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Abstract: Innovative drug-delivery systems offer a unique approach to effectively provide therapeutic
drug dose over the needed time to achieve better tissue protection and enhanced recovery.
The hypothesis of the current study was to test the antioxidant and anti-inflammatory effects of
genistein and nanofibers on the spinal cord tissue following experimental spinal cord injury (SCI).
Rats were treated post SCI with genistein that is loaded on chitosan/polyvinyl alcohol (CS/PVA)
nanofibers as an implantable drug-delivery system. SCI caused marked oxidative damage and
inflammation, as is evident by the reduction in the super oxide dismutase (SOD) activity and the level
of interleukin-10 (IL-10) in injured spinal cord tissue, as well as the significant increase in the levels of
nitric oxide (NO), malondialdehyde (MDA), and tumor necrosis factor-alpha (TNF-α). Treatment
of rats post SCI with genistein and CS/PVA nanofibers improved most of the above-mentioned
biochemical parameters and shifted them toward the control group values. Genistein induced
an increase in the activity of SOD and the level of IL-10, while causing a decrease in NO, MDA,
and TNF-α in injured spinal cord tissue. Genistein and CS/PVA nanofibers provide a novel
combination for treating inflammatory nervous tissue conditions, especially when combined as
an implantable drug-delivery system.
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1. Introduction

Central nervous system (CNS) injuries are devastating due to the limited post-injury functional
recovery, because of neuronal cell loss and the release of inhibitory substances [1]. The primary
mechanical spinal cord injury (SCI) is commonly followed by a secondary phase that is characterized
by inflammation, and a cascade of cellular and biological reactions [2,3]. Among these reactions are
the activation of inflammatory cascade associated with cytokines and free radical formation and lipid
peroxidation, cytokine, and interleukin up regulation around the damaged area [4].

The current consensus is that reducing inflammation may help to decrease secondary damage
and the functional deficit following SCI. Standard treatment regimens currently used for nervous
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system trauma injury include surgery, hypothermia, and pharmaceuticals (e.g., methylprednisolone),
which aim at decreasing inflammation and cell after acute injury [5].

Estrogens are used in the treatment of acute SCI for their anti-inflammatory and antioxidant
effects, reduction of apoptosis [6], and increasing white-matter sparing [7]. Additionally, rats that were
treated with estrogens post SCI showed reduced edema and myelin loss in the lesion [8]. However,
long-term treatment in human with estrogen might increase the risk of cancers, especially breast,
endometrial, and ovarian cancers [9]. Therefore, other natural compounds with little or no side effects
need to be investigated.

Genistein (4′,5,7-Trihydroxyisoflavone) is a natural non-steroidal phytoestrogen extracted from
soybean, that influences cellular function by acting as an agonist at estrogen receptor beta (ERβ) [10],
which possesses anti-inflammatory [11–13] and antioxidant effects [14]. It suppresses tumor necrosis
factor-alpha (TNF-α) and decreases the production of reactive oxygen species (ROS), lipid peroxidation,
and inhibits the apoptotic signaling cascade [15].

Biomaterial scaffolds can be used to deliver drugs and fill in the cavities that develop as
a result of SCI, provide a great potential for CNS repair. To this end, nanofibers can play
a significant role in supporting repair after CNS injury. The combination of high porosity,
flexibility, and mechanical performance makes such fibers preferred materials for various biomedical
applications. Chitosan (CS) is one of the natural polysaccharide polymers, which has unique properties,
including anti-inflammatory, antibacterial, antimicrobial effects, in addition to its biocompatibility,
biodegradability, renewability, and nontoxicity [16–19]. Therefore, chitosan has been used in drug
delivery systems [20], tissue-engineering applications [21], and in wound healing [22–24]. However,
due to the limited solubility, and high viscosity of chitosan [25], it is commonly blended with other
polymers, such as polyvinyl alcohol (PVA), which is a synthetic biocompatible polymer [26–30].

Towards this goal, we investigated a novel chitosan/polyvinyl alcohol (CS/PVA) nanofiber drug
delivery system using genistein as a potential therapeutic agent for the treatment of SCI, due to its
anti-inflammatory and antioxidant effects [11].

