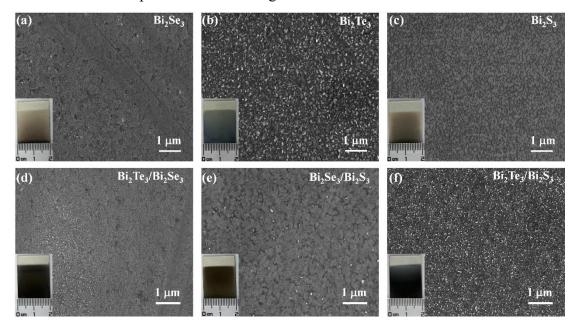


Supporting Information

for Adv. Sci., DOI 10.1002/advs.202205460

 ${\rm Bi_2Te_3/Bi_2Se_3/Bi_2S_3}$ Cascade Heterostructure for Fast-Response and High-Photoresponsivity Photodetector and High-Efficiency Water Splitting with a Small Bias Voltage

Chunhui Lu, Mingwei Luo, Wen Dong, Yanqing Ge, Taotao Han, Yuqi Liu, Xinyi Xue, Nan Ma, Yuanyuan Huang*, Yixuan Zhou* and Xinlong Xu*


Supporting Information

 $Bi_2Te_3/Bi_2Se_3/Bi_2S_3$ cascade heterostructure for fast-response and high-photoresponsivity photodetector and high-efficiency water splitting with a small bias voltage

Chunhui Lu[†], Mingwei Luo[†], Wen Dong, Yanqing Ge, Taotao Han, Yuqi Liu, Xinyi Xue, Nan Ma, Yuanyuan Huang*, Yixuan Zhou*, Xinlong Xu*

1. Optical and scanning electron microscopy (SEM) characterization

From the photographs of Bi_2X_3 (X=Se, Te, and S) and their type-II heterostructures in **Figure S1(a-f)**, the centimeter-scale nanofilms are synthesized by a vapor deposition method. To clearly observe the surface morphology, the SEM was employed and the results show that the Bi_2X_3 nanosheets are deposited and form large-area continuous films on the ITO substrates.

Figure S1. (a-f) Photographs and SEM images of Bi₂X₃ (X=Se, Te, and S) and their type-II heterostructures.

2. X-ray diffraction spectroscopy measurement

X-ray diffraction spectroscopy (XRD, Bruker, D8 Advance) was employed to confirm the

crystal phase of the prepared films. As shown in **Figure S2(a)**, peaks at 23.54, 28.07, 40.95, and 47.56° correspond to the (1 2 1), (0 0 9), (1 0 10), and (0 0 15) diffraction peaks of hexagonal phase Bi₂Se₃ (JCPDS No. 33-0214), consistent with the previous report.^[1] As shown in **Figure S2(b)**, the peak at 19.14° corresponds to the (0 0 6) diffraction peak of hexagonal phase Bi₂Te₃ (JCPDS No. 15-0863).^[2] Meanwhile, peaks at 16.22, 18.27, 22.37, 25.54, 29.20, 32.65, and 39.65° correspond to the (2 0 0), (1 2 0), (3 1 0), (2 1 1), (3 0 1), (0 4 1), and (4 3 0) diffraction peaks of orthorhombic phase Bi₂S₃ (JCPDS No. 17-0320),^[3] as shown in **Figure S2(c)**.

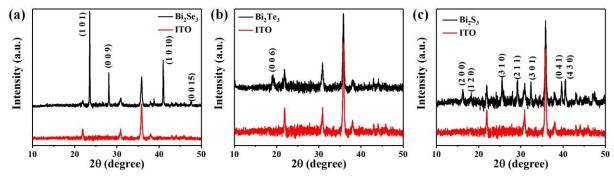
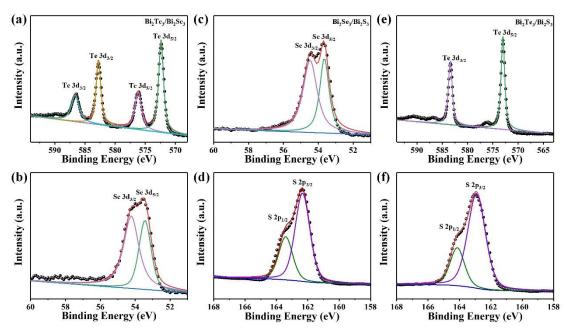



Figure S2. XRD patterns of (a) Bi₂Se₃, (b) Bi₂Te₃, and (c) Bi₂S₃ films.

