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     INTRODUCTION 

 Mathematical modeling can play an important role in quan-
tifying the effects of malaria-control interventions and deter-
mining efficient combinations of these interventions. We have 
published a deterministic dynamical systems model (Appendix 
Box 1 has a glossary of modeling terms) to describe the dynam-
ics of malaria in a mosquito population interacting with a het-
erogeneous population of humans. 1  The purpose of the present 
paper is 2-fold: to explain this model to a non-mathematical 
audience and to use it for exploring the impact of combinations 
of insecticide-treated nets (ITNs) and indoor residual spraying 
(IRS). We assume that ITNs are treated with a pyrethroid, and 
we model IRS with either dichlorodiphenyltrichloroethane 
(DDT)    or bendiocarb. DDT is highly repellent, and bendio-
carb has almost no repellency effects; therefore, they provide 
two extreme examples of commonly used insecticides for IRS. 

 We emphasize that this work is theoretical and early, con-
taining a number of assumptions on mosquito behavior and 
malaria transmission, including assuming the presence of only 
one vector,  Anopheles      gambiae , and ignoring seasonality and 
transient effects such as the decay of nets and insecticide. These 
assumptions are reviewed in Discussion. It will be necessary 
to adapt the current model to scenarios including more real-
istic distributions of vector species, seasonality, and transient 
dynamics and to calibrate assumptions and parameters against 
more field data before the predictions could be included as evi-
dence for formulating malaria-control strategies. Additionally, 
the model described here forms part of a broader project for 
developing a stochastic agent-based model for malaria epide-
miology and immunology, aiming to describe the impact of 
combinations of interventions at different coverage levels on 
human morbidity and mortality in realistic epidemiological and 
health-system scenarios. 2  Nonetheless, we consider that, at this 
stage, a presentation of the deterministic mosquito transmis-
sion model should be helpful for stimulating the vital interac-
tion between field research, modeling, and program planning. 

 The mathematical details and analysis of this model are in ref.  1 . 
It is based on the model by Saul and others 3  that describes the 
mosquito feeding cycle, which was further developed by refs. 
 4–  6 . The model is a system of difference equations for the num-
ber of infectious, infected, and total mosquitoes seeking for 
blood in a given area. We choose difference equations, because 
a time step of 1 day better captures the temporal dynamics of 
the mosquito life and gonotrophic cycle than continuous time. 
The population of mosquitoes is assumed to be perfectly mix-
ing, although it would be possible to model different subpopu-
lations or species of mosquitoes by replicating the system of 
difference equations with different parameter values. 

 This model of mosquito survival and malaria transmission 1  
does not include the effects of the malaria cycle in humans. To 
model the relationship of the human infectivity to mosquitoes 
to the entomological inoculation rate (EIR), we use equilib-
rium results from Killeen and others. 7  In subsequent work, we 
will investigate the transient behavior of the full malaria cycle 
by integrating the mosquito model with human intra-host sim-
ulation models. 2  

 Although our model is general enough to allow the human 
population to be differentiated down to an individual level, 1  
here we model the intervention strategies by dividing the 
human population into groups that either have the interven-
tion or do not have it. These groups are assumed to be homo-
geneous, and so, all humans in each group are assumed to be 
identical. Also, although we do not include animal hosts in 
the simulations in this paper, our model can allow for vari-
ous types of hosts (i.e., blood-meal sources) and thus, include 
the effects of zooprophylaxis. 4,  6  We also do not present results 
of comparing novel interventions such as entomopathogenic 
fungi or transgenically modified mosquitoes. Although these 
interventions may have important roles to play in integrated 
vector-management strategies, 8  we now choose to focus on 
interventions that are currently in widespread use by national 
malaria-control programs. However, we hope to soon extend 
our model to include the effects of other such strategies. 

 In the next section, we describe the details of our model. 1  
We then show numerical simulations of three intervention 
strategies, followed by our interpretation of the results. In the 
Appendix, we describe the mathematics for these simulations 
and our data sources for the parameter values. 
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   MODEL DESCRIPTION 

  Vector-feeding cycle.   After emergence from a breeding site, 
mosquitoes mate, and the females search for blood meals that 
are necessary for egg development. After encountering and 
biting a host, the female mosquito finds a resting place where 
it digests the blood and evaporates water. The resting time 
is temperature-dependent (shorter at higher temperatures) 
and is usually 2–3 days in tropical areas. After digesting the 
blood, the mosquito flies in search of a water body to lay the 
eggs before seeking a host again to repeat the feeding cycle. 
 Figure 1  shows a cartoon of the feeding cycle. Usually, 
mosquitoes begin host-seeking at the same time every night. 
If they are unsuccessful in biting, they rest through the day 
and try again the next night. The probability that a mosquito is 
successful in completing a feeding cycle depends on a variety 
of factors, including whether the available human hosts are 
protected by ITNs or IRS. 

  We model each feeding cycle of the mosquito as shown in 
 Figure 2  where an adult female mosquito can be in one of five 
states (   E ). Four of these states ( B – E ) depend on the type of 
host on which the mosquito feeds. We label these states with a 
subscript  i  in 1 ≤  i  ≤  n , where  i  denotes the type of host and  n  is 
the total number of different types of hosts. We first describe 
these states and the processes by which the mosquitoes enter 
and exit the states. 

   (1)    State  A  is host-seeking. In state  A , the mosquito is 
actively searching for a blood meal. We assume that a 
fixed number of mosquitoes,  N v   0 , emerge every day into 
the total mosquito population and actively seek blood 
meals.    

