbours (ordered by distance) coarse characterization

A 3.68 5.34 0.85 0.78 gcpfedbihkljomn N-cap β

B 4.29 5.70 0.91 0.90 phfkeagcdiljmno N-cap β

C 8.31 4.52 0.81 0.72 de fagpbkhilmjno N-cap β

D 18.68 12.84 0.62 0.45 ce fagbphkilmjno β

E 2.18 3.75 0.83 0.75 fdc abgphkjilmno C-cap β

F 6.45 5.79 0.83 0.75 e dcabgphkjimlno C-cap β

G 1.14 6.01 1.00 1.04 acpfebidohjklmn mainly coil

H 2.1 1.33 0.90 0.89 kj bpogfinamlecd mainly coil

I 1.49 3.83 0.95 0.97 oplnmjgakbhfced mainly coil

J 0.83 1.73 0.90 0.87 h koipgbnamlfecd mainly coil

K 5.25 5.33 0.69 0.53 h jbpnmliofgaecd N-cap α

L 5.2 4.65 0.59 0.45 mn ikobgpahjfced N-cap α

M 32.98 30.26 0.24 0.12 ln ikobhgjpafced α

N 1.78 3.38 0.63 0.51 ml ikojhbgpafecd C-cap α

O 2.44 2.16 0.68 0.58 ijnghlmkapbfced C-cap α

P 3.29 3.37 0.83 0.81 baigkchfjedlomn C-cap α to N-cap β

The ‘PB’ column states the name of the protein block in accordance with de Brevern et al. [12]; ‘PB freq’ is the relative frequency of the instances of a corresponding

cluster among all protein fragments, the clusters are composed of the nearest neighbours to the corresponding protein block in terms of RMSDA or RMSD. The ‘mean’

and ‘sd’ columns show the mean and the standard deviation of the RMSD of the corresponding clusters, in angstroms (Å). The ‘neighbours’ column shows the nearest

Protein Blocks to the corresponding PB, in terms of RMSD. The coarse characterization corresponds to the classical secondary structure.

https://doi.org/10.1371/journal.pone.0239793.t001
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investigated, see Methods for details). Yet, the 3D dissimilarity between the standard helix and

the first fragment is very small, whereas the second and the third fragments are noticeably dif-

ferent from the standard alpha-helix. The fourth fragment represents a rare case of the peptide

bond angle ω 6¼ 180: in terms or RMSDA it is identical to the alpha-helix, while the two struc-

tures are considerably different.

Fig 1. Relation between assignments based on RMSDA and RMSD. A shows the percentage (Y-axis) of matching RMSDA- and RMSD assignments

among all the RMSD assignments for a given cluster that lie within a certain distance (X-axis) from the cluster centre, i.e. the corresponding protein

block (PB); B shows the reverse of A, namely, the percentage of matching RMSDA- and RMSD assignments among all the RMSDA assignments for a

given cluster that lie within a certain RMSDA-distance (X-axis) from the centre; C shows the percentage of matching assignment for each RMSD-

cluster among all fragments. The full set of fragments for this investigation is PDB30 (see Methods for details).

https://doi.org/10.1371/journal.pone.0239793.g001
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These examples illustrate that structural similarity between protein fragments is not cap-

tured by the RMSDA measure entirely. Another situation in which RMSDA may under- or

overestimate the similarity between two three-dimensional fragment may be, for instance, if

all their dihedral angles are identical except for one angle in the middle (for instance, ψ3 in a

5-residue fragment): These structures will not align close, even though their RMSDA may be

small. In short: Angle values in the middle of a fragment have higher impact on its 3D align-

ment to the reference fragment, as compared to the flanking angles.

In contrast, RMSD is prone to such position-specific effect due to the way it is defined:

The two protein fragment are first aligned against one another to find the relative position in

which they are most similar (in terms of RMSD), which makes it more robust against the posi-

tion-specific effect we observed for RMSDA. Based on these considerations, we chose to use

RMSD as distance measure between protein fragments over RMSDA proposed in the original

article [12].

