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Abstract

Background: During evolution selection forces such as changing environments shape the
architecture of genomes. The distribution of genes along chromosomes and the length of intragenic
regions are basic genomic features known to play a major role in the regulation of gene
transcription and translation.

Results: In this work we perform the first large scale analysis of the length distribution of
untranslated regions (promoters, 5' and 3' untranslated regions, terminators) in the genome of the
yeast Saccharomyces cerevisiae. Our analysis shows that the length of each open reading frame (ORF)
and that of its associated regulatory and untranslated regions significantly correlate with each other.
Moreover, significant correlations with other features related to gene expression and evolution
(number of regulating transcription factors, mRNA and protein abundance, evolutionary rate, etc)
were observed. Furthermore, the function of genes seems to have an important role in the
evolution of these lengths. Notably, genes that are related to RNA metabolism tend to have
shorter untranslated regions and thus tend to be closer to their neighbouring genes while genes
coding for cell wall proteins tend to be isolated in the genome.

Conclusion: These results indicate that genome architecture has a significant role in regulating
gene expression, and in shaping the characteristics and functionality of proteins.

Background

The distribution pattern of genes throughout the genome
is of utmost importance: As each gene has to be expressed
under very specific circumstances and at a very specific
level, genes should be isolated from each other such that
their expression does not interfere with the regulation of
adjacent genes. Cis-acting sequences (commonly termed
promoter sequences) are usually located 5' to the transcrip-
tional initiation site of each gene. Binding of transcription
factors and chromatin modifiers at these sites allows
appropriate gene expression [1]. However, it is to be

expected that the traverse of RNA polymerase, a large
multi-protein complex of high molecular weight, through
an upstream gene, may interfere with the binding of these
regulators. Genes that are divergently expressed (i.e. share
a promoter) usually share transcription factors, and show
similar regulation. Thus, many times such genes are func-
tionally related. Interestingly, convergent genes, in which
two RNA polymerases could potentially collide, do not
usually exhibit transcriptional interference [2,3], due to
the presence of sequences that act as transcriptional termi-
nators, acting on both strands [4].
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Most mRNAs in S. cerevisiae are typically about 300 nucle-
otides longer than their translated sequences [5]. The
untranslated regions at the 5' (5'UTRs) and at the 3'
(3'UTRs) of genes seem to play important roles in gene
regulation. For example, it was found that 5'UTRs and
3'UTRs include conserved stem-loop structures that are
involved in the coordinated post-transcriptional regula-
tion of biological pathways [6]. 5'UTRs have been impli-
cated mainly in translational control, affecting all post-
transcriptional stages, including mRNA stability, folding,
and interactions with the ribosomal machinery [7-14]. In
addition, it was found that 3'UTRs have important roles in
mRNA stability [15,16] and localization [17]. It has also
been suggested that a minimal distance between genes in
S. cerevisiae is required for successful transcription. The
observed distances between genes have been shown to fit
such a theoretical model of gene distribution [18,19].
These results imply additional constraints on the lengths
of untranslated regions. Previous studies have shown that
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OREF length significantly correlates with features such as
their expression levels [20,21]. However, it is not clear if
similar connections (possibly with other features) can be
found when considering the lengths of untranslated
regions.

The first paper that analyzed gene distribution in S. cerevi-
siae appeared shortly after the genome sequence was
released [22]. Recently, a large-scale measurement of the
lengths of UTRs in S. cerevisiae was performed [23,24].
These data enable us to accurately estimate the lengths of
the untranslated regions of thousands of S. cerevisiae
genes. Using these length estimations we perform the first
large scale analysis of length distributions of coding and
non coding regions in the yeast genome. We aim at
improving our understanding of the determinants that are
related to the length of each non-coding region (pro-
moter, 5'UTR, 3'UTR, terminator; exact definitions are
given in the next section; see Figure 1), and learning about
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Schematic representation of the definition of Promoters, 5'UTRs, 3'UTRs, and terminators. Two types of pro-
moters appear in parts |) and 2) Two types of terminators appear in parts 3) and 4). Note that that in cases |) and 3) the ter-
minator of one gene is the promoter of the next gene. Thus, in the case of terminators, we treated this category separately

from the converging case [4].
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the relation between length distribution of non-coding
regions and the functionality of the corresponding genes.