  Although we use a discrete time model for malaria in 
mosquitoes, we embed a continuous time model for the 
host-seeking phase of mosquitoes. We assume that a mos-
quito has a constant per-capita death rate of μ  vA   while 
host-seeking.  N i   is the total population of hosts of type  i . 

Every host of type  i , is available to mosquitoes at a rate α  i  , 
which depends on the type of host and the mosquito spe-
cies. Mosquitoes encounter hosts of type  i  at rate α  i N i  . This 
rate includes any reductions in host availability because of 
diversionary effects; for example, a host with a diversion-
ary intervention like a net is modeled as having reduced α  i  . 
Thus, diversion is modeled in the same way as by Killeen 
and Smith 6  and Saul 4  (as described in detail in ref.  1 ). 

 Mosquitoes only spend a certain amount of time, θ  d  , 
searching for a blood meal per night. During this time, 
they can either encounter a host of type  i  and move to 
state  B i   (with probability      P    A  i       ), die (with probability  P A   µ ), or 
survive but fail to find a host and remain in state  A  until 
the next night (with probability  P A  ). 

   (2)    State  B i   is encountering a host of type  i . The mosquito 
encounters, and is committed to biting, a host of type  i . 
From state  B i  , the mosquito can either bite the host with 
probability      P    B  i        and move to state  C i   or die while attempt-
ing to bite and leave the population with probability      P    B  i   m      .  

   (3)    State  C i   is searching for a resting place. The mosquito has 
bitten a host of type  i  and is searching for a resting place. 
The mosquito can either find a resting place and move to 
state  D i   with probability      P    C  i        or die after biting with prob-
ability      P    C  i   m      .  

  Figure  1.    Cartoon of mosquito feeding cycle. The feeding (or 
gonotrophic) cycle of the female mosquito vector. After emergence, 
mosquitoes seek and bite hosts, rest, and lay eggs before seeking 
hosts again. The mosquito experiences varying levels of risk in each 
state. Modified from  Figure  in ref.  1 . This figure appears in color at 
 www.ajtmh.org .    

  Figure  2.    Schematic describing the processes in the feeding cycle 
of the female mosquito. New mosquitoes emerge from water bodies 
(and mate) at rate  N v   0  into the host-seeking state  A , where they actively 
search for blood meals. A mosquito may encounter and feed on up to 
 n  different types of hosts. Each type of host, represented by subscript 
 i  for 1 ≤  i  ≤  n , is available to mosquitoes at rate α  i  . If a mosquito does 
not encounter a host in a given night, it waits in the host-seeking phase 
until the next night, with probability,  P A  . When a mosquito encounters 
a host of type  i  and is committed to biting the host, it moves to state  B i  . 
If the mosquito bites, it moves to state  C i  , where it searches for a rest-
ing place. If it finds a resting place, it moves to state  D i  , where it rests 
for τ days. After resting, the mosquito moves to state  E i  , where it seeks 
to lay eggs. If it is successful in laying eggs, it returns to host-seeking 
state,  A , where it may then encounter any type of host. At each state, 
the mosquito may die with some probability, labeled by subscript μ. 
Reproduced, with permission, from  figure 2  in ref.  1 .    
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   (4)    State  D i   is resting. The mosquito is resting after biting a 
host of type  i . We assume that the mosquito rests for a 
fixed number of days while it digests the blood and devel-
ops eggs. It can survive this state with probability      P    D  i        and 
move to state  E i   or die while resting and leave the popula-
tion with probability      P    D  i    m      .  

   (5)    State  E i   is oviposition. The mosquito is seeking to lay eggs 
after having bitten a host of type  i . We assume that the 
mosquito is able to successfully find an oviposition site, lay 
eggs, and return to the host-seeking state,  A , with proba-
bility      P    E  i        or die while trying to do so with probability      P    E  i    m      .    

 The probability that a mosquito finds a host on a given 
day and then survives the feeding cycle,  P df   , is the product of 
the probabilities of surviving each stage of the feeding cycle, 
summed over all the different types of host that the mosquito 
can feed on. In our current model, this probability,  P df   , is the 
same for newly emerged mosquitoes and those that have com-
pleted one or more feeding cycles. 

 We let τ be the time it takes a mosquito to return to host-
seeking,  A , after it has encountered a host,  B i   (provided that 
the mosquito is still alive). This is the partial duration of the 
feeding cycle: it is the time that it takes a mosquito to complete 
a feeding cycle, excluding the time it needs to find a host from 
when it starts host-seeking. 

   Parasite infection in the vector.   Humans infected with 
malaria are infective to mosquitoes if they have gametocytes 
in their blood. If a mosquito feeds on any human of host type 
 i , there is a probability,  K vi  , that the mosquito will ingest both 
male and female gametocytes and that they will fuse in the 
mosquito’s stomach to form a zygote, which develops into an 
oocyst after some temperature-dependent time, θ  o   (usually 
3–5 days). Based on the assumption that all mosquitoes that 
develop oocysts will subsequently develop sporozoites to 
become infective, the proportion of wild-caught mosquitoes 
that either already have oocysts or will develop oocysts after 
surviving for θ  o   days (the delayed oocyst rate) is approximately 
equal to the proportion of mosquitoes that were infected 
when caught. 9  After some more days, the oocysts release 
sporozoites that travel to the mosquito’s salivary glands, and 
the mosquito becomes infective to humans. The temperature-
dependent time that it takes an infected mosquito to become 
infective (be sporozoite-positive) is the extrinsic incubation 
period, θ  s   (usually 10–12 days in tropical areas). We label the 
probability that a host-seeking, uninfected mosquito finds a 
host, feeds, gets infected, and survives a feeding cycle by  P dif   . In 
our current model, this probability,  P dif   , is the same for newly 
emerged mosquitoes and those that have completed one or 
more feeding cycles. 

