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As modern biotechnologies advance, it has become increasingly frequent that different modalities of high-dimensional molecular
data (termed “omics” data in this paper), such as gene expression, methylation, and copy number, are collected from the same
patient cohort to predict the clinical outcome. While prediction based on omics data has been widely studied in the last fifteen
years, little has been done in the statistical literature on the integration of multiple omics modalities to select a subset of variables
for prediction, which is a critical task in personalized medicine. In this paper, we propose a simple penalized regression method
to address this problem by assigning different penalty factors to different data modalities for feature selection and prediction. The
penalty factors can be chosen in a fully data-driven fashion by cross-validation or by taking practical considerations into account.
In simulation studies, we compare the prediction performance of our approach, called IPF-LASSO (Integrative LASSOwith Penalty
Factors) and implemented in the R package ipflasso, with the standard LASSO and sparse group LASSO.The use of IPF-LASSO
is also illustrated through applications to two real-life cancer datasets. All data and codes are available on the companion website
to ensure reproducibility.

1. Introduction

Most drugs cannot treat all patients with a given disease.
It is thus crucial to identify biomarkers (genetic, genomic,
proteomic, or any measurable biological entities) that can
predict the patient’s response to a given therapy. Ultimately,
the biomarkers are to be built into companion diagnostic kits.
Ideally, the number of biomarkers should be small to reduce
the labor and cost.

High-throughput molecular data, termed “omics data”
in this paper, have been used for developing prediction
models formore than fifteen years. As a well-known example,
gene expression data have often been found to be useful for
predicting survival response to therapy of cancer patients; the
overwhelming enthusiasm in the initial years has meanwhile
been tempered by more critical studies [1]. In the last few
years, bioassay technology improvement and cost reduction

have made collecting several types of high-dimensional data
in the same study feasible.

For example, methylation data, copy number data, and
mRNA expression may be available for the same patient
cohort. Other data types include microRNA expression,
proteomic data, metabolomic data, and single nucleotide
polymorphisms (SNPs). In this paper, we denote each group
of variables of the same type as a “modality” and the whole
dataset as a “multi-omics” dataset. For example, in this paper,
we consider as illustration a breast cancer dataset with a
clinical modality and a gene expression modality [2] and a
leukemia dataset from The Cancer Genome Atlas [3] with
a clinical modality, a gene expression modality, and a copy
number variation modality.

As multiple modalities of biomarker measurements
become available for the same patients, the research interest
starts to focus on the integration of datamodalities to identify
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biomarkers and build prediction models with good accuracy
[4, 5]. Although using omic markers for prediction has
been a well-studied topic, it is not clear how the different
modalities should be handled. The most straightforward yet
naive approach is to merge all datasets and ignore the source
of the variables. In contrast, other authors suggest analyzing
each modality on its own and then merging the results [6],
whereby merging can be performed at different stages of the
analysis [7]. However, the literature is often vague on when to
use different strategies.

The case of variables from one low-dimensional modality
(typically, a few clinical variables relevant to the outcome
to be predicted) and one high-dimensional modality (e.g.,
a microarray gene expression dataset) has been extensively
investigated by De Bin et al. [8], where they assess the
“residual” two-step approach and the “favoring” approach
(see Section 2.2 for more details).

There has been a large amount of statistical and bioinfor-
matic literature on the integration of multiple omics datasets
investigating their correlation structure [9]. However, the
focus of these works is not prediction. Our motivation here
is to suggest a simple method based on a well-investigated
framework, which takes into account the data modalities
while integrating them into a sparse prediction model. Our
method is based on 𝐿1-penalized regression (LASSO) [10]
and takes the data structure into account by assigning
different penalty factors to themodalities.The penalty factors
are either determined by cross-validation or prespecified
by the user. We name this method IPF-LASSO (Integrative
LASSO with Penalty Factors).

In simulation studies, we show that IPF-LASSO performs
better than the standard LASSO when the proportions
of relevant variables are different in different modalities
and generates parsimonious prediction rules compared with
sparse group LASSO. An R package called ipflasso imple-
menting this method is made publicly available on R/CRAN
website. Being directly based on LASSO, our approach has
twomajor advantages: its conceptual simplicity within a well-
established framework and its transportability [11] (e.g., in the
case of binary outcomes, users only need to know the fitted
regression coefficients to apply the prediction rule).

This paper is structured as follows. After a short introduc-
tion into 𝐿1-penalized regression, the newly proposed meth-
od is described in detail in Section 2. The results from
simulation studies and two real-life applications are present-
ed in Sections 3 and 4, respectively. All data and codes
are available on http://www.ibe.med.uni-muenchen.de/
organisation/mitarbeiter/020 professuren/boulesteix/ipflasso/
to ensure reproducibility.

2. Methods

2.1. IPF-LASSO

2.1.1. Principle. We denote the standardized predictor vari-
able 𝑗 measured from subject 𝑖 as 𝑥𝑖𝑗 and the centered
(continuous) response values as 𝑦𝑖, where 𝑖 = 1, . . . , 𝑛 and𝑗 = 1, . . . , 𝑝. The standard LASSO method [10] solves the

𝐿1-penalized regression problem by finding 𝛽 = {𝛽𝑗} which
minimizes ∑𝑛𝑖=1(𝑦𝑖 − ∑𝑝𝑗=1 𝑥𝑖𝑗𝛽𝑗)2 + 𝜆∑𝑝𝑗=1 |𝛽𝑗| = ∑𝑛𝑖=1(𝑦𝑖 −∑𝑝𝑗=1 𝑥𝑖𝑗𝛽𝑗)2 + 𝜆‖𝛽‖1, where ‖ ⋅ ‖1 denotes the 𝐿1-norm. The𝐿1-penalty shrinks some of the coefficients to 0, thus leading
to an intrinsic variable selection. For a historical overview of
the development of LASSO regression and some variations,
readers can refer to Tibshirani [12].