Results and discussion

In order to gain initial information about the organiza-
tion of functionally related genes in the genome, we meas-
ured, for each open reading frame (ORF), the distance (in
nucleotides) to its neighboring ORFs, and asked whether
genes with similar functional roles or characteristics (i.e.,

http://www.biomedcentral.com/1471-2164/10/391

genes sharing GO annotations) tend to be closer to other
genes or isolated (see Additional file 1). Table 1 (left)
identifies GO groups whose genes tend to be closer-than-
average to their neighbouring genes. These are highly
enriched for categories related to RNA metabolism (splic-
ing, RNA binding proteins, etc.). In contrast, the GO
groups that tend to be isolated from other genes (Table 1,
right) show enrichment for cell wall proteins (glucanases,
proteins that promote flocculation, etc.), plasma mem-

Table I: GO groups whose genes tend to be close to neighbouring genes (left) and GO groups that tend to be isolated from other

genes (right).

GO groups whose genes tend to be close to neighbouring genes

GO groups that tend to be isolated from other genes

nuclear mRNA splicing, via spliceosome (p < 0.001)

plasma membrane (p < 0.001)

retrotransposon nucleocapsid (p < 0.001)

chitin- and beta-glucan-containing cell wall (p < 0.001)

RNA binding (p < 0.001)

flocculation via cell wall protein-carbohydrate interaction (p < 0.001)

Protein binding (p < 0.001)

glucose transmembrane transporter activity (p = 0.001)

transposition, RNA-mediated (p < 0.001)

DNA helicase activity (p = 0.002)

telomere maintenance (p = 0.001)

fructose transmembrane transporter activity (p = 0.002)

DNA-directed DNA polymerase activity (p < 0.001)

mannose transmembrane transporter activity (p = 0.002)

RNA-directed DNA polymerase activity (p < 0.001)

telomere maintenance via recombination (p = 0.003)

ribonuclease activity (p < 0.001)

helicase activity (p = 0.003)

Spliceosome (p < 0.001)

peptidase activity (p < 0.001)

hexose transport (p = 0.003)

endonuclease activity(p = 0.004)

RNA splicing factor activity, transesterification mechanism (p < 0.001)

U4/U6 x U5 tri-snRNP complex (p < 0.001)

Group | intron splicing (p = 0.001)

tRNA methylation (p = 0.002)

peroxisomal membrane (p = 0.003)

DNA-dependent DNA replication (p = 0.004)

tRNA splicing (p = 0.004)

mRNA catabolic process (p = 0.004)

Cytokinesis (p = 0.005)

snRNP Ul (p = 0.005)

Corresponding p-values appear in brackets. GO groups whose p-values are significant after FDR correction (Materials and methods) are in bold.
See Additional file | for more results and p-values and the Materials and methods for details about how these p-values were computed.
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brane proteins, and transmembrane sugar transporters.
All these categories share the property that the proteins
encoded by these genes are located at the cell periphery,
either at the membrane or the cell wall. The fact that very
specific categories are enriched implies that the tendency
of genes to be isolated or not in the genome has a clear
functional value.