3. X-ray photoelectron spectroscopy (XPS) measurement

The Te and Se core levels in the Bi₂Te₃/Bi₂Se₃ heterostructure, Se and S core levels in the Bi₂Se₃/Bi₂S₃ heterostructure, and Te and S core levels in the Bi₂Te₃/Bi₂S₃ heterostructure are fitted and shown in **Figure S3(a-b)**, (**c-d)**, and (**e-f)**, respectively. These core levels in the heterostructures have a shift toward higher or lower binding energy compared with those of pure Bi₂Te₃, Bi₂Se₃, and Bi₂S₃ as shown in Figure 1 in the main text, indicating the successful heterostructure formation and interfacial carrier redistribution.

Figure S3. XPS spectra of (a) Te 3d core level and (b) Se 3d core level of the Bi₂Te₃/Bi₂Se₃ film; XPS spectra of (c) Se 3d core level and (d) S 2p core level of the Bi₂Se₃/Bi₂S₃ film; XPS spectra of (e) Te 3d core level and (f) S 2p core level of the Bi₂Te₃/Bi₂S₃ film.

4. UV-Vis absorption spectra

UV-Vis absorption spectroscopy (R1, Ideaoptics) is employed to confirm the light absorption performance of Bi₂Te₃, Bi₂Se₃, and Bi₂S₃ films. The result suggests the Bi₂X₃ shows a high and broad absorption in the visible region. According to the absorption edge in **Figure S4(a-c)**, we can obtain the bandgaps (E_g) of Bi₂X₃ as shown in **Figure 3(b)** in the main text.

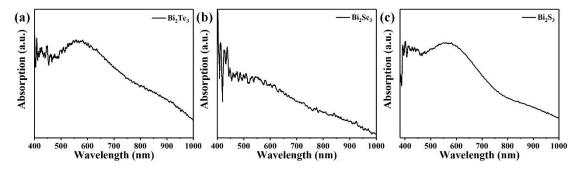
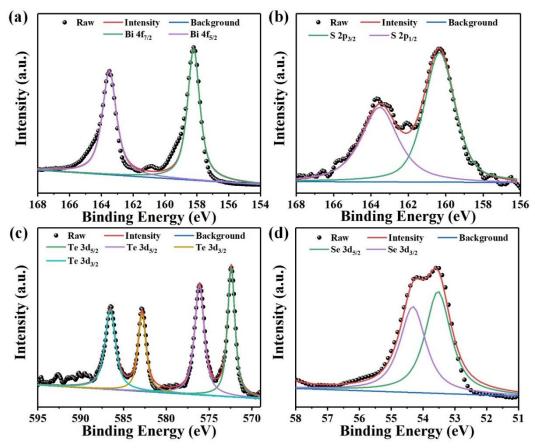



Figure S4. UV-Vis spectra of (a) Bi₂Te₃, (b) Bi₂Se₃, and (c) Bi₂S₃.

5. XPS result of Bi₂Te₃/Bi₂Se₃/Bi₂S₃ cascade heterostructure

To confirm the chemical compositions of the Bi₂Te₃/Bi₂Se₃/Bi₂S₃ cascade heterostructure, XPS was also measured in **Figure S5**. The Bi 4f core-level spectrum exhibits two main peaks (163.5 and 158.1 eV) from Bi³⁺ as shown in **Figure S5(a)**. Another small peak at 160.9 eV is from Bi metal, which is caused by the thermal decomposition of Bi₂S₃ during the CVD process.

From the S 2p core-level spectrum in **Figure S5(b)**, the peaks of S 2p_{1/2} and 2p_{3/2} energy levels are observed at the binding energies near 163.5 and 160.1 eV. The four peaks of Te 3d were 3d_{5/2} (~572.4 and 576.1 eV) and 3d_{3/2} (~582.8 and 586.5 eV) as shown in **Figure S5(c)**. From the XPS spectrum of Se 3d core level in **Figure S5(d)**, Se 3d_{5/2} (~54.3 eV) and Se 3d_{7/2} (~53.5 eV) belong to Se²⁻ valence state. It is worth noting that the characteristic peaks have an obvious shift toward higher or lower binding energy in these heterostructures those of pure Bi₂Te₃, Bi₂Se₃, and Bi₂S₃ as shown in Figure 1 in the main text. This is due to the interlayer coupling and charge redistribution at the heterostructure interface, which is frequently found in the van der Waals heterostructures. The above-mentioned analysis further confirms the formation of the Bi₂Te₃/Bi₂Se₃/Bi₂S₃ film.