   Field-measurable quantities and derived parameters.   For 
this model, we define several field-measurable quantities 
and derived parameters. 1  These provide measures of malaria 
transmission that can be used to calibrate the model and 
determine the effectiveness of vector-control interventions. 
Expressions for these quantities are shown in the Appendix. 

  Parous rate.   This is the proportion of mosquitoes that 
have blood-fed at least one time. In this model with constant 
parameters (absence of seasonality), it is equal to the 
probability of a mosquito completing a feeding cycle, thus 
providing a measure of the effects of an intervention on the 
mosquito’s mortality. We note that the parous rate is not 
actually a rate with units of time −1  but a proportion. 

   Delayed oocyst rate.   This is the proportion of infected 
mosquitoes. It measures the effectiveness of malaria-control 
interventions in reducing malaria transmission to mosquitoes. 
We note that the delayed oocyst rate is not actually a rate with 
units of time −1  but a proportion. 

   Sporozoite rate.   This is the proportion of infectious 
mosquitoes. It measures the effectiveness of control 
interventions in reducing malaria transmission to mosquitoes 
and preventing them from living long enough to become 
infectious. We note that the sporozoite rate is not actually a 
rate with units of time −1  but a proportion. 

   Host-biting rate.   This is the number of mosquito bites that 
a human host receives per day (or per other unit of time). It 
measures the effectiveness of control interventions in reducing 
mosquito bites. 

   EIR.   This is the number of infectious mosquito bites that a 
human host receives per day (or per other unit of time). It is 
the primary measure of malaria transmission. 

   Vectorial capacity.   Although not directly field-measurable, 
the vectorial capacity measures the ability of the mosquito 
population to transmit malaria, originally defined by Garrett-
Jones and Grab 10  as the “average number of inoculations with 
a specified parasite, originating from one case of malaria in 
unit time, that a vector population would distribute to man if 
all the vector females biting the case became infected.” The 
vectorial capacity measures the potential of the mosquito 
population to transmit malaria, not the actual transmission 
level. 

    A short description of the mathematical transmission model.  
 Here, we summarize the model developed and analyzed in 
ref.  1  by describing the relationships instead of presenting 
the equations. The parameters of the model are described 
in  Table 1 , and some important derived parameters are in 
 Table 2 . We reproduce the main equations in the Appendix, 
but interested readers are encouraged to see ref.  1  for the 
mathematical details. 

         The system of difference equations consists of three state 
variables. 

   1.    N v  ( t ) is the total number of host-seeking mosquitoes on a 
given day,  t .  

   2.    O v  ( t ) is the number of infected host-seeking mosquitoes 
(delayed oocyst positive) on a given day,  t .  

   3.    S v  ( t ) is the number of infectious host-seeking mosquitoes 
(sporozoite positive) on a given day,  t .    

 We note here that  S v  ( t ) is less than or equal to  O v  ( t ), which is 
less than  N v  ( t ). 

 The total number of host-seeking mosquitoes,  N v  ( t ), on a 
given day,  t , is the sum of 

   •   the new mosquitoes that emerge on that day,  N v   0 ;  
   •   the host-seeking mosquitoes from the previous day that 

survived but were unable to find a blood meal,  P A N v  ( t  − 1);  
   •   and the host-seeking mosquitoes from τ days earlier that 

successfully found a host, fed, and completed the feeding 
cycle,  P df N v  ( t  − τ).    

 The number of infected host-seeking mosquitoes,  O v  ( t ), on a 
given day,  t , is the sum of 

   •   the uninfected mosquitoes from τ days earlier that success-
fully fed, survived a feeding cycle, and got infected,  P dif  ( N v  ( t  − τ) 
−  O v  ( t  − τ));  
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   •   the infected mosquitoes from the previous day that sur-
vived but were unable to find a blood meal,  P A O v  ( t  − 1);  

   •   and the infected mosquitoes from τ days earlier that suc-
cessfully found a host, fed, and completed the feeding cycle, 
 P df O v  ( t  − τ).    

 The number of infective host-seeking mosquitoes,  S v  ( t ), on a 
given day,  t , is the sum of 

   •   the uninfected mosquitoes from at least θ  s   days ago that got 
infected, survived, and are host-seeking as infective mos-
quitoes for the first time on day  t ;  

   •   the infective mosquitoes from the previous day that sur-
vived but were unable to find a blood meal,  P A Sv ( t  − 1);  

   •   and the infective mosquitoes from τ days earlier that suc-
cessfully found a host, fed, and completed the feeding cycle 
 P df S v  ( t  − τ).    

 This system of equations represents the evolution of the 
mosquito population (total, infected, and infective) over time. 
We showed that, depending on the parameter values, there 
is an equilibrium set of values for the state variables,  N v  ( t ), 
 O v  ( t ), and  S v  ( t ), that the solution to this system approaches 
(as described in more detail in the Appendix). For parameter 
values representing different levels of coverage of malaria-
control interventions, we can evaluate the equilibrium val-
ues of the field-measurable quantities that measure malaria 
transmission. 

   Effects of EIR on human infectivity to mosquitoes.   The 
human infectivity to mosquitoes,  K vi  , is the result of complex 
processes that depend on the prevalent EIR, age, and immunity 
profiles of the human population and the use of antimalarial 
drugs. Any intervention strategies that reduces the EIR would 
have nonlinear effects through an increase or decrease in the 
human infectivity to mosquitoes. 