Reconstruction of the backbone conformation

Here we aim to show that distances to PBs can be used as “alternative coordinates”, from

which one can unambiguously reconstruct the conformations of a protein. There, a five-resi-

due fragment with a known structure is represented by 16 numbers: The RMSDs between the

fragment and each of the PBs. Let the distances to the protein blocks PBa, PBb, . . ., PBp be

denoted as ð~R1;
~R2; . . . ~R16Þ correspondingly.

If we now forget the structure of the original fragment but retain only ð~R1;
~R2; . . . ~R16Þ,

would this information be enough to reconstruct the structure of the original fragment? To

investigate this, we proposed an optimisation scheme similar to the one in Molecular Dynam-

ics but with a different loss function.

Let us fix a conformation of a five-residue fragment x using its dihedral angles:

Cx ¼ fc1; �2;c2; �3;c3; �4;c4; �5g;

Fig 2. Discrepancy examples between RMSDA and RMSD. Structural alignment of a 5-residue protein fragments

(green) against the standard alpha-helical structure (red) with dihedral angles ϕi = −57, ψi = −47, i = 1, . . ., 5. The

examples (A)-(C) are chosen such that to highlight that one can find a (green) fragment with the same RMSDA

distance value to the reference (red) fragment but varying RMSD. In (D), on the contrary, we show an example of a

(green) fragment that has RMSDA of 0 to the reference (red), but a large RMSD. Dihedral angles of the fragment (A)

are ϕi = −61.1, ψi = −42.8, i = 1, . . ., 5, its RMSDA to the standard helix is 14.1˚ and its RMSD to the standard helix is

0.09 Å; Dihedral angles of the fragment (B) are ϕi = −32.9, ψi = −42.9, i = 1, . . ., 5, its RMSDA to the standard helix is

14.1421 and its RMSD to the standard helix is 1.0065; Dihedral angles of the fragment (C) are all ϕi = −57, ψi = −47,

except for ϕ3 = −17, its RMSDA to the standard helix is again 14.1421 and its RMSD to the standard helix is 0.74.

Dihedral angles of the fragment (D) are all ϕi = −57, ψi = −47, except ω3 = 0 instead of the usual 180.

https://doi.org/10.1371/journal.pone.0239793.g002
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For the proposed fragment x, we can also calculate RMSDs to the protein blocks (let the nota-

tion for them be Ri = Ri(C), i = 1, . . ., 16). If the structures of the original fragment and the

proposed fragment x are similar, the 16 distances should be the approximately the same, i.e.

~Ri � RiðCÞ; i ¼ 1; . . . ; 16

However, if the distances are the same, it does not guarantee that the original fragment and

fragment x have similar structures. To check that, we attempted to reconstruct an exemplary

structure’s dihedral angles, its actual values shown in Table 2. For that, we minimised the

squared loss as a function of angles

LðCyÞ ¼
X16

i¼1

ð~Ri � RiðCyÞÞ
2
;

using two optimization methods: The method of conjugate gradients and the Fletcher-Powell

algorithm, the starting point for both algorithms was set to C0 = (0, 0, 0, 0, 0, 0, 0, 0) [16, 17].

Table 2 shows that both methods reached the true values of dihedral angles with high accuracy.

This example allows to conclude, that such alternative coordinates, at least in this exemplary

case, retain the information needed to reconstruct the structure of a protein fragment.

Number of PB needed for reconstruction

We have seen that with 16 basic structures (protein blocks), it is possible to reconstruct the

backbone coordinates of a 5-residue protein fragment, given the bond lengths and most of the

bond angles are fixed, and the omega angle is assumed 180 degrees. However, it is not always a

valid assumption: We have assessed the PISCES30 dataset and observed that approximately

0.27% of the residues take the cis conformation (omega of 0 degrees). This agrees with the

0.31% reported by Joseph et al. [18]. Consequently, we expect 0.27%�4> 1% of five-residue

fragments to have at least one residue in the cis conformation. For a longer protein fragment,

such cis/trans conformations may be equilibrated. However, if not, disregarding the cis confir-

mation may cause a significant prediction error. Additionally, some omega angles deviate

from 180 degrees in trans conformation: We observed more than 7% residues’ omega in

PISCES30 to deviate from the straight angle by mo than 10 degrees. Altogether, these devia-

tions from the ideal trans conformation may lead to a noticeable loss in precision.