2. Results

2.1. Genistein and Nanofibers Increase Super Oxide Dismutase (SOD) Activity in Spinal Cord Tissue

The present results show that the activity of SOD was significantly (p < 0.05) reduced following
SCI when compared to control and sham groups during all of the time intervals studied (Figure 1).
The application of nanofibers alone and nanofibers that were loaded with genistein after SCI resulted
in a significant (p < 0.05) elevation of SOD activity as compared with the SCI group during all of the
experimental period.

Figure 1. Cont.
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Figure 1. Super oxide dismutase (SOD) activity (U/g tissue) in spinal cord tissue. Genistein &
Nanofibers increase super oxide dismutase (SOD) activity in spinal cord tissue of rats in the treatment
groups when compared with control (�) and sham groups (�). Both treatment groups showed
significant increase of SOD when compared with SCI group ( , N). Number of animals (n = 5). Data
shown as Mean ± S.E.M.).

2.2. Genistein Decreases Nitrous Oxide (NO) Concentration in Spinal Cord Tissue

Nitrous Oxide (NO) levels (Figure 2) increased significantly (p < 0.05) in the SCI group as compared
with the control and sham groups. A significant (p < 0.05) decrease was recorded in the level of NO in
nanofibers and genistein groups as compared to SCI group at all of the time intervals of the experiment.
Moreover, the treatment of animals in the SCI group with genistein nanofibers ameliorated the NO
level in injured spinal tissue and this amelioration was more pronounced after 14 days of injury.

Figure 2. Cont.
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Figure 2. Mean concentration of Nitrous Oxide (NO) (µmol/g tissue) in spinal cord tissue. Nitrous
oxide levels were significantly elevated in the injury group when compared with control (�) and sham
(�) groups. Treatment with nanofibers and genistein nanofibers led to a significant ( ) decrease of NO
levels when compared with spinal cord injury (SCI) group. Genistein nanofibers showed significant
reduction in NO as compared to nanofibers (N) group. Number of animals (n = 5). (Mean ± S.E.M.).

2.3. Genistein Decreased Lipid Peroxidation and Tissue Damage in Spinal Cord Tissue

SCI leads to a significant (p < 0.05) increase in the Malondialdehyde (MDA) levels (Figure 3),
when compared with the control and sham groups at all of the time intervals studied. Implantation
of nanofibers only resulted in a significant (p < 0.05) drop in the level of MDA when compared to
SCI group during the whole experimental time. However, the MDA level remained significantly
(p < 0.05) higher than the control values throughout the experimental period. Moreover, treatment
with nanofibers that were loaded with genistein caused a significant (p < 0.05) decrease in MDA levels
when compared to the SCI group at the same time points. The level of MDA in spinal cord tissue in
genistein group returned to near control level after 14 days of injury, where there was no significant
change in its level as compared to either control or sham group.

Figure 3. Cont.
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Figure 3. Mean concentration of Malondialdehyde (MDA) (n mol/g tissue) in spinal cord tissue. Spinal
cord injury leads to significant (�, �, p < 0.05) elevation of MDA levels at all time points. Implantation
of nanofibers resulted in a significant ( , p < 0.05) drop in the level of MDA when compared to SCI
group during the whole experimental time. Treatment with genistein nanofibers caused a significant
(N, p < 0.05) decrease in MDA after 14 days of injury, which was not significantly different when
compared with either control or sham groups. Number of animals (n = 5). (Mean ± S.E.M.).

2.4. Interleukin 10 (IL-10) Level in Spinal Cord Tissue

SCI induced a significant (p < 0.05) decrease in the IL-10 levels (Figure 4) in spinal cord tissue at
all of the time intervals examined when compared with control group. IL-10 levels were also reduced
in the injury group at one and seven days compared to the sham group. Nanofibers caused an increase
in IL-10 in spinal cord tissue, which was only significant (p < 0.05) after seven days with respect to SCI
group. On the other hand, treatment with genistein nanofibers induced a significant (p < 0.05) elevation
in IL-10 level in spinal cord tissue when compared with SCI group. Moreover, the increase in IL-10
level was more pronounced at 14 days post injury where it was significant (p < 0.05) in comparison to
the other four groups.