 As our current model for malaria transmission in mosqui-
toes 1  does not include the malaria cycle in humans, we use the 
results of a stochastic simulation model 11  to incorporate these 
effects at equilibrium. Killeen and others 7  provide model simu-
lations of the human infectivity to mosquitoes as a function of 
EIR, averaged over the human population over 1 year. We fit 
a closed-form expression for a function to these model results 
as described in the Appendix. The simulation results from ref. 
 7  and the fitted curve are shown in  Figure 3 . 

  Thus, we have, at equilibrium, the EIR as a function of the 
human infectivity to mosquitoes, entomological factors, and 
intervention coverage from the transmission model 1  and the 
human infectivity to mosquitoes as a function of EIR and other 
factors such as acquired immunity from ref.  7 . To determine the 
resulting EIR for a given coverage level of any intervention, 
we first use the transmission model to calculate the equilibrium 
EIR for a reasonable estimate of  K vi  . We then use the func-
tion (equation 5 in the Appendix) to calculate  K vi   for that EIR 
and so on until we reach convergence, allowing us to model the 
nonlinear effects, at equilibrium, of vector-control interventions 
through the malaria cycle between mosquitoes and humans. 

   Numerical simulations.   We base our numerical simulations 
on the epidemiological setting of Namawala, Tanzania, with 
a pre-intervention EIR of 414 infectious bites per person per 
year. This EIR value is a model result derived from baseline 
parameter values shown in  Table 3  and described in the 
Appendix. The effects of interventions on parameters are 
shown in  Table 4  and described in the Appendix. We use the 
model to compare three malaria vector-control interventions 
used singly and in combination: 

            ITNs.   ITNs are the use of insecticide-treated nets, where 
we assume coverage and net effectiveness to be uniform over 
time. We base parameter values for the effects of ITNs on 
Killeen and Smith. 6  

  Table 2  
  Description of selected derived parameters of the mosquito malaria 

transmission model (selected and modified from  table 2  in ref.  1 )  
Parameter Description

 P A  Probability that a mosquito does not find a host and does 
not die in 1 night of searching.

     P    A  i       Probability that a mosquito finds a host of type i on a 
given night.

     P    D  i   m      Probability that a mosquito dies while resting after biting 
a host of type i, where      P    D  i      +    P    D  i   m     =   1    .

 P df  Probability that a mosquito finds a host on a given night 
and then successfully completes the feeding cycle.

 P dif   : Probability that a mosquito finds a host on a given night, 
gets infected, and then successfully completes the 
feeding cycle.

  Table  1 
  Description of the parameters of the mosquito malaria transmission 

model (modified from  table 1  in ref.  1 )  
Parameter Description

 T The length of each time step. For this model, we fix 
 T  = 1 day (dimension: time).

 n Number of different types of hosts.
 m Number of different types of hosts that are susceptible to 

malaria ( m  ≤  n ).
 N v0  The emergence rate (per day) of new mosquitoes 

(dimension: animals × time −1 ; N v0  > 0).
 N i  Total number of hosts of type i (dimension: animals; 

N i  > 0).
α i Availability rate of each host of type i to mosquitoes. 

This rate includes the reduction in availability of a host 
because of diversion (dimension: animals −1  × time −1 ; 
α i  > 0).

μ vA Per capita mosquito death rate while searching for a blood 
meal (dimension: time −1 ; μ vA  > 0).

θ d Maximum length of time that a mosquito searches for a 
host in 1 day if it is unsuccessful (dimension: time; 
0 < θ d  <  T ).

     P    B  i       Probability that a mosquito bites a host of type i after 
encountering a host of type i (0 <      P    B  i        < 1).

     P    C  i       Probability that a mosquito finds a resting place after 
biting a host of type i (0 <      P    C  i        < 1).

     P    D  i       Probability that a mosquito survives the resting phase 
after biting a host of type i (0 <      P    D  i        < 1).

     P    E  i       Probability that a mosquito lays eggs and returns to 
host-seeking after biting a host of type i (0 <      P    E  i        < 1).

τ Time required for a mosquito that has encountered a host 
to return to host-seeking (provided that the mosquito 
survives to search again). It is the partial duration of 
the feeding cycle, excluding the time that it takes the 
mosquito to find a host. We assume that τ is equal to the 
resting period of the mosquito (i.e., the time needed to 
digest blood and produce eggs; dimension: time).

θ s Duration of the extrinsic incubation period. This is the 
time from ingestion of gametocytes until sporozoites are 
present in the salivary glands (dimension: time; θ s  ≥ τ).

K vi Probability of parasite transmission from a host of type 
i to render a susceptible mosquito infective, per bite, 
provided that the mosquito survives long enough. (This 
term includes the probability that the parasite then 
survives in the mosquito to produce sporozoites; 0 ≤ K vi  
< 1; K vi  = 0 for i representing non-humans).
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   IRS-DDT.   IRS-DDT is the use of indoor residual spraying 
with DDT, where we assume coverage and insecticide 
effectiveness to be uniform over time. We base parameter 
values for the effects of IRS with DDT on data from Smith 
and Webley 12  from Tanzania. 

   IRS-BC.   IRC-BC is the use of IRS with bendiocarb, where 
we assume coverage and insecticide effectiveness to be 
uniform over time. We base parameter values for the effects 
of IRS with bendiocarb on data from Sharp and others 13  from 
Bioko Island. 