Table 2. Predicted and actual angles.

True angles Conj. Grad. Fletcher-Powell

ψ1 108.2 108.0 108.2

ϕ2 -90.1 -90.0 -90.1

ψ2 119.5 119.5 119.5

ϕ3 -92.2 -92.0 -92.2

ψ3 -18.0 -18.4 -18.1

ϕ4 -128.9 -128.6 -128.9

ψ4 147.0 147.4 147.0

ϕ5 -99.9 -100.4 -99.9

Predicted and actual dihedral angles of the protein fragment x. The ‘True angles’ are the actual dihedral angles of the

protein fragment x; the ‘Conjugate Gradients’ and ‘Fletcher-Powell’ show the angle values reconstructed from the

distances to the 16 protein blocks using the conjugate gradients and Fletcher-Powell algorithms correspondingly.

https://doi.org/10.1371/journal.pone.0239793.t002
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Here we calculate the minimal number of basic structures required in the general case. Let

us consider a N-residue fragment, each amino acid corresponds to three backbone atoms (N,

Cα, C), and each atom has three coordinates in 3D. Thus, to define the position of the back-

bone, one needs 9N degrees of freedom. Further, if the backbone is shifted along X, Y or Z
axis, the structure is unchanged—thus, one can omit the 3 translational degrees of freedom.

Similarly, the three rotational degreed of freedom do not represent the protein structure, and

can be omitted as well. In most proteins, the change in bond lengths can be neglected—there-

fore, one may subtract 3N − 1 degrees of freedom. Fixing bond angles would subtract addi-

tional 3N − 2 degreed, and setting the ω angle (peptide bond) to 180 would release another

N − 1 degrees of freedom. Table 3 sums up these considerations.

Therefore, for a 5-residue fragment with all bond length and bond angles considered fixed,

one would need at least 12 (fairly unrelated) basic structures to reconstruct the conformation

of the backbone. With the same restrictions for a 9-residue fragment, at least 24 basic struc-

tures would be required.

Benchmarking Q16

Here we return to the classification problem and benchmark our method against the two lead-

ing tools for protein local structure prediction: LOCUSTRA and PB-kPred [12, 13]. In order

to achieve comparable figures, we use the same protein fragment size (five residues) and the

same set of proteins as in PB-kPred (PDB30) for our model training and testing.

S8 Table in S1 File represents the prediction accuracy calculated for each structural cluster.

shows that for clusters B, D, F, G, J, K, M, O and P out method has higher prediction accuracy

than the two other methods, whereas for clusters A, C, H and N PB-kPred shows a better per-

formance. Overall, the accuracy of our Q16 classification is 67.9% using the PDB30 data set

which is 6% higher than the one reported for PB-kPred for the same dataset [19]. We have also

included the number reported by LOCUSTRA, however, those were calculated for a dataset

different from the PDB30, therefore, the reported numbers cannot be compared directly to our

method or PB-kPREd, but rather bring an overview.

Importantly, unlike the two other prediction methods, our model does not rely on the

information about homologous proteins. Therefore, the distribution of prediction accuracies

for our method is a unimodal Gaussian, but not bimodal as for PB-kPred, where the high pre-

diction accuracy corresponds to those proteins that have close homologs outside the training

sample (see S1 File).

Further, we have used a slightly larger and more up-to-date dataset PISCES30 to assess our

method’s classification accuracy. For that, we have partitioned the PISCES30 into a training set

(3/4 of the protein chains) and s test set (1/4 of the protein chains). The Q16 accuracy on this

Table 3. Degrees of freedom.

Geometric constraints deg. of freedom

Positions of all 3N atoms 9N
Rotation and Translation invariance 9N − 6

Bond lengths are fixed 6N − 5

Bond angles are fixed 3N − 3

Peptide bond angles ω are fixed 2N − 2

The minimal number of degrees of freedom required to describe an N-residue protein backbone, given a set of

geometric constraints.

https://doi.org/10.1371/journal.pone.0239793.t003
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data set was 72%, which is even higher than for the PDB30. We believe the increase in predic-

tion performance, in this case, is due to PISCES30 being composed only of proteins structures

resolved by X-Ray. The previous dataset PDB30 contains a fraction of proteins resolved by

NMR, including membrane proteins. The physicochemical properties of those proteins differ

drastically from those of non-membrane. However, our prediction model is based on the phys-

icochemical properties and trained largely in non-membrane proteins, it is not suited for the

membrane proteins.