This framework can be generalized to logistic regression
(in the case of a binary outcome) and to Cox proportional
hazards regression (in the case of a censored time to event).
The term ∑𝑛𝑖=1(𝑦𝑖 − ∑𝑗 𝑥𝑖𝑗𝛽𝑗)2 is replaced by −ℓ(𝛽, 𝛾) (whereℓ(⋅, ⋅) stands for the log-likelihood function and 𝛾 for the
intercept) in the logistic LASSO and is replaced by −𝑝ℓ(𝛽)
(where 𝑝ℓ(⋅) stands for the partial log-likelihood) in the
Cox LASSO. Our new method is a modification of LASSO
dedicated to the case where multiple data modalities (data
types) from the same subjects are to be used. Let us denote
the variables from modality 𝑚 (for 𝑚 = 1, . . . ,𝑀) as𝑋(𝑚)1 , . . . , 𝑋(𝑚)𝑝𝑚 and their values for subject 𝑖 (for 𝑖 = 1, . . . , 𝑛)
as 𝑥(𝑚)𝑖1 , . . . , 𝑥(𝑚)𝑖𝑝𝑚 , where 𝑝𝑚 is the number of variables from
modality𝑚. Similarly, 𝛽(𝑚)𝑗 denotes the coefficient of variable𝑋(𝑚)𝑗 .

We propose the use of a weighted sum of the 𝐿1
norms of the coefficient vectors of each modality 𝛽(𝑚) =(𝛽(𝑚)1 , . . . , 𝛽(𝑚)𝑝𝑚 )⊤ (𝑚 = 1, . . . ,𝑀) as the penalty term, aiming
to account for their different relevancies. In our method, the
estimated coefficients are those that minimize

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑀∑
𝑚=1

𝑝𝑚∑
𝑗=1

𝑥(𝑚)𝑖𝑗 𝛽(𝑚)𝑗 )2 + 𝑀∑
𝑚=1

𝜆𝑚 𝛽(𝑚)1 , (1)

where 𝜆𝑚 > 0 is the penalty applied to the variables from
modality 𝑚. We call this method “IPF-LASSO,” standing for
Integrative LASSO with Penalty Factors. The term “penalty
factors” refers to the multiplicative factors applied to the
penalty term. Without restriction of generality, we consider
the first modality as referencemodality—with penalty 𝜆1 and
penalty factor 1—and define the penalty factor of modality𝑚
as 𝜆𝑚/𝜆1.

Similar to the standard LASSO, our proposed framework
can be applied to 𝐿1-penalized regression with linear, binary,
or time-to-event outcomes. The rationale of the penalty term
given in (1) is that in reality the proportion of relevant
variables is often highly different from one modality to
another; hence, it makes sense to penalize the modalities
differently.

The Bayesian interpretation of the LASSO is useful to
outline the motivation of the different penalty parameters.
Park and Casella [13] show that the LASSO estimate for
linear regression parameters can be interpreted as a Bayesian
posterior mode estimate when the regression parameters
have independent Laplace (i.e., double-exponential) priors.
In this perspective, using different penalties for different
modalities amounts to setting different parameters for the
Laplace priors. It can be seen as a way of using the available
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prior information to improve the estimation of coefficients
and, ultimately, prediction accuracy.

Note that our approach may also be seen as connected
with the adaptive LASSO [14], in the sense that the coeffi-
cients of variables that are identified as informative are less
penalized than the coefficients of noninformative variables.
However, in contrast to adaptive LASSO [14], this modifica-
tion of the penalty strength does not happen through a first
LASSO step for each variable individually but at the level of
the whole modality.

2.1.2. Estimation. From a computational point of view, IPF-
LASSO with fixed penalty factors is not more complex than
the respective form of LASSO (linear, logistic, or Cox) with
the same penalty for all variables, in that estimates can
be simply obtained with any standard LASSO algorithm
by preliminarily scaling the variables using their respective
penalty. More precisely, the standard estimation algorithm
is run with the same penalty parameter 𝜆1 for all variables
on the transformed data 𝑥(𝑚)∗𝑖𝑗 = 𝑥(𝑚)𝑖𝑗 /(𝜆𝑚/𝜆1) (𝑖 = 1, . . . ,𝑛, 𝑗 = 1, . . . , 𝑝). Estimates 𝛽(𝑚)∗𝑗 are obtained and rescaled as𝛽(𝑚)𝑗 = 𝛽(𝑚)∗𝑗 /(𝜆𝑚/𝜆1) to obtain the IPF-LASSO estimates.

2.2. Connections between IPF-LASSO and Other LASSO Vari-
ations for Omics Data. There have been LASSO variations
for single and multiple data modalities proposed by several
groups. In this section, we discuss the connections of IPF-
LASSO to these methods. In the scenario investigated by
De Bin et al. [8], we have two modalities (𝑀 = 2). The
first modality includes only a small number 𝑝1 of clinical
variables, such that a classical regression approach can be
applied to this modality (the rule of thumb that the number
of variables times 5 or 10 should not exceed the number of
observations is typically satisfied). The second modality is
high-dimensional with 𝑝2 ≫ 𝑛. In this case, it is sensible
to penalize only the second modality, that is, to consider the
penalty term 𝜆‖𝛽(2)‖1. In the terminology of De Bin et al.
[8], the above is denoted as a “favoring” method, because the
smaller clinical modality is not penalized; in other words, it
is “favored.” Another method, namely, the “residual” method
as proposed in De Bin et al. [8], takes two steps fitting the
data. First a classical (linear, logistic, or Cox) regression is fit
to the first modality to estimate 𝛽(1)1 , . . . , 𝛽(1)𝑝1 ; the resulting
linear predictor 𝛽(1)1 𝑥(1)𝑖1 + ⋅ ⋅ ⋅ + 𝛽(1)𝑝1 𝑥(1)𝑖𝑝1 is then considered
as an offset during the estimation of 𝛽(2)1 , . . . , 𝛽(2)𝑝2 through
LASSO regression. These two methods, however, cannot be
applied when there aremultiple high-dimensionalmodalities
because it would not be feasible to estimate the coefficients.
Moreover, they may lead to a decrease of accuracy if the
favored modality is in reality not the most relevant for
prediction.

Another two-step approach for prediction is proposed
by Zhao et al. [6]: they first apply LASSO regression to
multi-omics data to select a small number (10 in their
application) of variables from eachmodality and then use the
selected variables in a 𝐿2-penalized Cox regression model.

This approach does not take correlations between variables
from different modalities into account.