The results presented were obtained by measuring the dis-
tance between the beginning of the gene's ORF and the
end of the previous ORF, and similarly, from the end of
the gene's ORF to the beginning of the ORF in the subse-
quent gene. Thus, this first characterization ignores gene
orientation and the site of transcription initiation/termi-
nation. Recently, the precise transcription initiation and
termination sites have been determined in a genome-wide
fashion [23,24]. This allows us to define, for each gene,
the length of the regions that are transcribed but not trans-
lated: 5' and 3'UTRs (Figure 1). We thus divide the yeast
genome into the following categories: For two genes tran-
scribed in the same direction, we define the promoter of
the downstream gene to be the region between the 3'UTR
end of the upstream gene and the beginning of the 5'UTR
of the gene in question. This region should also contain,
at the same time, signals required to terminate transcrip-
tion of the upstream gene. However, it has been shown
that most of the signals for 3' mRNA generation are within
the transcribed region [25]. Thus, one can adjudicate to
most of these sequences a role as transcription regulators
of the downstream gene. In the case of divergently
expressed genes, these usually share a promoter region
(defined as the distance between the beginning of the two
5'UTRs). In the case of converging genes, these share a ter-
minator, that contains cis-acting sequences that prevent
transcriptional  collision between incoming RNA
polymerases [4] (Figure 1). We measured the size of all
genes and intergenic regions in the yeast genome. Addi-
tional file 2 includes the length of promoters, 5' UTRs,
ORFs, 3' UTRs and terminators of all the S. cerevisiae genes
for which this information was available. The length dis-
tribution of untranslated regions appears in Figure 2. As
can be seen, each of these distributions has a single peak
with an average of 455, 83, 136, and 275 bp for the pro-
moters, 5'UTRs, 3'UTRs, and terminator correspondingly.
The standard deviations of these distributions are in the
same order of magnitude; 919, 84, 138, and 765 corre-
spondingly.

Functional distribution of genes

To study the functional significance of the differences in
size observed, we computed the length of the various
intergenic regions for each GO group. The average length
of each of the gene parts for each GO category was calcu-
lated, and compared to the rest of the genome. Additional
file 3 includes p-values (for being longer or shorter than

http://www.biomedcentral.com/1471-2164/10/391

average) for the lengths of the promoters, terminators and
UTRs of each GO functional category.

Table 2 summarizes the cellular functions (Biological
Process ontology) that have extremely long or short pro-
moters/terminators/UTRs. Consistent with the results pre-
sented in Table 1, GO groups related to RNA metabolism
(transcription, splicing, RNA binding) display short pro-
moters. Interestingly, genes involved in the response to
DNA damage (DNA repair, DNA damage response,
homologous recombination) can also be placed in this
category (Table 2A). rRNA processing and ribosome com-
ponents are highly enriched among 5'UTRs that are
shorter than average. Ribosomal proteins also tended to
have shorter than average 3'UTR. The short UTRs of ribos-
omal proteins may facilitate their regulation as part of the
Environmental Stress Response (ESR) [26].

No particular GO group exhibited longer than expected
promoters (Table 2B). This suggests that the GO groups
found in Table 1 to be isolated from their neighbouring
genes, such as cell wall and plasma membrane proteins,
do not require this distance to accommodate larger pro-
moters where more transcription factors can bind (see
below). In contrast to the lack of larger-than-average pro-
moters, many GO groups were enriched for long 5'UTRs.
These included categories related to signal transduction
pathways (amino acid phosphorylation, signal transduc-
tion, small GTPase signal transduction), invasive and
pseudohyphal growth, and cell wall proteins. Long
5'UTRs have been linked in the past to translation regula-
tion: folding of the 5'UTR may help regulate the accessi-
bility to the ribosome [8]. Indeed, all the processes
mentioned require precise levels of expression. Our
results suggest that they may be regulated at the level of
initiation of translation. Table 2B also shows that genes
involved in transcription regulation tend to have long
3'UTRs (probably pointing to regulation through RNA
binding proteins, see below), whereas longer than usual
terminators can be seen in genes involved in response to
stress and amino acid transport (Table 2B). The length dis-
tribution of all functional categories is presented in Addi-
tional File 3.