Benchmarking using Structural Words

Further, we assessed the RMSD- and RMSDA-based assignments’ performance in the case of

overlapping protein fragments. Namely, we borrowed the idea of Structural Words from de

Brevern et al. [20]: There, the authors use the structural alphabet of PBs to represent the struc-

ture of peptides longer than five residues. For instance, a five-letter Structural Word mnopa
would represent a fragment of nine residues, where the first five residue fragment is assigned

to PBm, the 2-6 residues fragment to PBn, the 3-7 to PBp etc. Among other things, the research-

ers investigated which of the five-letter structural words are most common among the resolved

structures. Further, they assessed the distribution of RMSD within each structural group of the

top SWs.

We have reproduced the above procedure for two types of Structural Words: Those based

on RMSDA-assignment, which corresponds to the original article, and those based on RMSD.

For that, we chose a 1000 protein chains at random from PISCES30 (see Methods for the data-

set description), assigned a lower-case Structural Word to each nine-residue fragment using

RMSDA, and an upper-case Structural Word using RMSD. Table 4 shows that the most com-

mon SWs are almost identical for both assignments. This served as a quality check of the

RMSD-based assignment.

Further, following the original article, we calculated RMSD between each pair of fragments

assigned to the same SW group, using N, Cα, C atoms. We observed that the RMSD assignment

almost always yields a more compact structural cluster, the data for the top occurring SWs in

Table 4. Additionally, we discovered that the RMSD assignment yields approximately 7000 SWs,

while RMSDA less than 4000 (for this particular draw of 1000 protein chains, it was 7232 upper-

case SWs and 3731 lower-case). To ensure that the above results are not affected by possible sam-

pling biases, we repeated all the calculation presented in Table 4 and observed similar figures.

We, therefore, conclude that RMSD assignment brings in improvement both in terms of

precision of the Structural Words (lower within-group variability) and has higher descriptive

flexibility (a larger set of words).

Materials and methods

Structure database generation

Datasets for training and testing. We use two different datasets throughout the paper,

further referred to as PDB30 and PISCES30.

PDB30. The PDB contains a high number of nearly identical molecules, which may add

undesired confounding factors at the model training step. To alleviate this, we used a represen-

tative set of sequence-unique structures with high resolution. Furthermore, to ensure that our

results are comparable to those from the PB-kPRED prediction method, we opted for the

PBD30 dataset comprised by Vetrivel et al. [19]. The PBD30 dataset contains 15,544 protein

chains restricted to 30% sequence identity according to BLASTclust characterisation [21].

Among the sequences that shared more than 30% identity, the researches chose one represen-

tative protein chain that corresponds to the best available structure. Out of the 15,544
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structures, over 14000 were crystallographic, approximately 1100 were NMR-resolved, and

209 were solved by electron microscopy. The full list of the PDB identifies can be found at

http://pbpred.eimb.ru/S/LS.txt.

The training and testing sets were obtained by partitioning the full set of 15,544 protein frag-

ments into five equally sized subsets. Further, four of these subsets are used for training, and the

remaining subset is used for testing. We refer to them as training-PDB30 and test-PDB30.

PISCES30. The PISCES dataset is an updated version of the PDB, culled by resolution and

sequence identity [22]. We used the resolution cutoff of 2.5 Angstrom, the R-factor cutoff of

1.0 and the allowed for sequence identity of 30%. In total, the PISCES30 dataset contains 17148

protein chains, the structures of which are resolved by X-Ray (no NMR-resolved structures).

Dissimilarity measure. To classify each of the pentapeptides from the training set, we use

the 16 protein blocks (PB) developed by de Brevern et al., also referred to as Q16 [12]. Since

PBs have the same length of five residues, one can calculate RMSD (root mean square devia-

tion) between a pentateptide and a protein block PBi, i = 1, . . ., 16.

The smaller the RMSD is, the closer the two protein fragments are in terms of structure.