Group LASSO [15, 16] and sparse group LASSO [17]
represent another category of LASSO extensions for data
with a group structure. In the case of multiple modalities,
the term “group” is essentially “modality.” The principle of
group LASSO is that variables from the same group should be
either all selected or all discarded. Itmakes sense, for example,
when each group consists of the dummy variables coding
the samemulticategorical variable.The penalty considered in
the group LASSO method has the form 𝜆∑𝑀𝑚=1√𝑝𝑚‖𝛽(𝑚)‖2.
With multiple large omics modalities considered in our
paper, it is most likely that at most a few variables from each
modality are truly relevant for prediction; hence, this “none-
versus-all” assumption is not reasonable in this case.

Sparse group LASSO [17] relaxes the “none-versus-all”
assumption by introducing some sparsity within groups.
This is achieved by combining the penalty of group
LASSO with an 𝐿1 penalty, yielding the penalty term(1 − 𝛼)𝜆∑𝑀𝑚=1√𝑝𝑚‖𝛽(𝑚)‖2 + 𝛼𝜆‖𝛽‖1, where 𝛼 is a so-called
“mixing parameter” comprised between 0 and 1. Sparse
group LASSO can be used in cases where IPF-LASSO is
aimed at addressing where a modality is treated as a group.
However, these two methods are fundamentally different. In
sparse group LASSO, a single mixing parameter 𝛼 balances
the impact of group structure and overall sparsity; thus, a
model that strongly reflects the group structure is obtained
at the price of reduced sparsity; moreover, the degree of 𝐿1
shrinkage is the same for all groups (modalities) as controlled
by 𝛼, which often does not reflect reality. IPF-LASSO, on
the other hand, is more flexible in varying the 𝐿1 shrinkage
parameters for different modalities—at the price of more
tuning parameters (one for each modality) in the case of
more than two modalities. In Section 3, we will compare the
performances of IPF-LASSO and sparse group LASSO.

Another recently proposed approach handling two
modalities in the framework of penalized regression is col-
laborative regression [18].The idea is using a penalty not only
based on the 𝐿1- or 𝐿2-norms of the coefficients but also
penalizing the difference between the fitted linear predictors
resulting from each of the twomodalities.The twomodalities
“collaborate” in the sense that they are forced to yield similar
contributions to prediction. In the mathematical terms and
adapted to our notation, the penalty term considered inGross
andTibshirani [18] is ‖X(1)𝛽(1)−X(2)𝛽(2)‖2+𝑃1(𝛽(1))+𝑃2(𝛽(2)),
where 𝑃(⋅) is the general notation for a penalty term that
can, for example, be based on the 𝐿1- or 𝐿2-norm and X(𝑚)
denotes the 𝑛 × 𝑝𝑚 data matrix for modality 𝑚 (with 𝑚 =1, 2 here). Note that Gross and Tibshirani [18] state that this
method is not well suited for prediction but rather finds
common patterns shared by the twomodalities by forcing the
fitted linear predictors from each modality to be similar.

For the sake of exhaustiveness, let us also mention an
applied paper on plant breeding [19] using the idea of
applying different penalties to variables from two different
modalities (genetic markers and metabolomic traits in their
case), however, in the different context of ridge regression
(i.e., 𝐿2-penalty as opposed to LASSO) for a continuous
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outcome. In their study, published in a genetics journal
and focusing on the agricultural application, they apply this
method to their dataset and do not investigate it from a
methodological point of view. A similar approach based on𝐿2-penalized logistic regression [20] formalizes and extends
this idea with the purpose to better integrate external data
such as annotation or external 𝑝 values.

In summary, the IPF-LASSO proposed here is aimed
at using multiple high-dimensional data modalities in a
flexible way by weighing them differently in feature selection
and prediction modelling, which is a critical yet unsolved
problem in biomedical research.

2.3. Cross-Validation for the Choice of the Penalty Parameters.
In this section, we discuss the choice of the parameters𝜆1, . . . , 𝜆𝑚. Similar to 𝜆 in the case of the standard LASSO,
values for the penalty factors 𝜆1, 𝜆2/𝜆1, . . . , 𝜆𝑀/𝜆1 can be
determined by cross-validation (CV) based on prediction
performance. In our study, we use 5-fold CV with 10 repeats
as a good compromise between performance and compu-
tation time [21]. Common metrics quantifying prediction
performance include the mean squared error for continuous
outcomes, the misclassification rate (or 1 − accuracy), the
area under the ROC curve (AUC) for binary outcomes, or
the partial likelihood for time-to-event outcomes. In practice,
we implement the procedure as follows. We consider 𝐶
different candidate vectors of penalty factors of the form
s(𝑐) = (1, 𝜆2/𝜆1, . . . , 𝜆𝑀/𝜆1)⊤, with 𝑐 = 1, . . . , 𝐶; for each
candidate vector s(𝑐) of penalty factors, we apply CV with
the chosen performance metric to select the optimal 𝜆1; the
vector s(𝑐opt) of penalty factors whose optimal 𝜆1 yields the
best fit according to the chosen performance metric is finally
selected.

2.4. Software Implementation. IPF-LASSO is implemented in
our new R package ipflasso, which is publicly available
from the CRAN. It is based on the R package glmnet and
includes the following features and improvements.

Rescaling Procedure. The rescaling procedure described in
Section 2.1.2 is implemented in the R package glmnet
[22] through the argument penalty.factor. This argu-
ment has the form penalty.factor=c(rep(1,p1),...,
rep(pfM,pM)) in IPF-LASSO, where p1,. . .,pM are the
sizes of the 𝑀 modalities and pfM stands for 𝜆𝑀/𝜆1 (note
that the result is invariant against multiplication of the
vector of penalty factors by a scalar). The functions from
our package ipflasso automatically generate the argument
penalty.factor when given the indices of the variables
from each modality and the values 𝜆𝑚/𝜆1 (𝑚 = 2, . . . ,𝑀).

Cross-Validation for the Choice of 𝜆1. For a fixed set of penalty
factors, 𝜆1 can be selected using the function cv.glmnet
from package glmnet [22]. However, cv.glmnet cannot
perform repeated CV in its current version. An extended ver-
sion of cv.glmnet allowing repetition of CV is implemented
in the function cvr.glmnet from our package ipflasso.
Repeated CV applied in combination with penalty factors

for variables from different modalities is implemented in the
function cvr.ipflasso.