Figure 4. Cont.
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Figure 4. Level of interleukin-10 (IL-10) (pg/g tissue) in spinal cord tissue. Spinal cord injury (SCI)
induced a significant (p < 0.05) decrease in the IL-10 levels in spinal cord tissue at all the time intervals
examined when compared with control group (�). IL-10 levels were also reduced in the injury group at
one and seven days compared to the sham group (�). Nanofibers caused an increase in IL-10 in spinal
cord tissue, which was only significant (p < 0.05) after seven days with respect to SCI group. On the
other hand, treatment with genistein nanofibers induced a significant (p < 0.05) elevation in IL-10 level
in spinal cord tissue when compared with SCI group ( ). Moreover, the increase in IL-10 level was
more pronounced at 14 days post injury where it was significant (N, p < 0.05) in comparison to the
other four groups. Number of animals (n = 5). (Mean ± S.E.M.).

2.5. Tumor Necrosis Factor—α (TNF-α) Levels in Spinal Cord Tissue

The TNF-α level in spinal cord tissue of the SCI group exhibited a significant (p < 0.05) increase
with respect to control and sham groups at all of the time intervals investigated (Figure 5). However,
treatment of animals with either nanofibers only or nanofibers that were loaded with genistein caused
a significant (p < 0.05) decrease in the levels of TNF-α in spinal cord tissue at the three time intervals
studied when compared with the SCI group. Moreover TNF-α levels in spinal cord tissue decreased
significantly (p < 0.05) in the genistein treated group as compared to the nanofiber group at the same
time points.

Figure 5. Cont.
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Figure 5. Levels of tumor necrosis factor-alpha (TNF-α) (pg/g tissue) in spinal cord tissue. The TNF-α
levels in spinal cord tissue of SCI group exhibited a significant (�, � p < 0.05) increase with respect
to control and sham groups at all the time intervals. Treatment with nanofibers only or genistein
nanofibers caused a significant ( , p < 0.05) decrease in the levels of TNF-α in spinal cord tissue at
all time points compared to SCI group. Levels of TNF-α in spinal cord tissue decreased significantly
(N, p < 0.05) in genistein group when compared with nanofibers group at the same time points. Number
of animals (n = 5). (Mean ± S.E.M.).

3. Discussion

Secondary SCI is the result of a group of internal cascade of self-destructive phenomena within
the nervous tissue, including lipid hydrolysis, lipid peroxidation, and damage that is caused by
hydroxyl radicals [31,32]. In addition, it is recognized that after SCI, the disruption of blood-spinal
cord barrier is a key event that leads to inflammation and oxidative stress, causing tissue damage and
neurological deficit [33].

The present study provides a novel approach to controlling the secondary damage and reducing
tissue damage following experimental SCI. Our results show the beneficial effects of genistein and
CS/PVA nanofibers in reducing lipid peroxidation, oxidative damage, and inflammatory response
when applied locally to the spinal cord following injury.

SOD has been reported [33,34] to neutralize oxygen-free radicals and protect cells from oxidation
by superoxide toxicity. Our current results indicate a significant decrease in the antioxidant enzyme
SOD levels following SCI in rats. Previous studies have been also recorded a decrease in the activity
of SOD post SCI and attributed this decrease to the extensive presence of free radicals in damaged
spinal cord [35,36].

Nitrous oxide (NO) is an endothelium-derived factor that is involved in secondary damage,
the increased production of NO causes further neuronal damage and it is considered to be a major
regulator of CNS damage. The present result indicating an increase of NO level in SCI group agrees
with other researchers [35].

Following CNS trauma, pro-inflammatory cytokines lead to activation of the inducible nitric
oxide synthase (iNOS). Production of NO is then increased in injured neuronal tissue. The study
of Jiang et al. [35] showed that protein levels and endothelial nitric oxide synthase (eNOS) activity,
together with NO concentration were all increased in SCI, subsequently aggravating the damage
following SCI. Treatment with genistein nanofibers proved effective in reducing NO levels to almost
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pre-injury levels, which may contribute to a protective effect and the reduction of neuronal loss in
injured spinal cord tissue.