 We model the application of each intervention, as in ref.  1 . 
When determining the effects of an intervention used singly, 
we break the human population into two groups,  N  = 2, with 
one group representing the protected population and the other 
representing the unprotected population. We use the equa-
tions for the entomological quantities defined at the unique 
fixed point of the system of difference equations describing 
the dynamics of malaria in mosquitoes to determine these 
entomological quantities at a given coverage level. Changing 
the relative population sizes of each group (varying  N  1  and 
 N  2  for constant  N  1  +  N  2 ), we can determine the change in the 
entomological quantity as a function of coverage level. We do 
not allow for variation in effect over time. Thus, for example, 
we do not consider different durations of the effectiveness of 
different insecticides nor do we consider possible develop-
ment of resistance. 

 We do not differentiate between usage and coverage. This 
distinction is most applicable to ITNs, because unless people 
who are covered by IRS replaster, wash their walls, or sleep 
outside, they will remain users. The parameters for ITN users 
reflect the reduction in mosquito biting and survival because 
of the properties of the nets, the biting and resting habits of the 
predominant Anopheline species, and the average ITN usage 
of the covered population. 

 We show the effects of increasing the coverage level of the 
three interventions, applied singly, on the six field-measurable 
quantities in  Figures 4  and  5 . The figures show that IRS with 
bendiocarb interrupts transmission at coverage levels above 
80%. ITNs provide the best personal protection, and IRS with 
DDT provides good personal protection, whereas IRS-BC 
provides the best community protection. 

   We also model increasing coverage of a second intervention 
in a population with high coverage of a pre-existing vector-
control intervention. For each of these simulations, we divide 
the human population into four groups. Group 1 is humans 
protected by both interventions. Group 2 is humans protected 
only by the pre-existing first intervention. Group 3 is humans 
protected only by the second intervention. Group 4 is unpro-
tected humans. 

 We then model increasing coverage of the second inter-
vention by moving people from Group 4 to Group 3 and 
from Group 2 to Group 1. We assume that the second inter-
vention is distributed proportionately so that the probabil-
ity of a human receiving the intervention is not affected by 
whether the human is already protected by the pre-existing 
intervention. 

 In  Figures 6 – 9 , we show and describe the effects of increas-
ing coverage levels of IRS with DDT and with bendiocarb to 
a population with a pre-existing ITN coverage level of 60%, 

  Figure  3.    Human infectivity to mosquitoes as a function of EIR. ( A ) EIR on a logarithmic scale. ( B ) Low EIR on a linear scale. Human simu-
lation model results from Killeen and others 7  for human infectivity to mosquitoes,  K vi  , as a function of EIR and a least-squares fit of a closed-form 
expression approximation to these simulations. Each simulation result value of the human infectivity to mosquitoes is averaged over the human 
population over 1 year. The details of the closed-form expression are given in the Appendix. This figure appears in color at  www.ajtmh.org .    

  Table  3 
  Baseline parameter values for the simulations  

Parameter Dimension Baseline value

 N v   0 Animals × Days −1 25,000
α  i  Animals −1  × Days −1 0.0072
μ  vA  Days −1 1.6
θ  d  Days 0.33
     P    B  i       Dimensionless 0.95
     P    C  i       Dimensionless 0.95
     P    D  i       Dimensionless 0.99
     P    E  i       Dimensionless 0.88
τ Days 3
θ  s  Days 11

  The details of the parameter descriptions are in  Table 1 . As described in ref.  1 , we set the 
time step to one day ( T  = 1). The number of different types of hosts and hosts susceptible to 
malaria is  n  =  m  = 2 for simulations where there is only intervention and  n  =  m  = 4 for simu-
lations where we combine two interventions. Although the population size of each type of 
human,  N i  , varies depending on the coverage level, we keep the total population size fixed 
at 1,000 (i.e., ). The human infectivity to mosquitoes,  K vi  , is determined as described in the 
Appendix.  

  Table  4 
  Effects of interventions on baseline parameters  

Parameter ITNs IRS-DDT IRS-BC

α  i  0.56 0.44 1
     P    B  i       0.73 1 1
     P    C  i       0.73 1 1
     P    D  i       1 0.76 0.19

  We define the intervention effect such that the intervention-modified parameter is the 
product of the intervention effect and the baseline parameter value. For example, an inter-
vention effect value of 1 implies no effect on the parameter and 0 implies full effect.  
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  Figure  4.    Effects of three intervention strategies, applied singly, on entomological quantities that measure mosquito survival and potential to 
transmit malaria in an epidemiological setting based on Namawala, Tanzania, with baseline and intervention-modified parameter values shown in 
 Tables 3  and 4 and described in the Appendix. The plots for the delayed oocyst rate and sporozoite rate show that coverage over 80% of IRS with ben-
diocarb interrupts transmission. ( A ) The parous rate, as a function of intervention coverage, measures the probability of a mosquito surviving each 
feeding cycle. ( B ) The vectorial capacity, as a function of intervention coverage, measures the potential of the mosquito population to transmit 
malaria. ( C ) The delayed oocyst rate, as a function of intervention coverage, is the proportion of mosquitoes that are infected. ( D ) The sporozo-
ite rate, as a function of intervention coverage, is the proportion of mosquitoes that are infectious to humans. This figure appears in color at  www
.ajtmh.org .     

IRS with DDT to a population with a pre-existing ITN cover-
age level of 80%, and ITNs to a population with a pre-existing 
IRS-DDT coverage level of 85%. 