Cross-Validation for the Choice of Penalty Factors. Finally,
the R package ipflasso also includes a function,
cvr2.ipflasso, to perform CV in the two dimensions of
the grid: choice of 𝜆1 for fixed penalty factors and choice
of the penalty factors 𝜆𝑚/𝜆1 (𝑚 = 2, . . . ,𝑀). It takes the
candidate sets of penalty factors s(1), . . . , s(𝐶) as an argument.
The function cvr2.ipflasso allows one to set a maximal
number of variables to be included in the final model. The
CV-based choice of the parameters is then performed only
over values yielding models of this size or sparser.

As an example, the following simple code performs 5-fold
cross-validation repeated 10 times to choose the best penalty
factors out of s(1) = (1, 1), s(12) = (1, 2), s(3) = (1, 4), s(4) =(1, 1/2), and s(5) = (1, 1/4), where the 200 predictor variables
come from two modalities (one consisting of the 50 first
variables and the other consisting of the 150 last variables).> X<-matrix (rnorm(50∗200),50,200)> Y<-rbinom (50,1,0.5)> cvr2.ipflasso(X=X,Y=Y,

family="binomial",type.measure="class",
standardize=TRUE, blocks=list (block1=1 : 50,
block2=51 : 200), pflist=list(c(1,1),c(1,2),
c(2,1),c(1,4),c(4,1)),nfolds=5,ncv=10)

The criteria used for cross-validation currently imple-
mented in ipflasso are the mean squared error for contin-
uous outcomes, the misclassification rate or the area under
curve (AUC) for binary outcomes, and the partial likelihood
for time-to-event outcomes.

3. Simulations

3.1. Simulation Design. The goal of simulation studies is
to investigate the performance of IPF-LASSO and compare
it with other methods. We consider a binary dependent
variable and two high-dimensional data modalities. The two
modalities of variables vary in (i) their total numbers of
variables 𝑝1 and 𝑝2, (ii) their numbers of truly relevant
variables 𝑝𝑟1 ≤ 𝑝1 and 𝑝𝑟2 ≤ 𝑝2, and (iii) the effects 𝛽1 and𝛽2 of the relevant variables. In all settings, 𝐵 = 100 datasets of
size 𝑛 = 100 are successively randomly generated as follows.
Thebinary class is drawn from the Bernoulli distributionwith
probability of success 𝜏 = 0.5. The variables are then drawn
from the multivariate normal distributions:𝑋1, . . . , 𝑋𝑝1+𝑝2 | 𝑌 = 0 ∼ MN (0𝑝1+𝑝2 ,Σ) ,𝑋1, . . . , 𝑋𝑝1+𝑝2 | 𝑌 = 1 ∼ MN (𝜇,Σ) , (2)

where the (𝑝1+𝑝2)×(𝑝1+𝑝2) covariancematrixΣ is set to the
identity matrix I𝑝1+𝑝2 in themain design and themean vector
𝜇 is given as

𝜇
⊤ = (𝛽1, . . . , 𝛽1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝𝑟
1

, 0, . . . , 0, 𝛽2, . . . , 𝛽2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝𝑟
2

, 0, . . . , 0) . (3)
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Table 1: Combinations of 𝑝1, 𝑝2, 𝑝𝑟1, 𝑝𝑟2, 𝛽1, and 𝛽2 used for themain design. All other parameters are fixed (𝑛 = 100, 𝜏 = 0.5, Σ = I𝑝1+𝑝2 ). For
each setting, 𝐵 = 100 datasets are successively generated.𝑝1 𝑝2 𝑝𝑟1 𝑝𝑟2 𝛽1 𝛽2
Setting A 1000 1000 10 10 0.5 0.5
Setting B 100 1000 3 30 0.5 0.5
Setting C 100 1000 10 10 0.5 0.5
Setting D 100 1000 20 0 0.3
Setting E 20 1000 3 10 1 0.3
Setting F 20 1000 15 3 0.5 0.5

In the main design, we consider the settings (i.e., com-
binations of 𝑝1, 𝑝2, 𝑝𝑟1, 𝑝𝑟2, 𝛽1, and 𝛽2) displayed in Table 1.
Setting A reflects the unrealistic situation of two modalities
that are perfectly identical in terms of size (𝑝1 = 𝑝2 = 1000),
number/proportion of relevant variables (𝑝𝑟1 = 𝑝𝑟2 = 10),
and effects (𝛽1 = 𝛽2 = 0.5). In setting B, the proportions
of truly relevant variables are the same in both modalities
(𝑝𝑟1/𝑝1 = 𝑝𝑟2/𝑝2 = 0.03) and their effects are also equal,
but modality 1 is much smaller (𝑝1 = 100) than modality 2
(𝑝2 = 1000). In setting C, the sizes of the modalities are as
in setting B and the effects are also equal, but the numbers
of truly relevant variables (𝑝𝑟1 = 𝑝𝑟2 = 10) are such that the
proportions of truly relevant variables are different in the two
modalities (𝑝𝑟1/𝑝1 = 0.1 versus 𝑝𝑟2/𝑝2 = 0.01). This difference
is more pronounced in setting D: the proportions are 0.20 for
modality 1 and 0 for modality 2, a quite common situation
in practice (“useless omics data”). Setting E also reflects a
common situation: the small modality 1 (𝑝1 = 20) contains𝑝𝑟1 = 3 strong predictors (𝛽1 = 1), which is, for instance, often
the case of clinical variables or a small hypothesis-driven
biomarker panel. In contrast, the largemodality 2 (𝑝2 = 1000)
contains 𝑝𝑟1 = 10 weak predictor variables (𝛽2 = 0.3). Finally,
in setting F, the sizes of the modalities are the same as those
in setting E but there are more truly relevant variables in
modality 1 (𝑝𝑟1 = 15) and less ones inmodality 2 (𝑝𝑟2 = 3), and
their effects are equal (𝛽1 = 𝛽2 = 0.5). This situation, which
is intermediate between settings D and E, is also common in
practice.

For all 𝐵 = 100 datasets within each of the six settings
(A–F), we derive prediction models using four different
methods.