Lipid peroxidation and oxygen free radicals induce oxidative stress, contributing to the
pathogenesis of secondary SCI [37,38]. MDA is an end product of the metabolism of unsaturated
fatty acid peroxidation [38]. MDA levels reflect the degree of lipid peroxidation and the level of
tissue damage after free radical exposure. The present study showed a significant increase in MDA
levels in the spinal tissue post SCI, when compared to control and sham groups, indicating that the
tissue damage in SCI is partially due to the disruption of oxidant-antioxidant balance. Genistein and
nanofiber treatment significantly reduced MDA levels, indicating a possible protective role for both in
CNS injuries.

Chronic inflammation is a known event in the secondary damage sequence that follows SCI. In the
present study we show a decrease in the level of the anti-inflammatory cytokine IL-10 and an increase
of the pro-inflammatory cytokine TNF-α levels in spinal cord tissue following SCI. Both cytokines
were significantly changed, indicating a strong anti-inflammatory role for both genistein and CS/PVA
nanofibers. This is in agreement with the literature [4,39].

A novel aspect of the present study was to examine the effect of an implantable drug-delivery
system in rat post SCI. Nanofibers that are based on the electrospun CS/PVA blends with or without
genistein, were shown to improve most of the above mentioned injury-induced changes.

Bio-scaffolds are a promising drug delivery method as they could provide supporting scaffolds for
growing cells and tissues [40–44]. They also represent a three-dimensional (3D) environment for axonal
growth and migration, which could be modified to simulate the native extracellular matrix [45,46].

Therefore, the scaffold that was used in the present study is not only a space filling agent, but it
can also serve a protective role as bioactive molecule delivery systems [39]. CS/PVA nanofibers might
have also provided a sustained release of genistein at the injury site for the study period, therefore
preventing the need for repeated drug administration.

One of the main objectives of the present work was to evaluate the effects of genistein loaded on
nanofibers as implantable drug-delivery system and scaffold. In light of the current data, the treatment
of SCI rats with genistein ameliorated all of the investigated parameters. Increase in the activity
of the anti-oxidant enzyme SOD and the level of the anti-inflammatory cytokine IL-10, while it
caused a decrease in the levels of the neurotransmitter NO, the oxidative stress marker MDA, and the
pro-inflammatory cytokine TNF-α in injured spinal cord tissue.

These changes in the studied parameters shifted them toward control values, thereby restoring the
balance in the spinal cord. Even though, the levels were still lower or higher than the pre-injury values,
the present data confirms previous reports that genistein possibly has a suppressive role in the oxidative
stress and inflammatory response. Genistein has been shown to be a strong antioxidant that removes toxic
hydroxyl radicals and other ROS that cause lipid peroxidation and DNA and protein damage [10,47].

McClain et al. [48] reported that “genistein, a major natural phytoestrogen in soybean, has a weak
estrogenic effect. It has lower binding affinity for estrogen receptor alpha (ERα) than ERβ”, and it
therefore lacks unwanted ERα agonist side effects, such as cancer promotion [49]. Others [50], found
that genistein also has effects that are non-dependent on its estrogen-like activity, including protein
tyrosine kinase inhibition or down-regulation, immune system modulation, and anti-oxidant activity.
Liu et al., [51] showed that genistein can cross the Blood Brain Barrier (BBB) reaching the CNS. It is worth
noting that almost all the nervous system cells and immune cells all have ERβ receptors [49,52–54].

In conclusion, the treatment of rats post SCI with CS/PVA nanofibers (with or without genistein)
improved most of the injury-induced changes in the investigated biochemical parameters and shifted
them toward the control group values. The combination of bio-scaffolds and genistein is a promising
therapeutic combination for treating inflammatory conditions that follow CNS trauma.
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4. Materials and Methods

4.1. Preparation of CS/PVA Nanofibers

Electrospinning was used to fabricate CS/PVA nanofibers using acetic acid/distilled water
solution mixture as a solvent [40]. We have previously described the fabrication and characterization
of nanofibers that are loaded with genistein [55]. Briefly, optimum preparation conditions for
CS/PVA nanofibers (Figure 6), were established, as follows; polymers volume ratio 30/70 CS/PVA,
concentration of mixture 50%, applied voltage 25 KV, flow rate 0.7 mL/h, and tip to collector distance
(TCD) 10 cm, followed by physical crosslinking [55].

