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Abstract 
Background: The study aimed to assess the influence of different implant insertion angles and depths on the stresses 
produced on the surface of peri-implant bone tissue under axial and oblique loading.
Material and Methods: The entire study followed the recommendations of the Checklist for Reporting In-vitro 
Studies (CRIS). The implant was placed in the region of element 36, according to the following models: M1 (0 mm 
/ 0°); M2 (0 mm / 17°); M3 (0 mm / 30°); M4 (2 mm / 0°); M5 (2 mm / 17°); M6 (2 mm / 30°). The models were 
subjected to loading, with intensity of 100 N. The stress assessment followed the Mohr-Coulomb criterion and 
qualitative and quantitative analyses were performed.
Results: Angled implants and installed below the bone crest produced the highest stresses on the cortical bone, 
and the axial load presented the highest stress peaks on the buccal side of implants perpendicular to the bone crest. 
Regardless of the type of load (axial or oblique), inclined implants presented the highest stress peaks on the lingual 
side of the cortical bone.
Conclusions: Implants installed perpendicular to and with a prosthetic platform at bone crest height provided the 
lowest stresses to peri-implant bone tissue under both axial and oblique loading.
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Introduction
The current advances in implantology, since the advent 
of osseointegration, have been propelling the develop-
ment and production of new dental implant systems with 
state-of-the-art design, surface treatments, and materials 
in favor of offering treatments with the most predictable, 
comfortable, and accessible implant-supported prosthe-
ses to all patients (1).
Along with the development of new implant systems, 
there was an increased need for investigation and re-
search in the field to understand the actual effects of such 
modernism in the behavior of peri-implant tissues (2,3). 
Hence, studies assessing bone behavior in the treatment 
with dental implants have been showing that among the 
main enemies of peri-implant tissues are the absence of 
planning and implant placement in sites and positions 
not recommended by the manufacturers (4).
Factors such as the intensity and direction of forces re-
ceived (axial or oblique) associated with the degree of 
implant insertion angle to the bone crest may affect di-
rectly the stability of the implant-prosthesis system (4), 
as well as the total of stresses produced on the surface 
of peri-implant bone tissue (5-7). Moreover, the levels 
of stress exerted in the bone tissue were also affected by 
bone quality and implant insertion depth (8).
Based on this, finite element analysis has played an im-
portant role in accurately analyzing the magnitude and 
distribution of the mechanical stress around implants, 
representing a valuable strategy to study the macrosco-
pic morphology of implants and peri-implant tissues (9). 
Therefore, considering the lack of information regar-
ding bone behavior in the installation of Straumann™ 
Bone Level Tapered (BLT) implant systems at different 
insertion angles and depths, the present study aimed to 
investigate, with finite element analysis, the influence of 
these insertion angles and depths on the stress produced 
on the surface of peri-implant bone tissue under axial 
and oblique loading.

Material and Methods
The study was submitted to the ethics committee 
and dismissed from analysis, according to protocol 
#2017/0745. The entire study was developed according 
to the recommendations of the Checklist for Reporting 
In-vitro Studies (CRIS) (10).
- Obtaining the models
The mandibular geometric model was obtained online 
from a model available for the free use of the scientific 
community. The geometric changes required were per-
formed in the CAD Solidworks 2017 software (Dassault 
Systemes, Solidworks Corps, USA). To shape the exter-
nal geometry of the future implant prosthesis, the mo-
dels were edited and the edentulous mandible was joined 
to the model of tooth 36 of the dentate mandible.
Some adjustments were required in the mandibular mo-