     We note that the results presented here are from equilib-
rium analysis, where we assume that enough time has passed 
to enable the system to reach a stable state that it no longer 
leaves. We study the properties of the stable fixed point of the 
system at different coverage levels. It is reasonable to expect, 
as shown here, the fixed point of the system to depend contin-
uously on the coverage level: increasing the coverage of nets 
from 20% to 21% or from 70% to 71% would not produce an 
abrupt change in EIR (or in prevalence or incidence). This is 
different from time-series data, such as the number of malaria 
cases in Zanzibar, 14  where there was a sharp drop after ITN 
coverage was significantly increased in a short time. In our 
plots, that would be similar to comparing the EIR at (for exam-
ple) 20% coverage to the EIR at 70% or 80% coverage, where 
one would see such an abrupt change. Here, we do not show 
the transient dynamics of the reduction in transmission over 
time after the introduction of vector-control interventions. 

 In other simulations (not shown here), we modeled target-
ing the population, such as first giving the second intervention 
to those humans who are already protected by the pre-exist-
ing intervention or first giving the second intervention to the 
unprotected humans. These suggested, as would be expected, 
that it is more effective to cover the unprotected population 
first before adding a second intervention to those who are 
already protected. 

     DISCUSSION 

 We showed interruption of transmission with high cover-
age of IRS with bendiocarb, agreeing with data from ref.  13  
that found no sporozoite-positive mosquitoes in huts 
sprayed with bendiocarb. However, the part of this data 
used to parameterize the values for IRS with bendiocarb, 
as described in the Appendix, is based only on pre-spray 
and post-spray collections, so it may tend to overestimate 
the effect of bendiocarb. Furthermore, it is based only on a 
collection of indoor mosquitoes, thus ignoring the effects of 
outdoor biting and resting mosquitoes. If there were a sub-
population of completely exophilic mosquitoes, these would 
continue to transmit malaria despite the spraying of houses. 
If the same mosquitoes were partially exophilic, IRS with 
bendiocarb would be less effective in killing them. Although 
reality would probably be somewhere between these two 
extremes, it would still be more difficult to achieve interrup-
tion of transmission than the model shows with these param-
eter values. Also, because bendiocarb has a shorter half-life 
than DDT, it requires more frequent spraying than DDT 
to retain its effectiveness unless the transmission season 
is short. 

 Our simulations also suggest that the effects of IRS with 
DDT include substantial personal protection and are closer 
to those of ITNs than to IRS with bendiocarb. Although nei-
ther are capable of interrupting transmission on their own in 
our simulations, our models show that high-coverage levels of 
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both interventions simultaneously can interrupt transmission, 
even in the high-transmission baseline scenario. 

 However, when interpreting the results of these simulations, 
it is important to note the many assumptions that have been 
made in defining the model and assigning parameter values. 
We have ignored temporal dynamics and assumed that the 
daily mosquito emergence rate,  N v   0 , is constant. This ignores 
seasonal variation, and so, the model mainly applies to set-
tings with perennial, relatively constant transmission. It also 
means that  N v   0  is independent of the number of eggs laid. 
This assumption is valid, given the density-dependence of the 
development of larval stages, but it breaks down when the 
adult population is small. 15  

 Although we do not explicitly model additional mortal-
ity when a mosquito is forced to rest a day before continu-
ing host-seeking, this additional mortality, which would be 
plausible, is equivalent to increasing the mosquito mortality 
rate while host-seeking, μ  vA  . However, we ignore nonlinear 
effects such as increased mortality resulting from prolonged 
lack of blood meals. We also do not model the age structure 
of mosquitoes, and therefore, older mosquitoes have the same 
death rate as younger mosquitoes. Whereas the assumption 
of an exponential death rate means that the number of old 
mosquitoes is small, it is the older mosquitoes that transmit 

malaria, and so, we intend to expand the model to include 
age structure. 

 We make the simplifying assumption that a mosquito bites 
only one time in a feeding cycle and that the time,  t , needed to 
complete a feeding cycle after biting does not depend on the 
type of host. We also ignore nonlinear effects in host-seeking, 
such as a mosquito being more likely to encounter a particular 
type of host if it has successfully bitten that type of host before. 

 We will address many of these assumptions by fully integrat-
ing a periodic version of this mosquito transmission model from 
ref.  1  with the model for malaria in humans described in ref.  2 . 
Allowing the mosquito-emergence rate and the human infec-
tivity to mosquitoes to vary periodically will allow us to cap-
ture seasonal variation in mosquito populations and malaria 
transmission. In addition, we can modulate the daily mosquito-
emergence rate as a function of the size of the adult popula-
tion. Replicating the equations for the mosquito population and 
transmission dynamics will allow us to model multiple mosquito 
species, or subgroups, feeding on the same human population. 