Further, we define a similarity measure:

DðV1;V2Þ ¼
1

lþ RMSDðV1;V2Þ
; ð1Þ

Table 4. Structural Words for RMSDA and RMSD assignments.

Structural Word % fragments RMSDA as. % fragments RMSD as. av. RMSD for RMSDA av. RMSD for RMSD ratio

MMMMM 17.691 15.834 0.729 0.512 1.423

DDDDD 4.036 2.124 1.746 1.231 1.418

LMMMM 2.440 2.205 0.942 0.741 1.271

KLMMM 2.313 2.130 1.239 0.940 1.318

FKLMM 1.965 1.330 1.589 1.139 1.395

CDDDD 1.754 0.857 1.783 1.314 1.356

DDDDF 1.399 0.722 1.826 1.376 1.327

MMMMN 1.268 1.703 0.801 0.716 1.118

MMMNO 1.237 1.047 1.020 0.742 1.374

MMNOP 1.117 0.981 1.301 1.025 1.269

DDDFK 1.108 0.397 1.911 1.360 1.405

MNOPA 1.063 0.652 1.632 1.186 1.376

DDFKL 0.959 0.212 1.978 1.329 1.488

DFKLM 0.956 0.240 1.933 1.227 1.575

ACDDD 0.916 0.763 1.738 1.387 1.253

BDCDD 0.861 ��� 1.954 ��� ���

FBDCD 0.747 ��� 2.159 ��� ���

DDDFB 0.735 0.450 1.940 1.427 1.359

CCDDD 0.724 0.077 1.874 1.358 1.379

DCDDD 0.662 0.057 1.917 1.207 1.588

The most common Structural Words for the PISCES30 dataset, obtained through RMSDA- and RMSD-based structural assignments. The SWs are sorted by the

topmost common by the RMSDA assignment. The percentage of 9-residue fragments assigned to each SW class is shown in columns two and three: the second column

for the RMSDA assignment and the third column for the RMSD. Columns four and five show the average distance between the backbone atoms N, Cα, C of the

fragments assigned to the same SW, for each assignment respectively; the last column shows the ratio of the distances in columns four and five. The ��� sing stands for

the SWs that were not present in the RMSD-based assignment.

https://doi.org/10.1371/journal.pone.0239793.t004
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where λ is a fixed constant such that λ� 0. Here large values of D correspond to more struc-

turally similar fragments. To assign a five-mer protein fragment to one of the Q16 classes, we

calculate its similarity value to each of the 16 protein blocks PBi, i = 1, . . ., 16.

DiðV1Þ ¼ DðV1; PBiÞ; i ¼ 1; . . . ; 16;

and choose the class with the highest similarity value.

Structural alignment

Computation of the RMSD between two protein fragments requires optimisation over all pos-

sible alignments of these fragments against each other. Kabsch et al. introduced an optimisa-

tion procedure and showed that it reached the minimum of the RMSD function [23, 24]. We

adapted a version of this procedure implemented by Gans and Shalloway in their tool Qmol,
and integrated it into our pipeline [25].

RMSDðV1;V2Þ ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3M

i¼1

½x1
i � x2

i �
2
þ ½y1

i � y2
i �

2
þ ½z1

i � z2
i �

2

3M

v
u
u
u
t ð2Þ

where M is the number of residues in a fragment (in the original article M = 5), V1 and V2 denote
the fragments, and x1

i ¼ xiðV1Þ; y1
i ¼ yiðV1Þ; z1

i ¼ ziðV1Þ; i ¼ 1; . . . ; 3M denote Cartesian
coordinates of the backbone atoms N, Cα, C of the M–residue fragment V1, and the minimum is
taken over all spatial co-localization of the two fragments V1 and V2.

Feature generation

Generation of a comprehensive pool of features is the main and most laborious step of the pre-

diction algorithm.

The sequence of a protein fragment can be characterised by the properties of amino acids

forming this fragment as well as its flanking regions. At the model selection step, we tried

flanking regions of various length, including the complete protein sequence. Two main types

of information were used to generate a predictor pool: Physico-chemical properties of amino

acids and RMSD distribution of fragments with the identical sequence to each of the protein

blocks PBi, i = 1, . . ., 16.