del. The thickness of the cortical bone was increased by 
0.5 mm, turning 2 mm into 2.5 mm, so that the entire 
simulated implant maintained the anchorage of the plat-
form in the cortical bone. Moreover, because the models 
were composed of inclined intermediates, with a mini-
mum height of 2.5 mm available from the manufacturer, 
a bone loss located in the posterior region of 2 mm was 
modeled, aiming to allow a suitable future crown in all 
models.
To obtain the geometric models of the implant and the 
components used in the study, they were subjected to re-
verse engineering with a digital caliper (Mod. 500-196-
30B, Mitutoyo Sul Americana Ltda., Suzano, Brazil), 
digital microscope (MV500UM-PL, Cosview Techno-
logies Co. Ltd, Bantian, China) with a magnification of 
5x ~200x, and a measuring software (Miviewcap 6.0, 
Cosview Technologies Co. Ltd, Bantian, China) to me-
asure the geometry of the components and allow their 
modeling in the Solidworks software.
- Sample preparation
The Straumann™ Bone Level Tapered (BLT) Cone 
Morse (CM) implant (4.1 x 10 mm, Institut Straumann 
AG, Basel, Switzerland), with an intermediate of Ti-
6Al-7Nb alloy, RC abutment (2.5 mm, Institut Strau-
mann AG, Basel, Switzerland), was placed in the region 
of element 36 according to the following models: M1 or 
control - implant perpendicular to the bone crest with a 
platform at crest height and straight intermediate; M2 - 
implant angled at 17° relative to the bone crest with a 
platform at crest height and intermediate angled at 17°; 
M3 - implant angled at 30° relative to the bone crest with 
a platform at crest height and intermediate angled at 30°; 
M4 - implant perpendicular to the bone crest with pla-
tform 2 mm below the crest and straight intermediate; 
M5 - implant angled at 17° relative to the bone crest with 
platform 2 mm below the crest and intermediate angled 
at 17°; M6 - implant angled at 30° relative to the bone 
crest with platform 2 mm below the crest and interme-
diate angled at 30°. The reference of the bone crest was 
based on the buccal edge of the implant platform. Figure 
1 shows the different models analyzed in the study.
- Determination of contact points
The crown of the models was made of lithium disilicate 
glass-ceramics with a minimum thickness of 1.5 mm (IPS 
e.max press, Ivoclar, Vivadent, Schaan, Liechtenstein). 
The structure that simulated the occlusal third of antago-
nist teeth was made of enamel and received contact points 
for the application of axial and oblique loads. For the axial 
load, three round contact points with 1 mm of diameter 
were placed: two in the buccal cusp on the buccal and lin-
gual sides and one in the lingual cusp. For the axial load, 
a bolus with an approximate thickness of 2 to 3 mm was 
placed between the crown and the antagonist structure. In 
turn, for applying the oblique load, the points were posi-
tioned in the buccal sides of the buccal cusps.
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Fig. 1: Models analyzed. Buccal (B), buccal semitrans-
parent (BS), mesial (M), and mesial sectional (MS) 
views.

- Finite element analysis
For the finite element analysis, all models were expor-
ted to the Ansys Workbench V19.1 software (Ansys Inc., 
Canonsburg, PA, USA). To correctly represent the me-
chanical behavior of each component, the different ele-
ments of the models were set with a modulus of elastici-
ty and Poisson’s coefficient retrieved from the literature, 
as described in Table 1. All materials were considered 
isotropic, homogeneous, and linearly elastic. Regarding 
the mechanical properties of the implant alloy (Roxo-
lid™), due to the absence of reliable tests for the mo-
dulus of elasticity of the material, this study used the 
mean between the modulus of elasticity of a titanium 
alloy with 10% zirconia and 90% titanium and another 
with 20% zirconia and 80% titanium (15). For Poisson’s 
coefficient, the same modulus of titanium grade V was 
used (18) because the materials have similar properties.
Non-linear frictional contacts with a friction coefficient 
of 0.2 μ (20) were simulated for the contact between ti-
tanium surfaces. The same value was conveniently used 
for the contact between the titanium surfaces and the fra-
mework. All the other contacts were simulated as sliding 
contacts or gap formation. The implant was considered 
osseointegrated.
The models were simulated in two steps. First, pre-stress 
was applied to the screws. For better standardizing the 
stresses, a specific resource of the Ansys finite elements 
software - “bolt pretension” - was used, allowing the 
application of pre-torque stress with a predetermined 
force or screw length adjustment. Thus, the mesh refi-
nement was verified with a temporary pre-torque in the 
intermediate. After adjusting the mesh, the load in the 

Material Young’s modulus 
(GPA)

Poisson’s 
coefficient

References

Cortical Bone 13.7 0.3 Holmes et al., 1996 (12)

Spinal bone 1.37 0.3 Holmes et al., 1996 (12)

Almond (Bolus) 0.02157 0.499 Agrawal et al., 1997 (13)

Ti-6AI-7Nb alloy (Components) 105 0.36  AZO Materials, 2003 (14)

Roxolid™ (Implant) 124.8 0.342 Ho et al., 2008 (15)
MatWeb, 2016 (18)

Enamel (Antagonists) 84.1 0.33 Mezzomo et al., 2011 (16)

Filtek Z350 XT composite resin (3M/
ESPE, St. Paul, USA)

15.07 0.31 Karimzadeh et al., 2014 (17)

Lithium disilicate glass-ceramics (IPS 
e-max press)

82.3 0.22 Trindade et al., 2018 (19)