Next, we asked whether there is a correlation between the
length of the different regions of each gene. Table 3 shows
that the highest correlations are seen between the size of
each ORF and its 5' UTR (a correlation of 0.19), as well as
between the promoter and terminator regions (0.16).
These results may suggest that longer genes require longer
regulatory regions. Indeed, such genes are regulated on
average by more transcription factors (correlation = 0.12,
p < 10-16; see the next section) and their mRNA tend to
bind more regulatory proteins (correlation = 0.16, p < 10
16; see the next section); these features may require longer
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Table 2: Summary of the cellular functions (Biological Process ontology) with extreme promoters, UTRs and terminators in S.

cerevisiae.

Short Promoter

Short 5'UTR

Short 3'UTR

Short Terminator

Short End to End
Terminator

I. Response to DNA
damage stimulus

2. DNA repair

3. nuclear mRNA splicing,
via spliceosome

4. protein transport

5. RNA elongation from
RNA polymerase |l
promoter

6. RNA splicing

7. mRNA processing

8. chromatin modification
9. DNA recombination

I. rRNA processing
2. Protein folding

Long Promoter

Long 5'UTR

Long 3'UTR

Long Terminator

Long End to End
Terminator

l. protein amino acid
phosphorylation

2 . signal transduction

3. cell wall organization and
biogenesis

4. pseudohyphal growth
5. endocytosis

6. metabolic process

7. small GTPase mediated
signal transduction

8. invasive growth.

I. regulation of transcripti
on, DNA-dependent

I. response to stress 2.
amino acid transport

All the p-values corresponding to the GO groups presented in this table are lower than 0.0048. The length distribution of all functional categories
is presented in Additional file 3, technical details appear in the Materials and Methods section.

Table 3: Spearman correlations (and p-values) between the lengths of Promoters, UTR5s, UTR3s, and Terminator.

ORF Promoter 5'UTR 3'UTR Terminator
ORF e 0.053 (0.0015) 0.19 -0.032 0.073
(< 10-'6) (0.02) (5.66%10-¢)
Promoter e e 0.0717 (1.37*10-5) 0.043 0.155
(0.01) (1.37*10-'6)
5§UTR  wee e e 0.1 (4.63*10-'") 0.124
(1.37*10-12)
J'UTR e e e e -0.19 (< 10-16)
Terminator ~  seeeeem e e e e
Significant correlations after FDR correction are shown in bold.
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promoters and UTRs (see the next section). Interestingly,
the adjacent 3'UTR and terminator regions exhibit a clear
and strong negative correlation (-0.19). The opposing
trends between 3'UTR and its adjacent terminator region
suggest that a minimal distance must exist between ORFs
to allow proper expression levels. This results in a trade-
off between the 3'UTR length and that of the terminator
[18].

Factors related to the length of the different regions

In the next stage, we analyzed whether the different gene
regions are correlated with different factors that affect
gene expression. The following variables were analyzed
(Table 4): 1) Number of transcription factors known to
bind at the promoter region (N° of TFs) [27]. 2) Number
of RNA binding proteins known to bind its mRNA prod-
uct (N° of RPB) [28]. 3) mRNA levels [29]. 4) mRNA half
life [30]. 5) 5'UTR free energy [8]. 6) Protein abundance
(PA) [31]. 7) Protein halflife [32]. 8) Noise in protein lev-
els [33]. And 9) Evolutionary rate of the gene (ER) [34]. In
the case of variables with small discrete number of values
(N° of TFs, N° of RBF), the correlation is reported as sig-
nificant only when an empirical p-value corresponding to
a permutation test was significant (see Materials and
methods; the empirical p-values appear in Additional
File 4).

Table 4 shows that the length of ORFs and untranslated
regions significantly correlate with many central features.
For example, as expected, a positive correlation can be
seen between promoter length and the number of tran-
scription factors binding it (r = 0.29, p < 10-1¢). However,
the fact that the number of TFs also correlates with termi-

http://www.biomedcentral.com/1471-2164/10/391

nator and 5'UTR lengths additionally suggests that genes
with more extensive TFs regulation require longer distance
from neighboring ORFs.