RMSD-based predictors. Reflect the distribution of distances from a given sequence frag-

ment to the 16 protein blocks. These distributions are derived from the identical sequence

instances in the training set. Unsurprisingly, we encountered the following problem: For

sequence fragments of five amino acids, there are 205 = 3200000 possible letter combinations.

Thus, even for five-residue peptides, certain sequence combinations are massively underrepre-

sented in the training set, which makes it impossible to acquire reliable statistics on their

structure.

To alleviate this, we developed so-called reduced amino acid alphabets, where certain

amino acids are seen as identical. In this definition, identical sequence fragments can be

described as regular expressions. For instance, all aliphatic amino acids ([GAVLI]) or sulfur-

containing amino acids ([CM]), or all aromatic amino acids ([YWF]) may be assigned a single

identity class. These rules may differ based on the position of the amino acid inside a protein

fragment, because for instance, the central amino acid may have a stronger influence on the

predicted structure. All reduced amino acid alphabets are available in the Supplementary via

http://pbpred.eimb.ru/S/reduced_alphabets.zip.
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After sequence identity classes are defined, we calculate the minimal sufficient statistics for

the distance distribution of each identity class. Namely,

fNoccðseqÞ; m
jðseqÞ; sjðseqÞg; j ¼ 1; . . . ; 16

where Nocc(seq) is how many times instances of the sequence seq occur in the training sample,

μj(seq) and σj(seq) are the mean and variance estimates of the RMSD between the fragments

from the current identity class and the j–th protein block. Further, we applied various non-linear

transformations to generate a pool of predictors. Fig 3 schematically represents the predictor

generation procedure. One example of an RMSD-based predictor a t-statistics-like function,

which captures differences between an identity of a certain sequence class and the whole sample.

This and a more detailed description of the generation procedure can be found in S1 File.

Physico-chemical properties. Of amino acids were acquired from the AAindex database

[26]. Among the 550 different properties present in the database, we used various scales of

hydrophobicity, flexibilities of amino acid residues, solvation free energy et.c. We will illustrate

predictor generation with an example: Assume, there is a sequence fragment of n residues {a1,

. . ., an}. Each amino acid {ai, i = 1, . . ., n} has a certain value of hydrophobicity {Hi, i = 1, . . .,

n}. Further, a functional transformation was applied to the array of property values {H1, . . .,

Hn}, i.e. F(H1, . . ., Hn). In the current example, the functional transformation reflects a peri-

odic change of hydrophobicity with period T in a given fragment of n residues:

FðH1; ;HnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

k¼1

Hk cos k
2p

T

� � !2

þ
Xn

k¼1

Hk sin k
2p

T

� � !2
v
u
u
t ð3Þ

For other physico-chemical properties, functional transformations may be different. Fig 4

illustrates the general procedure for generating this kind of predictors. Note that at this step,

no alphabet reduction was used.

Model fitting

Further, we train a linear regression model to estimate the similarity Di(V) (1) between a pro-

tein fragment V and each of the protein blocks PBi. Assume ŷ is the estimate of Di(V) for some

i = 1, . . ., 16, and {x1, . . ., xp} are all the predictor values generated above. Then,

ŷ ¼ b0 þ b1x1 þ � � � þ bpxp; ð4Þ

where β0, . . ., βp are the regression coefficients. In order to fit the regression coefficients, we

Fig 3. Generation of predictors based on RMSD statistics between a protein fragment and the 16 basic protein blocks, schematic representation.

https://doi.org/10.1371/journal.pone.0239793.g003

Fig 4. Generation of predictors based on physico-chemical properties of amino acids comprising a protein fragment, schematic representation.

https://doi.org/10.1371/journal.pone.0239793.g004
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adapted the method of stepwise linear regression, with bidirectional elimination of predictors.

Model fitting procedure is described in details in S1 File.

Discussion

The rapidly increasing amount of information about protein structures, coupled with advances

in machine learning, opens many possibilities to tackle the problem of protein structure pre-

diction. One of the common limiting factors in local structure prediction is the availability of

homologues to the target protein in the PDB. Another challenge is recovering the coordinates

of the protein backbone given its sequence.