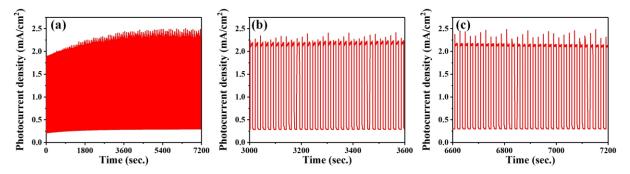


Figure S5. XPS spectra of (a) Bi 4f, (b) S 2p, (c) Te 3d, and (d) Se 3d core levels of the Bi₂Te₃/Bi₂Se₃/Bi₂S film, which are fitted by Gaussian-Lorentz functions.

6. Long-term stability measurement of the Bi₂Te₃/Bi₂Se₃/Bi₂S₃ heterostructure

To characterize the stability of PEC-type photodetector, the long-term I-t cyclic stability tests of Bi₂Te₃/Bi₂Se₃/Bi₂S₃ heterostructure suggest superior stability within 7200 s at -0.1 V in

Figure S6(a). From the intercepted photocurrent signal in Figure S6(b-c), the photocurrent density keeps almost constant.

Figure S6. (a) Long-term stability measurement of the Bi₂Te₃/Bi₂Se₃/Bi₂S₃ heterostructure at -0.1 V, and the enlarged region of (b) 3000-3600 s and (c) 6600-7200 s

7. Power intensity-dependent photocurrent without a bias voltage

The photocurrent density increases along with the increscent of the incident light irradiation without a bias voltage as shown in **Figure S7**. For instance, the calculated I_{ph} increases from $104 \, \mu\text{A cm}^{-2}$ at $50 \, \text{mW cm}^{-2}$ to $178 \, \mu\text{A cm}^{-2}$ at $100 \, \text{mW cm}^{-2}$ at $0 \, \text{V}$.

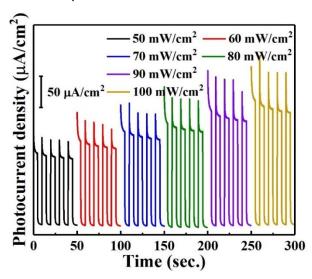
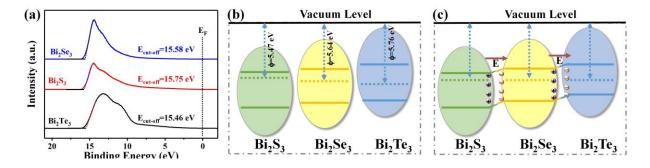



Figure S7. Power intensity-dependent photocurrent without a bias voltage

8. Ultraviolet photoelectron spectroscopy measurements

The charge transfer in the staggered heterostructure can follow different directions such as type-II, Z-scheme and S-scheme mechanism.^[4] Principally, the work function $(\Phi = hv - E_{cut-off} - E_F)$ of semiconductors is an effective way to determine the charge transfer mechanism in heterojunction.^[4a] To obtain the Φ values, ultraviolet photoelectron spectroscopy (UPS, Thermo Scientific, ESCALAB Xi⁺., USA) spectra of Bi₂S₃, Bi₂Se₃, and

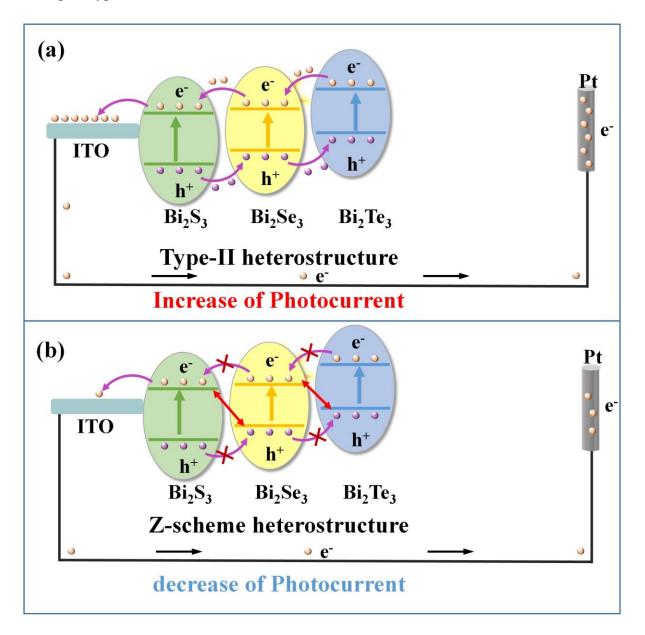
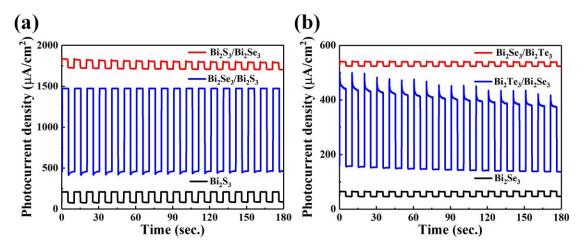