Table 1: Mechanical properties of the materials.
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screw was adjusted until representing a peak value of 
65% of the limit of proportionality of titanium, by the 
von Mises equivalent stress criterion, with a tolerance 
interval of 1%. The limit of proportionality used was 
900 MPa for the Ti-6Al-7Nb alloy (14).
The next step consisted of the application of mastica-
tory loads, simulated with 100 N of intensity in the axial 
and oblique loading patterns. The first pattern, or axial 
load, was applied with a parallel vector along the axis 
of the element, in the upper portion of the structure that 
simulated the antagonist teeth. To simulate the occlusal 
contact, the antagonist structure was set with frictionless 
supports on the sides to allow a uniquely gingival occlu-
sal movement. The second pattern, or oblique load, was 
simulated with a vector toward the buccolingual aspect, 
forming a 30° angle with the occlusal plane. The antago-
nist structure was used to standardize the loading area. 
Rigid supports were added to the areas of masticatory 
muscles. The simulations were non-linear to the contact.
The finite element meshes were then created with a re-
finement process (≤ 5%) and produced with 10-knot 
quadratic tetrahedral elements (solid 187), allowing to 
copy the irregular geometry of the models analyzed. The 
number of knots/elements ranged from 1087369/667132 
to 1378657/854379. Figure 2 shows the meshes created. 

Fig. 2: Examples of meshes created. Mandible (A), crown (B), 
bone structure (C), implant and abutment (D), and all structures 
in a sectional mesial view (E).

All models were resolved (Windows 10 64 bits, Intel I7 
6800k processor, 112 Gb RAM) and the graphic and nu-
merical plots of the data were registered, assessed, and 
compared by qualitative and quantitative analyses.

- Assessment of stresses in peri-implant bone tissue
The Mohr-Coulomb criterion was used to quantify in a 
structural level the risk of damage to peri-implant bone 
tissue. Therefore, to facilitate the comparative analyses, 
an adaptation from the original formula was used, as fo-
llows: (Fig. 3).

𝜎𝜎"
𝜎𝜎#$%$&	($)#*	&+	&,-.&$+/

+
σ2

𝜎𝜎#$%$&	($)#*	&+	.+%3,)44$+/
= σ6 

	 Fig. 3: Formula.

where σR is equivalent to the result, σ1 is the main maxi-
mum stress, σ3 is the main minimum stress, and σlimit re-
presents the maximum yield stress to compression and 
traction.
As a reference for the calculation, the limit yield stress 
to traction was 82.8 MPa and the limit yield stress to 
compression was 133.6 MPa (21).

Results
- Stresses on peri-implant bone tissue
The stress assessment values for peri-implant bone tis-
sue according to the Mohr-Coulomb criterion and their 
percentage relative to control for the axial load were: 
M1 or control – 0.247 (100%); M2 – 0.219 (88%); 
M3 – 0.323 (131%); M4 – 0.339 (137%); M5 – 0.472 
(191%); M6 – 0.426 (172%). The results for the oblique 
load were: M1 or control – 0.274 (100%); M2 – 0.352 
(128%); M3 – 0.564 (206%); M4 – 0.402 (146%); M5 - 
1.304 (476%); M6 – 0.903 (329%).
- Axial load
When analyzing the results of the peri-implant bone un-
der axial loading qualitatively, the peaks occurred in the 
cavosurface region only in the cortical bone. Figure 3 
shows, in a sectional distal view, that these peaks occu-
rred on the buccal side of models M1, M2, and M4 and 
on the lingual side of the cortical bone in models M3, 
M5, and M6. Quantitatively, the models with perpendi-
cular implants and installed at bone crest height presen-
ted the best results (M1 and M4) (Fig. 4).
- Oblique load
Under oblique loading, all models presented peaks in the 
lingual cortical region. Quantitatively, the results were 
superior to the axial load. Overall, the implant models 
installed perpendicular to the crest (M1 and M4) presen-
ted the best results regarding stress on peri-implant bone 
tissue (Fig. 5).

Discussion
The study investigated the influence of different implant 
insertion angles and depths on the stress levels distribu-
ted to peri-implant bone tissues. Implants and prosthetic 
intermediates angled at 17° and 30° and straight were 
simulated. The implants were placed at the bone crest 
level and 2 mm below it. Six models were created, with 
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Fig. 4: External and sectional view of results on the peri-implant bone under axial loading. BO: buccal occlusal, LO: lingual 
occlusal, and DS: distal in sectional view. Because it is a sectional view, the distal view shows the mesial portion.

Fig. 5: External and sectional view of results on the peri-implant bone under oblique loading. BO: buccal occlusal, LO: lingual 
occlusal, and DS: distal in sectional view. Because it is a sectional view, the distal view shows the mesial portion.