Genes with higher protein abundance and increased
mRNA levels tend to have longer promoters, UTR3, and
terminators, and tend to be short (presumably, to allow
efficient translation; see for example [35]). This result
demonstrates that the untranslated regions contribute to
the tighter regulation of highly expressed genes. In addi-
tion, proteins whose abundance within the cell tends to
be variable or "noisy" show longer promoters. The signif-
icance of this observation remains unclear.

Interestingly, we found a significant negative correlation
between promoter length and evolutionary rate of the cor-
responding genes. This correlation is still significant after
controlling for the number of TFs or for any of the other
features that appear in Table 4. Thus genes with longer
promoters evolve at a slower rate. This seems to occur
independently of the fact that they are regulated by more
TFs, and tend to have higher mRNA and protein levels.
The puzzling inverse correlation between promoter length
and evolutionary rate suggests that regulatory mecha-
nisms other than TFs play an important regulatory role,
which cannot be easily modified during evolution. This
additional regulatory mechanism(s) could be related to
chromatin configuration, an aspect of nuclear architecture
that has lately been the focus of much attention [36].

Throughout the years various roles have been attributed to
the 5' and 3' UTR regions, including mRNA stability, fold-
ing, interactions with the nuclear export, RNA processing,

Table 4: Relations between the lengths of Promoters, 5'UTRs, 3'UTRs, and various parameters.

ORF Promoter 5'UTR 3'UTR Terminator

No of TFs 0.12 0.29 0.13 0.099 0.15

No of RBP 0.16 0.05 -0.066 0.091 0.034
mRNA levels -0.139 0.062 -0.107 0.043 0.039
mRNA half life 0.12 0.01 0.08 -0.065 0.036
5' free Energy -0.02 0.063 0.059 0.057 0.035
PA noise -0.034 0.116 0.051 0.031 -0.011
PA -0.147 0.127 -0.099 0.036 0.065
Protein half life -0.271 -0.0012 -0.135 -0.02 -0.028
ER 0.049 -0.08 -0.018 -0.051 -0.044

We correlations that are significant (both empirical p-value < 0.01 and p-value < 0.01, and FDR correction) are bolded. The p-values appear in

Additional file 4.
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Length distribution of untranslated regions.
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splicing and translational machines, as well as intracellu-
lar traffic and localization [6-17]. We show that whereas
the 3' UTR length exhibits a negative correlation with
mRNA half life, the 5' UTR length is inversely propor-
tional to protein half life and abundance (Table 4). These
results show that the main effect that these two untrans-
lated regions have on gene expression occurs at two differ-
ent levels, the 3'UTR acting mainly at the RNA stability
level, and the 5'UTR enabling appropriate translation.
Lately it has become apparent that RNA-binding proteins
(RBPs) play an important role in regulating gene expres-
sion [28]. RBPs recognize specific sequences at various
locations along the mRNA molecule. Our results suggest
that those at the 3'UTR play a major role in regulation, as
the correlation of the number of RBPs is significantly pos-
itive with the length of the 3'UTRs (0.092, p = 3.6*10-11)
and significantly negative with the length of the 5'UTRs (-
0.066, p = 1.3*107).

The organization of genomes is a subject of intensive
research. Not long ago, it was assumed that genes were

randomly distributed in eukaryotic genomes, in contrast
to prokaryotes, where the organization of genes in regula-
tory operons requires their physical clustering [37]. How-
ever, work carried out in the last few years has challenged
this view (reviewed in [38]). It appears that gene distribu-
tion is far from random and many eukaryotic genomes
include clusters of genes that are related in their function
[39,40]. A clear connection was found between co-expres-
sion and proximity, as closely-located genes tend to be co-
expressed [41,42], clusters of co-expressed genes in mam-
malian genomes are evolutionarily conserved [42,43],
and highly expressed genes and housekeeping genes tend
to cluster [44-47]. In addition, clustered genes tend to
exhibit similar functionality [39,40,48-50], tend to be
located in domains with low recombination rates [51],
encode proteins that tend to interact physically
[38,52,53], and belong to the same metabolic pathway
[54-56].