IPF. Our method IPF-LASSO is applied, with candidate
penalty factors (1, 2𝑘) for 𝑘 = −3, −2, −1, 0, 1, 2, 3. Note that
when 𝑘 = 0, that is, when𝜆1 = 𝜆2, themethod is equivalent to
the standard LASSO. A 5-fold CVwith 10 repeats is used.The
criterion used in CV for selecting 𝜆 is the misclassification
rate. All the other parameters of the penalized regression
algorithm are set to the default values of the package glmnet.

Standard. The standard LASSO, that is, the modality struc-
ture, is ignored.This is equivalent to IPF-LASSOwith penalty
factors (1, 1) as unique candidate. The parameters are the
same as for IPF.

SGL. The sparse group LASSO [17] is as implemented in the
R package SGL [23]. A 5-fold CVwith no repeat is used as the
repeat option is not available in SGL. All parameters are set to
the default values of the package SGL except for thres, which
is set to 0.01 instead of 0.001 to keep the computational time
comparable with the other methods (our tests suggested that
the resulting loss of accuracy is minimal).

S. Separate models are fitted successively using the standard
LASSO. A 5-fold CV with 10 repeats is used to determine
the parameter 𝜆. The two resulting linear predictors are
then combined through a logistic regression model for
prediction.

In each simulation setting, prediction performance of all
fitted models is evaluated through an independently drawn
test dataset of size 𝑛test = 5000. The misclassification rate
and the area under curve (AUC) are computed with this
test set for comparison of the methods. Additionally, we also
depict (i) which penalty factor was selected by the cross-
validation procedure for IPF-LASSO and (ii) the number
of selected variables for all methods: IPF-LASSO, standard
LASSO, sparse group LASSO, and S.

Note that simulation results are strongly dependent on
the parameters and many other parameter settings are con-
ceivable. To gain a better idea of our method’s behavior, we
additionally consider a total of 33 other simulation scenarios,
results from which are presented in a more compact form.
These additional parameter settings are displayed in Supple-
mentary Table 1 (in Supplementary Material available online
at https://doi.org/10.1155/2017/7691937).

In real life, variables may be correlated both within and
acrossmodalities due to biological relationship. To investigate
whether correlation structure affects the method’s behavior,
we additionally consider settings, denoted as A to F, based
on settings A to F where a nondiagonal covariance matrix Σ
is used instead of I𝑝1+𝑝2 .

More specifically, we assume that each modality contains𝑏 = 10 groups of mutually correlated variables, corre-
sponding to a block diagonal covariance matrix within each
modality. Moreover, we assume correlation between the
variables from the 𝑗th group in modality 1 and the variables
from the 𝑗th group in modality 2. In our study, we consider
correlations of 𝜌 = 0.4 and use the (𝑝1 + 𝑝2) × (𝑝1 + 𝑝2)
covariance matrix Σ given as

https://doi.org/10.1155/2017/7691937%20
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Σ =(((((((
(

A𝑝1/𝑏 (𝜌) B𝑝1/𝑏,𝑝2/𝑏 (𝜌)
A𝑝1/𝑏 (𝜌) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

A𝑝1/𝑏 (𝜌) B𝑝1/𝑏,𝑝2/𝑏 (𝜌)
B𝑝2/𝑏,𝑝1/𝑏 (𝜌) A𝑝2/𝑏 (𝜌)⋅ ⋅ ⋅ ⋅ ⋅ ⋅

B𝑝2/𝑏,𝑝1/𝑏 (𝜌) A𝑝2/𝑏 (𝜌)

)))))))
)

, (4)

where all empty entries are zero, A𝑞(𝜌) (with 𝑞 = 𝑝1/𝑏 or𝑞 = 𝑝2/𝑏) is the (𝑞 × 𝑞)matrix with ones on the diagonal and𝜌 outside of the diagonal, and B𝑞1,𝑞2(𝜌) (with 𝑞1 = 𝑝1/𝑏 and𝑞2 = 𝑝2/𝑏 or vice versa) is the (𝑞1 ×𝑞2)matrix with all entries
equalling 𝜌. After generating the data from this multivariate
normal distribution, we randomly permute the columns
(i.e., the ordering of the variables), so that the informative
variables (corresponding to the first—nonzero—entries of
the vector 𝜇) are randomly distributed over the 𝑏 blocks.
3.2. Simulation Results

3.2.1. Main Simulation Results. Figure 1 displays the results
for settings A to F. Figures 1(a) and 1(b) show misclassifica-
tion rate and AUC (𝑦-axis) for different methods (𝑥-axis);
Figure 1(c) shows the numbers of the selected variables and
Figure 1(d) displays the penalty factors selected by cross-
validation by IPF-LASSO.

Sparse group LASSO (SGL) performs better in terms of
misclassification rate and AUC than IPF-LASSO in setting
A where the two modalities are identical, in setting B where
the proportions of truly relevant variables are the same, and
in setting C where the number of truly relevant variables
are the same. This observation indicates that when the two
modalities are very similar, SGL tends to produce models
with higher prediction performance.

Importantly, we notice that the improved prediction
performance of SGL over IPF-LASSO in this case comes at
a price of selecting substantially more variables into the final
model, as shown in Figure 1(c). For example, in setting A,
IPF-LASSO selects 24 variables (median over 100 simulation
runs) whereas SGL selectsmore than 150 variables; in settings
B and C, the numbers of the selected variables for SGL are
above 100.This can be a major inconvenience in reality when
both model size and prediction performance are relevant.
For instance, when developing a companion diagnostic kit
using biomarkers to predict patients’ response to treatment,
having a small set of around 10markers is preferable to having
over 100, from the point of view of cost- and labor-efficiency.
Therefore, although the accuracy of IPF-LASSO is lower in
some cases, itmight still bemore useful than SGL considering
the overall practical utility. The tuning parameter 𝛼 in SGL
can be adjusted to change the sparsity; however, fine-tuning
this parameter requires one more layer of cross-validation
(and a large increase of computation time) and is out of the

scope in this paper. Note that such a cross-validation is not
implemented in the package SGL, suggesting that it is not
particularly recommended by the authors.

In settings A, B, and C, the performance of the standard
LASSO is slightly superior to IPF-LASSO. It makes sense in
that when two data modalities are equally informative, giving
them the same penalty is expected to yield better results than
penalizing them differently. Due to the variability of cross-
validation, however, IPF-LASSO does not always recognize
that the best penalty factors are (1, 1), leading to a slightly
worse prediction performance.