 This full integration will allow us to capture human het-
erogeneity down to an individual level where a mosquito’s 
probability of surviving and getting infected from a bite on 
a particular human depends on the characteristics of that 
human. We can capture transient dynamics such as the decay 

  Figure  5.   Effects of three intervention strategies, applied singly, on the host-biting rate and EIR in an epidemiological setting based on 
Namawala, Tanzania, with baseline and intervention-modified parameter values shown in  Tables 3  and 4 and described in the Appendix. The 
plots on the right represent an average member of the human population. The plots on the left show the human population divided into two 
groups: the curves with squares represent the humans that are protected by a malaria-control intervention, and curves with circles represent 
the unprotected humans in a population partially protected by a malaria-control intervention. Because IRS with bendiocarb does not provide 
personal protection, the protected and unprotected humans have the same EIR and host-biting rate, and therefore, we only show one curve. 
The intervention coverage does not start at 0 but slightly above 0; where the curves appear to touch the  y  axis, one individual is protected.   
 ( A ) The host-biting rate, as a function of intervention coverage, measures the number of mosquito bites per person per day. Note that for IRS with 
DDT, while the host-biting rate increases for both protected and unprotected humans as coverage increases, since the proportion of protected 
humans increases, the host-biting rate for the average human decreases. ( B ) The EIR, as a function of intervention coverage, measures the num-
ber of infectious bites per person per year. We see the community effects of both ITNs and IRS with DDT, because increasing coverage reduces 
the EIR for both protected and unprotected humans. At any coverage level, IRS with DDT is not as effective as the use of ITNs, which are not as 
effective as IRS with bendiocarb, in reducing transmission. We again see that coverage over 80% of IRS with bendiocarb interrupts transmission. 
This figure appears in color at  www.ajtmh.org .   
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of nets and insecticide over time. We can also model differ-
ent delivery strategies for the interventions, such as the timing 
of IRS campaigns relative to the malaria season and distribu-
tion of ITNs through, for example, ante-natal clinics or mass 
campaigns. This integration will allow us to directly relate the 
effects of the interventions on morbidity and mortality and to 
perform cost-effectiveness analysis. 

 In the simulations described here, we have used the model 
to determine the effects of the different intervention strate-
gies at different coverage levels. However, we can also use the 
model from ref.  1  or the fully integrated model to ask the ques-
tion of what combinations of interventions we would require 
to achieve certain objectives, including elimination, in differ-
ent epidemiological settings. 

 In the analysis of the mathematical model in ref.  1  and in our 
description here, we have not defined the basic reproductive 
number,  R  0 , which is commonly used in mathematical epidemi-
ology to determine a threshold condition for the tendency of a 
disease to persist in a population. The reason is that a proper 
definition for  R  0  would require a model for the full malaria cycle 
through humans and mosquitoes, and we have only presented a 
mathematical model for malaria in mosquitoes. We will address 
this issue when the two models are fully integrated. 

 Many of these assumptions and results also need to be cor-
roborated with field data and field studies. A knowledge of 
exophagy and exophily is important for every location where 
we would like to apply the model. A comparison of indoor and 
outdoor biting could be made through indoor and outdoor 

  Figure  6.    The EIR, measured as infectious bites per person per year, versus coverage of IRS with DDT in a population with a pre-existing 
ITN coverage level of 60% in an epidemiological setting based on Namawala, Tanzania, with baseline and intervention-modified parameter values 
described in the Appendix. The figure on the right shows the EIR for an average member of the human population, whereas the figure on the left 
shows the EIR for each intervention group. When IRS coverage is 0%, 40% of the human population is unprotected, and 60% is protected by ITNs. 
As the IRS coverage increases, the unprotected humans move to the group that is protected only by IRS, and the ITN users move to the group that 
is protected by both interventions. Finally, at 100% IRS coverage, 40% of the human population is protected only by IRS with DDT, and 60% is 
protected by both ITNs and IRS. We see that ITNs provide slightly better personal protection than IRS with DDT, because humans protected by 
only ITNs have a lower EIR than humans protected by only IRS with DDT. This figure appears in color at  www.ajtmh.org .    

  Figure  7.    The EIR, measured as infectious bites per person per year, versus coverage of IRS with bendiocarb in a population with a pre-existing 
ITN coverage level of 60% in an epidemiological setting based on Namawala, Tanzania, with baseline and intervention-modified parameter val-
ues described in the Appendix. The figure on the right shows the EIR for an average member of the human population, whereas the figure on the 
left shows the EIR for each intervention group. Because IRS with bendiocarb does not provide any personal protection (it does not repel or kill 
mosquitoes before they bite) but only community protection, it does not directly reduce the EIR of a user. Thus, at any coverage level of IRS-BC, 
humans protected only by IRS-BC have the same EIR as unprotected humans, and humans protected by both IRS-BC and ITNs have the same 
EIR as humans protected by only ITNs. When IRS coverage is 0%, 40% of the human population is unprotected, and 60% is protected by ITNs. As 
the IRS coverage increases, the unprotected humans move to the group that is protected only by IRS, and the ITN users move to the group that is 
protected by both interventions. Finally, at 100% IRS coverage, 40% of the human population is protected only by IRS with bendiocarb, and 60% is 
protected by both ITNs and IRS. We see strong community effects of IRS-BC with interruption of transmission with coverage above 70%. We note 
that although the combination of ITNs and IRS with bendiocarb improves control, interruption of transmission occurs at a similar level of IRS-BC 
coverage as when it is used on its own. This figure appears in color at  www.ajtmh.org .    
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human-landing catches or newer and more ethical tent traps. 16  
Some degree of exophily after endophagy could be measured 
through exit window traps. Other assumptions, such as the lack 
of senescence, can be validated or further explored with insec-
tary experiments by measuring age dependence of mortality 
of laboratory mosquitoes. 

 Furthermore, whereas there have been many trials on the 
effectiveness of ITNs, 17–  22  there have been few detailing the 
effectiveness of IRS 23  or comparing ITNs with IRS, 24  and no 
randomized control trials, so far, have investigated the combi-
nations of the two interventions. Because some countries are 
beginning to consider this combination 25  (This refers to Box 2.4 
in ref. 25), it is important to investigate when and how this 
combination would be beneficial with field data. 