A number of previous publications explored the genomic
distribution of genes belonging to the same biological
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function or biochemical pathway [48,50,55]. Recently,
Tuller et al. compared the genomes of 16 organisms and
found a high level of functional organization for eukaryo-
tes, such as Saccharomyces cerevisiae [57]. They also found
that the genomic distribution of cellular functions tends
to be more similar in organisms that have higher evolu-
tionary proximity. Here we analyze the distribution of
genes in the genome of the yeast Saccharomyces cerevisiae
from a functional point of view. Measuring distances
between genes belonging to various GO categories, we
find that certain functions in yeast are encoded by genes
that tend to be close to other genes (not necessarily from
the same function). We see an enrichment of functions
related to mRNA splicing (Table 1). Such a clustering is
explained by the fact that these genes tend to have short
promoters (Table 2). The biological significance of this
finding is not completely clear. One possibility is that for
unknown reasons, genes related to mRNA splicing tend to
be regulated by fewer transcription factors than others,
and thus require shorter promoter regions. Although
these genes have a lower number of transcription factors,
the difference with the rest of the genome is not statisti-
cally significant (data not shown), suggesting that addi-
tional forces may affect promoter length of these genes.
Alternatively, proper regulation of this set of genes may
require physical proximity between transcription initia-
tion factors and upstream regulators such as transcription
factors and chromatin remodelers. Interestingly, chroma-
tin remodelers by themselves constitute another GO
group with short promoters. Additional GO groups with
short promoters include those related to genome mainte-
nance (DNA repair, DNA damage response, etc). In con-
trast, GO groups involved in responses to environmental
changes (signal transduction, cell wall, etc.) tend to have
longer untranslated sequences.

Our results suggest that gene distribution in the genome
has evolved to allow suitable regulation: highly expressed
genes tend to be shorter, and have extensive promoters
and terminators. The longer promoters can partially be
explained by the need of tighter regulation of these genes
by TFs; the longer terminator may be needed in order to
reduce transcription noise from neighbor genes. In addi-
tion we have shown that 5' and 3' UTRs may provide addi-
tional layers of regulation, with 3'UTRs exerting their
effect at the RNA level, and 5'UTRs affecting translation
levels. Thus, genome architecture has a significant role in
regulating gene expression, and in shaping the character-
istics and functionality of proteins.

Conclusion

We conclude that there is significant relation between the
genomic organization of untranslated regions (promot-
ers, 5' and 3' untranslated regions, and terminators) and

http://www.biomedcentral.com/1471-2164/10/391

features of the corresponding proteins (e.g. functionality,
expression levels, expression noise and evolutionary rate).

Materials and methods

Various Sources of Data

Information about the GO annotation and gene-order in
S. cerevisiae was downloaded from NCBI. The GO ontol-
ogy network was downloaded from OBO Foundry Ontol-
ogies http://obofoundry.org/. The information about
gene lengths was downloaded from Biomart [58]. We
used the genetic interaction network data from [59].
ChIP-chip information of 203 TFs was downloaded from
the work of Harbison et al. [27]http://web.wi.mit.edu/
young/regulatory_code/. We considered only interactions
with p-value < .0.001. The S. cerevisiage gene evolutionary
rates were downloaded from [34]. The protein abundance
of S. cerevisiae in YEPD was downloaded from the work of
[31]. The measurements of the half life time of S. cerevisiae
mRNAs was downloaded from [30]; we removed negative
values (very stable mRNAs). We averaged all the half life
measurements of each gene; we also analyzed mRNA half
life of [29] and got similar results. The measurements of
protein half life were downloaded from [32].