In settings D, E, and F where two modalities are very
different in the proportions of truly relevant variables, IPF-
LASSO yields a better performance than the standard LASSO
and SGL. When there is a belief that one modality is more
relevant to the outcome than the other, IPF-LASSO might
thus be considered for prediction model building. This is
a common scenario in clinical biomarker development: for
example, we may have a small panel of protein markers
identified based on strong prior biological knowledge and
a profiling panel of whole-genome mRNA expression. Fig-
ure 1(d) for settings D, E, and F shows that, in IPF-LASSO,
cross-validation is able to recognize which modality should
be penalized more.

3.2.2. Summary of All Simulation Results. To further under-
stand the method performance with respect to the two
modalities in the simulations, we perform a large number of
simulations using further parameter settings as summarized
in Figure 2 (see Supplementary Table 1 for the corresponding
parameter settings). We compile all results from the 6 main
simulations and 33 additional settings, with one dot in each
of panels (a), (b), and (c) of Figure 2 representing one
simulation setting. Panel (a) shows the difference in median
AUC over 𝐵 = 100 simulation runs between IPF-LASSO and
the standard LASSO (red dots), or SGL (black dots). Panel
(b) shows the difference in median AUC against the true
model size (true number of predictors). Panel (c) contains the
difference in median AUC against a measure of the relative
size of the modalities: min(𝑝1, 𝑝2)/max(𝑝1, 𝑝2). Panel (d)
displays the distribution of the numbers of variables selected
by the three methods.

Panel (a) in Figure 2 suggests that the larger the difference
in proportions of truly relevant predictors between the
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Figure 1: Results for settings A to F: misclassification rate on test set (a), AUC on test set (b), number of selected variables (c), and penalty
factors selected by IPF (d).
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Figure 2: Panels (a), (b), and (c): difference Δ between the median AUC of IPF-LASSO and the median AUC of the standard LASSO (red
points) and between the median AUC of IPF-LASSO and the median AUC of SGL (black points) against simulation parameters. A positive
difference indicates better performance of IPF-LASSO. Each point on the scatterplots represents one of the 6 + 33 = 39 simulation settings.
Panel (a): Δ against the absolute difference |𝑝𝑟1/𝑝1 − 𝑝𝑟2/𝑝2| between the proportions of relevant variables in the two modalities. Panel (b):Δ against the true model size 𝑝𝑟1 + 𝑝𝑟2. Panel (c): Δ against a measure of the relative size of the modalities: min(𝑝1, 𝑝2)/max(𝑝1, 𝑝2). Panel
(d): Median number of selected variables for IPF-LASSO, standard LASSO, and SGL. Each boxplot represents the values obtained for the33 + 6 = 39 settings.
two modalities (|𝑝𝑟1/𝑝1 − 𝑝𝑟2/𝑝2|) is, the better IPF-LASSO
performs compared to the standard LASSO and SGL. The
simulation results in the 33 additional settings strengthen
the conclusion of the main simulation. Panel (b) suggests
that SGL works better than IPF-LASSO when there are large
numbers of true variables, probably because it tends to select
a lot more variables on average, as shown in panel (d). More
precisely, SGL selects more than 100 variables most of the

time, whereas IPF-LASSO selects only about 30 variables
on average. When the true model size is small, IPF-LASSO
is slightly better. The ratio min(𝑝1, 𝑝2)/max(𝑝1, 𝑝2) between
smaller modality size and larger modality size displayed in
panel (c) seems to impact the relative performance of IPF-
LASSO and the standard LASSO: the smaller the ratio, the
better the IPF-LASSO compared to the standard LASSO.
We note, however, that this apparent association may be
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confounded by the proportion of relevant variables depicted
in panel (a).

The results of settings A to F (with correlation) are
very similar to the results of settings A to F, as can be seen
from Figure 3. Correlation—at least the form of correlation
considered here—does not seem to substantially affect our
conclusions drawn with uncorrelated data.

4. Real Data Examples

4.1. TCGA Data

4.1.1. Data. We use publicly available data on acute myeloid
leukemia (AML) from The Cancer Genome Atlas [3].
Among those collected in this study, we consider three
modalities, one low-dimensional (clinical data) and two
high-dimensional, namely, microarray gene expressions and
somatic copy number alterations. The outcome is the overall
survival time (in month) of the patients, a possibly censored
time-to-event response.The data are available fromTheCan-
cer Genome Atlas repository, with reference name LAML.

Clinical variables are the age, the percentage of blast
cells in bone marrow, the white blood cell count per mm3
(continuous variables), and the sex. Preliminary analyses
(not shown) show that, for these variables, the proportional
hazards assumption is acceptable. One of the two molecular
modalities consists of 19,798 microarray gene expression
measurements from Affymetrix-U133 Plus 2. In the TCGA
repository, they are available at different processing stages.
Here we use the preprocessed data (level 3). As a second
modality, we consider the copy number alterations obtained
using Affymetrix SNP array 6.0. We download the data from
the repository following the procedure of Zhao et al. [6]. We
obtain 21,952 features, with values in {−2, −1, 0, 1, 2}. Each
variable is coded as two dummy variables, one for negative
alterations (values −2 and −1) and one for positive alterations
(values 1 and 2). The absence of alteration (value 0) is used as
the reference level. This modality includes 43,904 variables.

The clinical, gene expression, and copy number modali-
ties have 200, 173, and 191 patients, respectively, which results
in a total of 163 subjects with data for all three modalities.
Since in the original study the data are not separated into
training and validation sets, we generate this split randomly.
More precisely, we use around 2/3 of the observations (109)
for training our models (training set) and the rest (64)
to compute their prediction ability (validation set). In our
analysis, we consider 100 such random splits and present the
average results.

4.1.2. Results. We compare the prediction abilities of Cox
proportional hazards models obtained with the four different
approaches (IPF, standard, SGL, and S) for the AML data.
We also include the results from the nonparametric Kaplan-
Meiermethod (the nullmodel). Figure 4 shows the prediction
error curves based on the time-dependent Brier score [24] for
the obtained models. A lower Brier score indicates a better
prediction. More precisely, the prediction curves in Figure 4
report for each time point the mean of the 100 Brier scores

computed at that time in all the training/validation sets splits
considered in our analysis.