M1 (0° / 0 mm) as control, and the implant used was the 
Straumann™ Bone Level Tapered (BLT) implant (22).
Considering the results of qualitative analyses, under 
axial loading, the stress peaks occurred on the buccal 
side in models M1, M2, and M4, in a sectional distal 
view. This is because the bolus fell over the grinding 

sides, which in lower molars are positioned more to the 
buccal aspect. However, in the implants of models M3, 
M5, and M6, the stresses moved to the lingual side of the 
cortical bone because, due to the angle of implants, the 
lingual portion tends to present a smaller cortical bone 
thickness, making it more susceptible to stress concen-
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trations. Results from previous studies show stress on 
peri-implant bone tissue in the buccal and mesiobuccal 
aspects around the neck of the implant under vertical 
loading (23). Under lateral loading, the highest stress 
was observed in the lingual aspect with a compressive 
micro-deformation in the cervical margin of the alveolar 
bone crest, and it may play a critical role in maintaining 
the bone levels involving the implant (24).
Regardless of the type of load (axial or oblique), im-
plants with bone insertion below the bone crest and at 
a 30° angle (M6) presented better results than implants 
with insertion of 17° to the bone crest (M5). This is due 
to the presence of a larger contact area in the cortical 
bone, which is obtained with a higher angle. The stress 
concentration in the cortical bone around the implant 
dissipates in the adjacent bone tissue, playing a major 
role in supporting the functional pressure exerted by the 
implant (25) due to the elastic modulus of the cortical 
bone, resulting in higher resistance to deformation (24). 
Thus, implant stability is directly related to cortical bone 
thickness (26).
The analysis with the finite element method allowed 
verifying that implant models installed perpendicular to 
the bone crest caused the lowest stresses to peri-implant 
bone tissue. Installing implants in inadequate positions 
may lead to damages to peri-implant bone tissue. Thus, 
the literature shows that, in angled models subjected to 
axial or oblique loads, the stability of the implant/pros-
thesis system was compromised (4).
Frost (27) proposed the mechanostat theory, in which 
depending on the deformation applied, the bone may su-
ffer disuse atrophy, maintain its bone mass on physiolo-
gical loads, increase bone mass with higher stimuli than 
physiological ones, or suffer resorption when the de-
formation surpasses the tolerable limit of the organism. 
Although the theory is extensively discussed regarding 
the stimuli that determine bone response, the concept of 
bone mass loss, maintenance, or gain is well accepted by 
the scientific community, depending on the intensity of 
the stimulus. Considering the intensity of stresses pro-
duced to the bone tissue by the angled implant models 
in the present study, the risk of bone loss is suggested, 
especially under oblique loading.
Based on implant insertion depth, the results showed 
that the implants installed with the prosthetic platform 
at bone crest height produced lower stresses to the bone 
tissue than implants placed 2 mm below it. This is becau-
se the implant used (Straumann™ Bone Level Tapered 
(BLT)) is originally for bone level and due to the great 
thickness of the peri-implant cortical bone of the man-
dibular model studied. The stress value is usually higher 
in the cortical bone than the cancellous bone (28,29) but 
the properties of the cortical bone supported a higher 
amount of stress. A bone tissue with higher intensity will 
allow a better stabilization of the set of implant and bone 

tissue than the bone with lower intensity (29). Thus, the 
thickness of the cortical bone affects directly the stabi-
lity and stress reduction between implants and cortical 
bone tissue (26). The data corroborate the results obtai-
ned by Rismanchian et al. (30), in which the stress cau-
sed to the bone tissue was also higher in implant models 
placed below the bone crest.
Based on the present study, it was verified that implants 
installed at the bone level have more contact with the 
cortical bone tissue, obtaining primary stability that 
favors an immediate load placement. This result is im-
portant from the clinical standpoint, considering there 
is a possibility to prevent more advanced surgeries (os-
teogenic distraction and lower alveolar nerve laterality) 
in regions with short mandibular bone tissue height. In 
cases requiring a larger prosthetic area for esthetic pur-
poses, installing a buried implant regardless of the angle 
can represent a choice of surgical technique. However, 
further clinical studies are not discarded, aiming to bring 
results as close as possible to the behavior found in li-
ving tissues.
The main limitation of the study is the inability of the 
finite element analysis model to simulate all the charac-
teristics of living tissue. However, a bolus was simulated 
between the ceramic crown and the antagonist structure 
in enamel, allowing a satisfactory simulation and closer 
to the clinical reality of the models studied. Therefore, it 
is evident the significance of the finite element method 
as a key point to a coherent clinical indication and pre-
dictability.

Conclusions
The finite element analysis allowed concluding that mo-
dels with perpendicular implants and installed at bone 
crest height provided lower stresses to peri-implant bone 
tissue than angled implants and with a prosthetic plat-
form 2 mm below the crest, under both axial and oblique 
loading.
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