The information about the targets of 40 RNA-Binding Pro-
teins was downloaded from the work of Hogan et al. [28].
We considered only interactions with g-value < 0.05.

The information about the folding free energies of the
most strongly folded structure of 5'-UTRs was down-
loaded from [8]. We considered the free energy that is
related to (5'-UTR 100 nt) which is very close to the aver-
age length of the 5'UTR (83 nt, see Figure 2). mRNA levels
were downloaded from [29]; we also analyzed mRNA lev-
els of [60] and got similar results. Noise of protein abun-
dance was downloaded from [33]; we used the DM values
in YEPD.

The lengths of the Promoters, 5'UTRs, and 3'UTRs and
Terminators of S. cerevisiae genes

Data with the lengths of gene 5'UTRs, and 3'UTRs were
downloaded from [23] (which is more complete than the
data of [24] and [61]). These data were used for comput-
ing the length of promoters and terminators of genes
when applicable (i.e. when all the information was avail-
able). See Figure 1 for the two definitions of promoters,
and the two definitions of terminators.

Additional File 2 includes the lengths of UTRs, promoters,
and terminators that were used in this study; missing cells
denote cases where the information was not available (for
UTRs) or when the information was not enough to com-
pute the corresponding values (for terminators or pro-
moters). The table includes 6605 ORFs; we had the
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information of the length of the 5'UTRs of 4420 genes, the
length of 3668 promoters, the length of 5213 3'UTRs, and
the length of 3849 terminators (2102 of them are conver-
gent).

P-values and correlations

GO Groups with Genes that Tend to be Far or Close to other Genes
In this test we computed for each GO group the average
distance of gene in the group from the closest gene (not
necessarily from the group). We generated 1000 random
permutations of the genes locations and recomputed this
average. Finally, for each GO group, we computed two
empirical p-values (fraction of permutations where the
GO group has lower or equal average distance, and with
higher or equal average distance) that reflect the tendency
of a GO group to be close/far from other genes.

In this case, we checked separately all the GO groups
(Additional file 1, first sheet), and the largest GO groups
(we used a cut-off of 60 genes to get the top largest GO
groups; Additional file 1, second sheet). In the first case,
due to the large number of GO groups and the fact that the
smallest empirical p-value is 0.001 no GO group passed
the FDR test. In the second case, several GO groups passed
the FDR test.

P-values and correlations

We used Kolmogorov-Smirnov test to compare the distri-
butions of the lengths of the 5'UTRs, 3'UTRs, and promot-
ers of GO groups to the distribution in the entire genome.
We considered only the largest GO groups (we used a cut-
off of 35, 25, and 20 genes for Biological Processes, Molec-
ular Functions, and Cellular Components respectively to
get the top largest GO groups in the corresponding ontol-
ogies). These p-values underwent FDR correction. The
results for the three ontologies appear in Additional file 3.

Some of the analyzed parameters had small discrete num-
bers of values (e.g.: number of TFs or RBP). In such cases,
the standard Spearman correlation p-values are biased
(they are more significant than they should be). Thus, we
also computed empirical p-values by comparing the cor-
relation to the correlations after permuting the vectors.

FDR

P-values were filtered by False Discovery Rate (FDR) to
correct for multiple testing [62]. More specifically, first, all
the p-values were sorted in increasing order, Py, P,, .., P,

Next, we filtered p-values, P;: P; > % *0.05.
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Additional file 2

Table S2. Length for each ORF, Promoter, 5'UTR, 3'UTR, and Termina-
tor.
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Additional file 3

Table S3. For each GO group, p-values for having long/short Promoters,
5'UTRs, 3'UTRs, and Terminators.

Click here for file
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Additional file 4

Table S4. P-values and empirical p-values for the spearman correlations
between the lengths of the Promoters, UTR5s, UTR3s, and various param-
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