In this example, we note that IPF-LASSO (purple line)
performs better than the standard LASSO and SGL (red
and blue lines, resp.). Interestingly, if we apply LASSO
separately to the different modalities (green line), the results
are comparable to IPF-LASSO. The comparison in terms of
prediction ability can be also performed numerically by eval-
uating the integrated Brier score (IBS), which summarizes the
aforementioned curves into a single index. In this example,
the standard LASSO has the worst performance (average IBS
= 0.211), not much better than that of the null model (average
IBS = 0.217). SGL performs a bit better (average IBS = 0.203)
butworse than IPF-LASSO and S, which have both an average
IBS equal to 0.196. In terms of sparsity, although IPF-LASSO
and S have similar performance in terms of Brier score, IPF-
LASSO produces much sparser models than S. On average,
the numbers of variables in IPF-LASSO models and in S
models are 7.3 and 13.7, respectively, with the standard LASSO
between these two values (10.2). Not surprisingly, SGL (using
the default value for the tuning parameter, 𝛼 = 0.95) leads to
substantially largermodels, with an average of 53.64 variables.

4.2. Breast Cancer Data

4.2.1. Data. Hatzis et al. [2] study the performance of a
genomic signature for response and survival following
taxane-anthracycline chemotherapy in patients with ERBB2-
negative breast cancer. The outcome of interest is the (cen-
sored) distant relapse free survival time, that is, the time
interval between the initial diagnosis biopsy and either the
diagnosis of distant metastasis or death.The data are publicly
available from the Gene Expression Omnibus repository
with reference number GSE25066. This dataset contains two
modalities, one low-dimensional (clinical data) and one high-
dimensional (microarray gene expression data) modality.

Among the available clinical variables, we select age
(continuous), nodal status (4 categories), tumor size (4
categories), grade (3 categories), estrogen receptor (binary),
and progesterone receptor (binary) as described in De Bin et
al. [8]. The second (high-dimensional) modality consists of
22,283 microarray gene expression measurements measured
with Affymetrix-U133A GeneChip. We use the data prepro-
cessed and normalized in the original paper [2] but without
applying their first preselection step; that is, we consider the
information of all the available probe sets.

The dataset consists of a training set used for training
the genomic signature with 310 patients and a validation set
with 198 patients. They include 66 and 45 patients who died
(events), respectively. After removing subjects with missing
data, there are 283 (58 events) and 182 (41 events) subjects in
the training and validation datasets, respectively.

4.2.2. Main Results. Similar to the previous real dataset
analysis, here we compare the Brier scores generated from
the Cox proportional hazards models obtained with the
four methods, that is, IPF-LASSO, SGL, S, and the standard
LASSO, togetherwith the nullmodel from the nonparametric
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Figure 3: Results for settings A to F (with correlation): misclassification rate on test set (a), AUC on test set (b), number of selected variables
(c), and penalty factors selected by IPF (d).
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Figure 4: AMLdata. Prediction error curves computed up to 5 years
for the models obtained by standard LASSO (red line), S (green
line), SGL (blue line), and IPF-LASSO (purple line). The black line
represents the prediction error obtained with the null model (no
variables).

Kaplan-Meier method. Figure 5 reports the Brier score
computed on the validation set using the model trained on
the training set. As shown in Figure 5, IPF-LASSO, SGL, and
S perform very similarly overall. They are almost identical in
predicting events happening in less than 3 years. They are
better than the standard LASSO and the null model with
Kaplan-Meier. For events between 3 and 4 years, IPF-LASSO
and S seem slightly better than SGL; for events beyond4 years,
especially after 4.5 years, SGL appears better. However, these
differences are minimal. The Brier scores for methods IPF-
LASSO, S, SGL, the standard LASSO, and the null model are0.129, 0.127, 0.130, 0.134, and 0.136, respectively. In terms
of sparsity, we note that IPF-LASSO produces the sparsest
model with 10 variables, followed by the standard LASSO
with 20 variables and S with 27 variables. SGL generates a
huge model containing 1084 variables.

4.2.3. Flexible Choice of Penalty Factors. One advantage of
IPF-LASSO is the possibility of flexibly choosing differ-
ent weights for the different modalities. In this example,
we observe that the cross-validation procedure selects the
penalty factors (1, 32), which penalize themolecularmodality
much more than the clinical modality. This is not a surprise,
as several papers have shown the absence of a large added
predictive value of microarray gene expression data in the
case of breast cancer [8].

The best model from IPF-LASSO (with penalty factor(1, 32)) selects only clinical variables: age, estrogen receptor,
tumor size, number of nodes, and tumor grade, yielding
a total of 7 coefficients (since the number of nodes is
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Figure 5: Breast cancer data. Prediction error curves computed up
to 6 years for the models obtained by LASSO (red line), LASSO
applied separately to the three modalities (green line), sparse group
LASSO (blue line), and IPF-LASSO (purple line). The black line
represents the results obtained with the null model (no variables).

represented by 3 coefficients). If we reduce the penalty factor
of the molecular data, some gene expression variables get
included into the model. For example, when decreasing the
penalty factor of the molecular modality from 32 to 16 (i.e.,
the molecular modality is penalized 16 times more than the
clinical modality), the gene expression probe sets 203153 at,
203860 at, 217769 s at, and 219097 x at enter the model and
the clinical variable tumor grade is excluded. At this time, we
obtain a small improvement in the prediction ability of the
model on validation data (see Figure 6(a)). Decreasing the
penalty factor of the molecular modality to 8 leads to more
gene expression variables entering in the model, whereas
the prediction ability on validation data is similar to that
with penalty factor 16. A further decrease to 4 results in the
exclusion of one more clinical variable (the number of lymph
nodes) and the inclusion of more molecular variables. The
prediction ability of the model, however, decreases, support-
ing the idea of the strong relevance of clinical variables. Note
that the size of the model increases from 7 clinical variables
only (the best model with penalty factor of 32 for the clinical
modality) to 21 with penalty factor 4. If we further decrease
the relative penalty for the molecular modality, IPF-LASSO
does not select any clinical variable. If not adequately favored,
the clinical variables “get lost” among the molecular ones
due to the vastly different sizes of the two modalities. As a
consequence, the prediction ability of themodel worsens. For
example, with the penalty factors (1, 2), the integrated Brier
score increases to 0.120, a value close to that obtained for the
standard LASSO.
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Figure 6: Breast cancer data. (a) Integrated Brier score obtained with IPF-LASSO for different choices of penalty factors. The numbers
associated with the points are the numbers of selected clinical and molecular variables, respectively. For example, “(3-18)” indicates that for
the penalty factors (1, 4) the selected model includes 3 clinical variables and 18 molecular variables. (b)The negative partial likelihood against
the parameter 𝜆 for different penalty factors. The colors of the curves are the colors of the corresponding points in (a).