 In malaria-control programs, combinations of IRS and ITNs 
would probably be of the greatest interest in two perspectives: 
(1) where the combination can achieve interruption of trans-
mission when either intervention alone cannot, and (2) if the 
combination is more cost-effective for reduction of the malaria 
burden than either intervention alone. 

 Based on these considerations and the results of our 
model, combination could be tried out in a variety of circum-
stances. For such research, we would propose the following 
principles. 

   •   Increasing priority should be given to trials where IRS with 
an insecticide having high lethality against local vectors is 
combined with ITNs.  

  Figure  9.    The EIR, measured as infectious bites per person per year, versus coverage of ITNs in a population with a pre-existing coverage 
level of IRS with DDT of 85% in an epidemiological setting based on Namawala, Tanzania, with baseline and intervention-modified parameter 
values described in the Appendix. The figure on the right shows the EIR for an average member of the human population, whereas the figure on 
the left shows the EIR for each intervention group. When ITN coverage is 0%, 15% of the human population is unprotected, and 85% is pro-
tected by IRS-DDT. As the ITN coverage increases, the unprotected humans move to the group that is protected only by ITNs, and the humans 
protected by IRS-DDT move to the group that is protected by both interventions. Finally, at 100% ITN coverage, 15% of the human population is 
protected only by ITNs, and 85% is protected by both ITNs and IRS. We see the community effects of ITNs, because increasing coverage reduces 
the EIR for all groups, including the unprotected humans. We also see that ITNs provide slightly better personal protection than IRS with DDT. 
Similar to  Figure 8 , we see that very high coverage levels of both ITNs and IRS-DDT can interrupt transmission. This figure appears in color at 
 www.ajtmh.org .    

  Figure  8.    The EIR, measured as infectious bites per person per year, versus coverage of IRS with DDT in a population with a pre-existing 
ITN coverage level of 80% in an epidemiological setting based on Namawala, Tanzania, with baseline and intervention-modified parameter val-
ues described in the Appendix. The figure on the right shows the EIR for an average member of the human population, whereas the figure on the 
left shows the EIR for each intervention group. When IRS coverage is 0%, 20% of the human population is unprotected, and 80% is protected 
by ITNs. As the IRS coverage increases, the unprotected humans move to the group that is protected only by IRS, and the ITN users move to the 
group that is protected by both interventions. Finally, at 100% IRS coverage, 20% of the human population is protected only by IRS with DDT, and 
80% is protected by both ITNs and IRS. We see the community effects of IRS, because increasing coverage reduces the EIR for all groups, includ-
ing the unprotected humans. We also see that ITNs provide slightly better personal protection than IRS with DDT. Because IRS-DDT coverage 
approaches 100%, EIR approaches 0, and therefore, very high coverage of ITNs and IRS-DDT can substantially reduce or even interrupt transmis-
sion. This figure appears in color at  www.ajtmh.org .    
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   •   Prospective studies should be done rigorously with commu-
nity randomization and a minimum of three arms: IRS, 
ITNs, and combination. Our results could be applied in 
sample-size calculation, because the expected differences in 
EIR from the model could be translated to expected differ-
ences in prevalence (although incidence should also be 
measured).  

   •   It should be attempted to achieve as high coverage rates 
with both methods as practically possible, to maintain over 
the long term in a control program.  

   •   In areas with moderate levels of transmission (EIR below 
100) where, for example, replastering constrains the effect 
of IRS, it would be of interest to conduct such trials with 
close entomological monitoring over all seasons. It might 
also be considered to examine the results of letting peo-
ple within a given community choose between IRS and 
ITNs.  

   •   In areas with intense transmission, the conduct of such a 
trial would be most rational if it can be expected that both 
methods can be implemented at high coverage over trans-
mission seasons in the long term.  

   •   It would not be feasible to implement such controlled trials 
in many operational and epidemiological settings. Therefore, 
the model results should also be validated against observa-
tional studies in areas where IRS and ITNs are combined, 
for programmatic reasons such as Bioko Island (which 
recorded substantial decreases in malaria mortality). 26        

 Many of the outstanding questions in malaria vector con-
trol, such as those listed by Hawley and others, 22  are difficult or 
impossible to address with empirical research. Mathematical 
models provide one approach to some otherwise intractable 
issues, such as understanding the likely long-term effects of 
large-scale deployment of interventions that have population-
level effects like ITNs and IRS. Large-scale controlled trials 
of such interventions can never be continued long enough to 
reach the equilibria that we analyze in this study. Field trials 
are unlikely to have sufficient power for testing population-
level effects of small modifications to established interventions 
such as changing insecticides. Randomized trials of whether 
distinct vector-control interventions act synergistically with 
each other or with other interventions, such as intermittent 
preventive treatment or prompt and effective treatment, may 
be prohibitively difficult for both ethical and logistic reasons. 
However, all these effects can be assessed using mathematical 
models. 

 Although we present preliminary results here that are 
meant as an introduction to the kind of questions that mod-
eling can ask and answer in combining interventions for 
malaria control and elimination, the models that we propose 
can also be extended to help define target product profiles 
for interventions that have not yet reached the field, such as 
transgenically modified mosquitoes and transmission-block-
ing vaccines, or to assess the potential of older methods, such 
as source reduction, that may be difficult to implement on a 
large scale. We plan to soon present a fully integrated model 
for malaria in humans and mosquitoes that will include real-
istic health-systems settings to examine combinations of 
vector-control interventions with other malaria-control inter-
ventions and provide further outputs, such as effectiveness 
in reducing morbidity and mortality and cost-effectiveness 
analysis. 
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