Bi₂Te₃ semiconductors were measured as shown in Figure S8(a). In experiment, the photon energy (hv) of the monochromatic He-I source is 21.22 eV. $E_{cut-off}$ and E_F are the secondary electron cut-off edge and Fermi level, respectively. The $E_{cut-off}$ values of Bi₂S₃, Bi₂Se₃, and Bi₂Te₃ are 15.75, 15.58, and 15.46 eV and the corresponding Φ values are 5.47, 5.64, and 5.76 eV, respectively. Based on their staggered heterostructure and Φ values, we plotted the band diagrams of the samples, as shown in Figure S8(b). When Bi₂S₃ and Bi₂Se₃ semiconductors come into contact, the internal free electrons will flow from Bi₂S₃ with a smaller Φ to Bi₂Se₃ with a larger Φ until reaching the Fermi level equilibrium. [4a] Due to the electrostatic induction, Bi₂Se₃ is negatively charged and Bi₂S₃ becomes positively charged at the interface. Thus, a built-in electric field is formed at the interface and the direction of the built-in electric field is from Bi₂Se₃ to Bi₂Se₃. Similarly, an internal electric field is also built at the Bi₂Se₃/Bi₂Te₃ interface and the corresponding direction is from Bi₂Se₃ to Bi₂Te₃ as shown in Figure S8(c). The built-in electric field at the Bi₂Te₃/Bi₂Se₃/Bi₂S₃ heterostructure interface facilitates the type-II charge transfer mechanism.

Figure S8 (a) UPS spectra of Bi₂S₃, Bi₂Se₃, and Bi₂Te₃; Energy band structure of Bi₂S₃, Bi₂Se₃, and Bi₂Te₃ (b) before contact and (c) after contact


In the Bi₂Te₃/Bi₂Se₃/Bi₂S₃/ITO heterostructure, the type-II charge transfer pathway facilitates photogenerated electrons transfer to ITO substrate and then toward the Pt cathode for the photocurrent improvement as shown in Figure S9(a). If the charge transfer process follows Z-scheme mode, the photogenerated electrons in Bi₂S₃ would directly recombine with photogenerated holes in Bi₂Se₃. Similarly, the photogenerated electrons in Bi₂Se₃ recombine with photogenerated holes in Bi₂Te₃ as shown in Figure S9(b). This Z-scheme charge transfer process in Bi₂Te₃/Bi₂Se₃/Bi₂S₃/ITO heterostructure greatly impedes the charge transfer toward ITO substrate and then to Pt electrode, thus resulting in the decrease of photocurrent. The

increased photocurrent in the heterostructure further confirms that the $Bi_2Te_3/Bi_2Se_3/Bi_2S_3$ belongs to type-II heterostructure.

Figure S9 (a) Type-II and (b) Z-scheme charge transfer process in Bi₂Te₃/Bi₂Se₃/ITO heterostructure