In this work, we introduced a novel approach to predicting local structure that does not

rely on information about protein homologues. It is particularly useful for predicting the

local structure of those proteins that do not have any homologues in the PBD. Mainly, we

decomposed a complex multidimensional problem of protein stricture prediction into several

one-dimensional regression tasks. Each regression problem aims to quantify the relationship

between a protein sequence, the statistics of its structural conformations and the physicochem-

ical properties of its amino acids.

Using an appropriate feature space is one of the keys to achieve high prediction accuracy

for almost every leaning algorithm. We believe, the main contribution of our method is the

generation of a comprehensive pool of features adapted for various challenging scenarios.

In particular, rare sequence fragments posed a significant challenge for training our model.

To tackle this, we developed a so-called reduced alphabet: Sequence fragments were mapped

to specific regular expressions which took physicochemical properties of the amino acids into

account to form new sequence identity classes. This way, we achieved more abundant identity

classes with presumably similar conformation properties.

Another set of the features with high predictive power relies on the physical properties of

the structural fragments. For instance, predictor (3) reflects the periodic change of hydropho-

bicity. When the periodicity value T = 3.6, it corresponds to a feature with the highest predic-

tive power for alpha-helical conformation (Protein Block ‘m’). Thus, when the value of this

feature is high, hydrophobic and hydrophilic residues are likely to face opposite direction,

which is energetically favourable for a helical fragment on the surface of a protein.

To benchmark our method against the current gold standard, we used the same set of pro-

teins for training and testing as in PB-kPred, and the same set of 16 basic structures (protein

blocks). For this dataset, we achieved the Q16 classification accuracy of 67.9% independent of

the availability of homologues, which is higher than the 40.8% to 66.3% depending on the

availability of homologues by PB-kPred [12].

Nevertheless, the comparison between alignment methods and their performance is not

straightforward, and requires to use a range of different criteria [27]. Not only it cannot be cap-

tured by the Q16 classification accuracy alone, it is also important to point out that two assign-

ment performed with different distance measures are not exactly the same thing. They may

describe very different classes of structures even if the same set of reference PBs or even the

same dataset is used.

One major difference between our method and PB-kPred is that RMSD but not RMSDA

was used to measure the distance between two protein fragments. Although the calculation of

RMSD seems at first computationally more demanding, currently available implementation

allowed us circumvent largely expensive computations. We have shown that for local structure

prediction, RMSD measure has considerable advantages. Structures that are close in terms of

RMSDA may not align well in 3D, while for RMSD it always holds. Further, we have split all

5-residue protein structures into 16 clusters based on the nearest protein block in terms of
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RMSD. The clusters that corresponded to regular structures (alpha-helix, beta-sheet) had a

high overlap with those based on RMSDA. In contrast, clusters with variable structural compo-

sition differed between the two distance measures.

Further, as a proof of concept, we reconstructed the structures of several protein fragments

solely from the (actual) RMSD values between a fragment and the 16 protein blocks. Using the

notion of degrees of freedom, we established the lowest number of basic structures required to

reconstruct the conformation of a protein fragment of a given length, with various geometric

constraints. In practice, the reconstruction may benefit from a larger number of basic struc-

tures since distances to protein blocks are predicted and contain a certain amount of noise. In

future works, we aim to determine the optimal set of basic structures and their effective num-

ber via clustering based on RMSD. This way, the protein blocks will be most variable in terms

of the same metric as the one used in the regression model.

The small fraction of membrane and NMR-resolved proteins structures in the PDB30 data-

set may not be explained well by our prediction model. Garbuzynskiy et al. show that NMR-

resolved structures have systematic differences form the protein structures resolved by X-ray

[28]. This batch effect needs to be accounted for if the structures from both methods are to

be used together. Additionally, the connection between a protein structure and its physico-

chemical properties varies drastically between the membrane and non-membrane proteins.

Multi-class prediction performance of our method was indeed higher (72%) for the dataset

PISCES30, which only contained structures resolved by X-Ray.

The proposed approach can be further extended to several scenarios: Fast PDB mining for

similar structures using predicted distances to the basic protein blocks. In molecular dynamics,

researchers use predicted structures of small protein fragments as an initial approximation

and constraints for the model. To this end, we believe that protein blocks of different length

may be needed and utilised together.
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