Figure 6. Scanning electron micrograph of nanofibers, showing uniform structure and diameter of
nanofibers. We previously [54] reported the optimum conditions for preparation of chitosan/polyvinyl
alcohol (CS/PVA) nanofibers (volume ratio 30/70 CS/PVA, concentration of mixture 50%, voltage 25
KV, flow rate 0.7 mL/h., and tip-to-collector distance (TCD) 10 cm.

We previously reported [55] the drug release from nanofibers by immersing a (1 × 1 cm2) drug
loaded nanofibers into 100 mL phosphate buffer solution (PBS), at 37 ◦C. Samples were removed
from the medium at 0.5, 1, 4, 8 and 24 h, and the concentration of the drug was determined by
spectrophotometry at a λ max of 280 nm.

Cytotoxicity of crosslinked CS/PVA nanofibers was previously described while using MTT assay
(ATCC® 30-1010K) on human fibroblast cells (ATCC CCL-75 W1 38) [55].
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4.2. Experimental Animals

4.2.1. Handling of Animals

A total of 75 adult female Sprague-Dawley rats (RRID: MGI:5651135) (weighing≈ 200–250 g) were
housed in polypropylene cages in climate controlled rooms, with standard food pellets and drinking
water ad libitum. All of the surgical procedures and post-surgical care were performed in compliance
with the national institute of health (NIH) guidelines for the Care and Use of Laboratory Animals.

All experiments in the present study were conducted in compliance with the guidelines
established by the Institutional Animal Care and Use Committee (IACUC) of Cairo University
(CU-IF-90-17, 1 November 2017).

4.2.2. Surgical Procedure of Spinal Cord Injury

Female Sprague-Dawley rats were randomized using block randomization method, into five
groups. Group (1) Control. Group (2) Sham control group: the skin was prepared before incision,
laminectomy (excision of a vertebral lamina) only with no injury of the spinal cord. Group (3) SCI
group: (laminectomy + SCI) Laminectomy with right lateral hemi-section SCI at the T 9–10. Group
(4) Nanofibers group: (laminectomy + SCI + nanofibers) laminectomy with right lateral hemi-section
SCI at the T 9–10, followed by the immediate application of nanofibers without genistein. Group
(5) Genistein group: (laminectomy+ SCI + nanofibers + genistein) laminectomy with right lateral
hemi-section cord injury at the T 9–10, followed by the immediate application of nanofibers that were
loaded with genistein. Ketamine anesthesia (75 mg/kg intraperitoneal), was used according to IACUC
guidelines. Skin was prepped and incised at the back of rats in treated groups, muscles were split,
and laminectomy was performed under dissecting microscope at the T 9–10 vertebral level, the cord
was exposed, and the dura was incised and pulled laterally. Spinal cord hemisection using micro
iris scissors was made at T 9–10, followed by placement of nanofibers in group 4 and application
of nanofibers loaded with genistein in group 5, then the dura was sutured, and muscles and skin
were closed in layers. All animals received post-operative analgesia (ketoprofen 5 mg/kg SC/24 h)
for three days. Animals were monitored daily for the duration of the experiment for signs of pain
and distress e.g., back arching, vocalization, and analgesia was administered accordingly. For SCI
animals, manual bladder expression was performed 2–4 times/day and sutures were removed seven
days postoperatively.

Animals were randomly assigned to either control or experimental groups (sham, injury, injury
and genistein nanofibers, injury, and nanofibers). Control group was euthanized immediately and
the cord samples collected while other groups were euthanized at days 1, 7, or 14, where five
animals from each group were euthanized and samples collected, the flow chart (Figure 7) shows the
experimental timeline.

Figure 7. Flow chart showing the experimental timeline.