Figure 6(b) displays the cross-validated negative partial
likelihood (based on training data) against the parameter 𝜆
for the penalty factors (1, 2), (1, 4), (1, 8), (1, 16), and (1, 32).
Note that the colors of the curves are the colors of the cor-
responding points in the plot of the left panel. These curves
confirm that, according to cross-validation, the best model
is obtained for (1, 32) (the curves for more extreme penalty
factors, which we omit for visibility purposes, have a higher
minimum than those displayed in Figure 6(b)). The curves
also allow for visualizing the two-dimensional optimization
process performed by cross-validation: IPF-LASSO selects
the penalty factors and the value of𝜆 optimizing the criterion,
that is, the point with the smallest 𝑦-value across all curves.
4.2.4. Results with Binary Outcome. In addition to modelling
the distant relapse-free survival time, a secondary goal of this
study is to distinguish the patients with a pathological com-
plete response (RCB-I) from those with a significant residual
disease (RCB-II/RCB-III). Here, the pathological response
is a binary outcome. We now apply the four approaches
considered previously with logistic regression and use the
area under the ROC curve (AUC) as a performance metric
for the methods. In contrast to the Brier score, a larger value
of AUC corresponds to better prediction performance. The
AUC values for IPF-LASSO, S, SGL, and the standard LASSO
are 0.663, 0.712, 0.722, and 0.653, respectively. Regarding
the model sparsity, IPF-LASSO and S select a comparable
number of variables (50 and 46, resp.), while the standard
LASSO leads to the sparsest model (38 variables). Again
SGL provides a much larger model with 1128 variables.
Please note that this unfavorable result of our method is not
contradictory per se with the simulation results, since a real

dataset is but a point in the space of all possible datasets, and
the performance of methods is highly variable across datasets
[25]. In this paper, we make the choice to honestly report
this unfavorable result and not to report only the results
that make our method look better, following Rule 4 (“do not
fish for datasets”) of the good practice recommendations by
Boulesteix [26].

5. Discussion

In this paper, we addressed an important question in biomed-
ical research, namely, how to integrate multiple (possibly
correlated) data modalities with different sizes and different
relevancies to the outcome, with the aim of generating
a sparse prediction model. We proposed an 𝐿1-penalized
regression method, IPF-LASSO, that penalizes the data
modalities differently. IPF-LASSO is flexible in determining
the penalty factors—they can be chosen in a completely data-
driven manner by cross-validation or specified by user. IPF-
LASSOworks with continuous, binary, or survival dependent
variables; and predictor variables can be continuous, categor-
ical, and a mixture of both. IPF-LASSO is implemented in
our R package ipflasso but could in principle be integrated
within any package implementing 𝐿1-penalized regression,
such as glmnet. Most importantly, being directly based on
LASSO, our approach has two major advantages: its concep-
tual simplicity within a well-established framework and its
computational transportability allowing easy application of
the resulting prediction rules by other researchers.

Simulation studies have demonstrated that IPF-LASSO
has better prediction performance compared to competitors
(standard LASSO, separate LASSOmodels, and sparse group
LASSO), when the two data modalities are different in
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terms of relevance for prediction, and performs slightly
worse if the modalities are similar. More importantly, in both
simulations and real case studies, IPF-LASSO is shown to
generate muchmore parsimoniousmodels than sparse group
LASSO, which is a much desired property from a practical
perspective.

In principle, IPF-LASSO is designed for any number 𝑀
of modalities. It assigns one penalty factor to each modality,
with its value controlling how much a modality is penalized
when fitting the model. In practice, however, the choice of
the penalty factors is a computational bottle-neck, since the
computation time required by full cross-validation grows
exponentially with𝑀.With today’s computational capacities,
full cross-validation is manageable only for up to, say,𝑀 = 4
modalities. In contrast, sparse group LASSO has one unique
parameter for allmodalities; hence, it is not able to distinguish
differences in modalities. This makes it less flexible but more
appropriate to handle large numbers of modalities. Note that
the good performance of sparse group LASSO observed in
simulations comes at a price of generating substantially larger
models, which may not be practical in real-life applications.
In addition, having different penalty factors in IPF-LASSO
allows for the incorporation of prior biological knowledge
or practical concerns. To address the computational cost
induced by the choice of the penalty factors for large 𝑀,
alternatives to our grid search cross-validation approachmay
be considered in the future, for example, based on empirical
Bayes procedures [20], onmodel selection criteria such as the
Akaike information criterion (AIC) or Bayesian information
criterion (BIC), or using the approach inspired from adaptive
LASSO [14] adopted by Ternès et al. [27] in the specific case
of treatment-biomarker interactions.

One common issue for all variations of LASSO, including
IPF-LASSO, is instability. Small changes of the dataset may
lead to big changes of the selected model. Stability can be
investigated using resampling methods, as suggested under
the name “stability selection” [28]. Such methods, which are
increasingly gaining attention [29], can be directly applied to
IPF-LASSO as well. Going beyond the scope of this work,
further improvement from IPF-LASSO may be considered.
For example, one may consider introducing additional 𝐿2
penalty term(s), yielding “elastic net-” like methods [30].
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for logistic regression,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 70, no. 1, pp. 53–71, 2008.

[17] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-
group lasso,” Journal of Computational and Graphical Statistics,
vol. 22, no. 2, pp. 231–245, 2013.



14 Computational and Mathematical Methods in Medicine

[18] S. M. Gross and R. Tibshirani, “Collaborative regression,”
Biostatistics, vol. 16, no. 2, pp. 326–338, 2015.

[19] J. Ward, M. Rakszegi, Z. Bedő, P. R. Shewry, and I. Mackay,
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