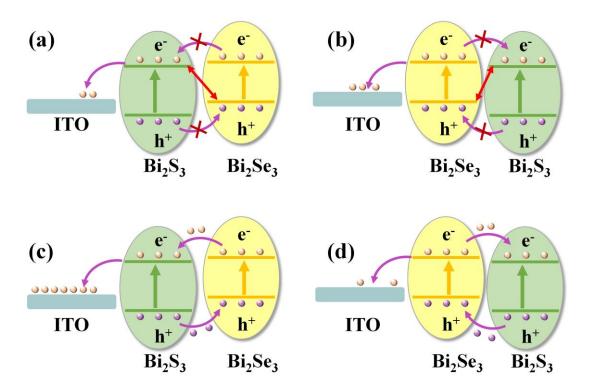

To exclude the effect of carrier density, the Bi_2S_3/Bi_2Se_3 and Bi_2Se_3/Bi_2S_3 (Bi_2Te_3/Bi_2Se_3 and Bi_2Se_3/Bi_2Te_3) heterostructures were deposited onto ITO substrate under the same growth conditions. The photocurrent was measured as shown in Figure S10(a-b) and the photocurrent decreases in the order of Bi_2Se_3/Bi_2S_3 (1047.6 μ A cm⁻²) > Bi_2S_3 (131.5 μ A cm⁻²) > Bi_2S_3/Bi_2Se_3 (95.1 μ A cm⁻²) as shown in Figure S10(a) and Bi_2Te_3/Bi_2Se_3 (301.2 μ A cm⁻²) > Bi_2Se_3/Bi_2Te_3 (15.0 μ A cm⁻²) as shown in Figure S10(b).

Figure S10 Photocurrent density of (a) Bi₂S₃/Bi₂Se₃, Bi₂Se₃/Bi₂S₃, and Bi₂S₃, and (b) Bi₂Te₃/Bi₂Se₃, Bi₂Se₃/Bi₂Te₃, and Bi₂Se₃

To better understand the charge transfer process, we consider both the type-II and Z-scheme charge transfer processes in the Bi₂Se₃/Bi₂S₃/ITO and Bi₂S₃/Bi₂Se₃/ITO heterostructures are depicted in Figure S11. If it is the Z-scheme charge transfer process, the photogenerated electrons in Bi₂S₃ would recombine with the photogenerated holes in Bi₂Se₃ at the heterostructure interface as shown in Figure S11(a-b). This Z-scheme charge transfer process in Bi₂Se₃/Bi₂S₃/ITO heterostructure in **Figure S11(a)** greatly impedes the charge transfer toward ITO substrate and then to Pt electrode, which would result in a lower photocurrent than that of pure Bi₂S₃. Additionally, the photogenerated electrons in Bi₂Se₃ directly transfer toward ITO substrate in Figure S11(b), thus resulting in a higher photocurrent in Z-scheme Bi₂S₃/Bi₂Se₃ heterostructure than that of Bi₂S₃/Bi₂Se₃ heterostructure. However, these results are totally contradictory to our experimental results in Figure S10(a). The results provide solid evidence to confirm that the charge transfer process in Bi₂Se₃/Bi₂S₃ heterostructure cannot follow the Z-scheme type. If the type-II heterostructure is constructed between Bi₂Se₃ and Bi₂S₃, the photogenerated electrons of Bi₂Se₃ quickly transfer toward Bi₂S₃ as shown in Figure S11(cd). Compared with Bi₂S₃/Bi₂Se₃/ITO heterostructure, much more photogenerated electrons of Bi₂Se₃/Bi₂S₃/ITO heterostructure are collected at ITO substrate and then generate higher photocurrent. This is in consistent with our experimental results in Figure S10(a). Furthermore, the photocurrent of Bi₂S₃ is larger than that of Bi₂S₃/Bi₂Se₃/ITO heterostructure. This is because the photogenerated electrons of Bi₂Se₃ quickly transfer toward Bi₂S₃ and then participate in water reduction reaction as shown in Figure S11(d). The results further confirm that the

 Bi_2Se_3/Bi_2S_3 belongs to type-II heterostructure instead of Z-scheme heterostructure. Similarly, the photocurrent measurement (**Figure S10(b)**) also demonstrates that the Bi_2Te_3/Bi_2Se_3 belongs to type-II heterostructure.

Figure S11 If Z-scheme charge transfer process in (a) Bi₂Se₃/Bi₂S₃/ITO and (b) Bi₂S₃/Bi₂Se₃/ITO heterostructures; If Type-II charge transfer process in (c) Bi₂Se₃/Bi₂Se₃/ITO and (d) Bi₂S₃/Bi₂Se₃/ITO heterostructures