Researchers were blinded to the experimental groups. There were no sample size differences
between the beginning and end of the experiments, animals were added to replace animals lost due
to morbidity or mortality. Animals showing signs of morbidity, such as infection at the injury site or
other diseases were excluded from the study and replaced. Animals that were healthy and showing no
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signs of infection were included in the study. At 1, 7, and 14 days post-surgery, rats were sacrificed
with an overdose of pentobarbital (Thiopental sodium) 75 mg/kg, IP. All the specimens of spinal cord
were plotted dry and weighed, and 0.025 g of each specimen homogenized in 1 mL of 0.1 M phosphate
buffer solution (PBS) (pH 7.4). The homogenate was centrifuged at 3000 rpm for 20 min at 4 ◦C and
the supernatant was aliquoted and stored at −80 ◦C until use.

4.3. Biochemical Analyses

4.3.1. Determination of Super Oxide Dismutase (SOD) Activity

The activity of anti-oxidative enzyme super oxide dismutase (SOD) was determined using
calorimetric assay (Biodiagnostic, Giza, Egypt, CAT. No. SD 25 21), according to the method that was
originally described by Nishikimi, et al. [56]. The assay is based on the ability of SOD in the tested
sample to inhibit phenazine methosulphate-mediated reduction of nitroblue tetrazolium dye [56].

4.3.2. Determination of Nitrous Oxide (NO) Concentration

The level of the NO was estimated in spinal cord tissue by using calorimetric assay (CAT. No.
NO 25 33 Biodiagnostic, Giza, Egypt), according to the method that was originally described by
Montgomery et al. [57]. In acid medium and in the presence of nitrite, the formed nitrous acid diazotise
sulphanilamide and the product is coupled with N-(1–naphthyl) ethylenediamine. The color intensity
of the resulting azo dye was measured by spectrophotometry at 540 nm [57].

4.3.3. Determination of MDA Concentration

The oxidative stress marker malondialdehyde (MDA) was determined in the spinal cord
tissue homogenate by using Thiobarbituric acid (TBA) calorimetric assay method, according to
Ohkawa et al. [58] (Biodiagnostic, Giza, Egypt, CAT. No. MD 25 29).

4.3.4. Quantitative Determination of IL-10 and TNF-α by Enzyme-Linked Immunosorbent
Assay (ELISA)

The anti-inflammatory cytokine IL-10 (CAT. No. K0331123HS, KOMA BIOTECH, Seoul, Korea),
and the pro-inflammatory cytokine TNF-α were quantitatively determined (CAT. No. K0331196,
KOMA BIOTECH, Seoul, Korea) in the spinal cord tissue of rats by the ELISA technique, according to
the manufacturer’s instructions.

4.3.5. Statistical Analyses

Data points at 14 days were considered end points for the current experiment. Data sets were
assessed for normality using SPSS® and data points outside 95% confidence intervals were considered
to be outliers and excluded from analysis.

The statistical analyses were carried out using SPSS® version 15 software. All data were expressed
as mean± standard error of mean (S.E.M.). The independent variables of individual comparisons were
illustrated by using Least Significant Difference (LSD) post-hoc test of one-way ANOVA to compare the
differences of mean values between different groups. P values that were less than 0.05 are considered
to be statistically significant.

Author Contributions: Data curation, S.I.; Formal analysis, A.A.; Investigation, A.E.-A.; Methodology, A.M.EL-R.,
N.K.A. and A.A.; Writing—original draft, S.I.; Writing—review & editing, M.I.
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Abbreviations

ANOVA Analysis of variance
BBB Blood brain barrier
CS Chitosan
CNS Central nervous system
eNOS endothelial nitric oxide synthase
iNOS inducible nitric oxide synthase
IACUC Institutional Animal Care and Use Committee
IL-10 interleukin 10
IP intraperitoneal
KV Kilo volt
LSD Least Significant Difference
MDA Malondialdehyde
NIH National institute of health
NO Nitrous oxide
PBS phosphate buffer solution
PVA Polyvinyl alcohol
ROS reactive oxygen species
SCI Spinal cord injury
S.E.M standard error of mean
SOD superoxide dismutase
TCD tip-to-collector distance
TNF-α tumor necrosis factor-α
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