Table S1 I_{ph} and R_{ph} values under the wavelengths \geq 400 and \geq 700 nm

materials	<i>I</i> _{ph} ≥400	<i>R</i> _{ph} ≥400 nm	<i>I</i> _{ph} ≥700	R _{ph} ≥700
	(μA cm ⁻²)	(mA W ⁻¹)	(μA cm ⁻²)	(mA W ⁻¹)
Bi ₂ Te ₃	13	0.21	0.05	0.0025
Bi ₂ Se ₃	16	0.26	0.2	0.01
Bi_2S_3	119	1.98	5.3	0.265
Bi ₂ Te ₃ /Bi ₂ Se ₃	44	0.73	6	0.3
Bi ₂ Se ₃ /Bi ₂ S ₃	840	16.0	199	9.95
Bi ₂ Te ₃ /Bi ₂ Se ₃	1430	23.8	219	10.95
Bi ₂ Te ₃ /Bi ₂ Se ₃ / Bi ₂ S ₃	1770	29.5	373	18.65

Table S2 I_{ph} and R_{ph} values under the bias voltage of -0.1 and 0 V

Wavelength (nm)	I _{ph} -0.1 V	R _{ph} -0.1 V	I _{ph} 0 V	<i>R</i> _{ph} 0 V
	(μA cm ⁻²)	(mA W ⁻¹)	(μA cm ⁻²)	(mA W ⁻¹)
420	902	92.04	34	3.47
450	948	92.03	36	3.50
475	1243	103.58	42	3.5
500	885	88.5	30	3.0
550	1017	78.23	35	2.69
600	604	58.64	24	2.33
650	255	25.76	23	2.32

 $\begin{table}{llll} \textbf{Table S3.} & Performance & comparison & of & self-powered & PEC & photodetectors & based & on \\ Bi_2Te_3/Bi_2Se_3/Bi_2S_3 & and & other previously reported & advanced materials \\ \end{table}$

Material	Туре	Light	I _{ph} level	R _{ph} (mA	$t_{\rm res}/t_{\rm rec}$	Ref
				W^{-1})	(ms)	
Bi ₂ Te ₃ /Bi ₂ Se ₃ /Bi ₂ S ₃	PEC (0.1 mol L ⁻¹	475 nm	μA/cm ²	3.5	8/8	This
	$Na_2S/0.02\ mol\ L^{-1}$					work
	Na ₂ SO ₃)					
AlGaN	(0.5 M H ₂ SO4)	254 nm	μA/cm ²	3	163/15	[5]
Bi	PEC (1 M KOH)	350 nm	nA/cm ²	0.0193	100/200	[6]
Bi ₂ S ₃	PEC (0.1 M KOH)	365 nm	nA/cm ²	0.0089	100/100	[7]
$\mathrm{Bi_2O_2S}$	PEC (1.0 M KOH)	365 nm	μA/cm ²	2.4	30/50	[8]
Ga_2O_3	PEC (0.5 M Na ₂ SO ₄)	254 nm	μA/cm ²	3.81	290/160	[9]
ZnS	PEC (I ₃ -/I-)	265 nm	μA/cm ²	19.4	250/200	[10]
BP	PEC (0.1 M Na ₂ SO ₄)	Sun	nA/cm ²	0.002	500/500	[11]
Te@Bi	PEC (0.5 M KOH)	Sun	μA/cm ²	0.03	80/80	[12]
TiO ₂ /ZnO	PEC (I ₃ -/I-)	265 nm	μA/cm ²	16	13.5/4	[13]
InSe/Ge-InSe	PEC (0.1 M KOH)	Sun	nA/cm ²	0.003	95/91	[14]

Table S4 The D^* , EQE, and IPCE values under the bias voltage of -0.1 and 0 V

Wavelength	D* -0.1 V	<i>D</i> * -0 V	EQE -0.1 V	EQE 0 V	IPCE -0.1 V	IPCE 0 V
(nm)	(10 ⁹ Jones)	(10 ⁹ Jones)	(%)	(%)	(%)	(%)

420	8.26	1.74	26.30	0.99	24.03	0.91
450	8.01	1.91	24.54	0.93	24.03	0.91
475	8.96	1.99	26.17	0.88	27.04	0.91
500	7.32	1.75	21.24	0.72	23.10	0.78
550	6.52	1.58	17.07	0.59	20.42	0.70
600	4.74	1.40	11.73	0.47	15.31	0.61
650	1.90	1.59	4.76	0.43	6.72	0.61

Table S5 $I_{\rm ph}$ and $R_{\rm ph}$ values under different power intensity of -0.1 and 0 V

Power intensity	I _{ph} -0.1 V	$R_{\rm ph}$ -0.1 V	$I_{\mathrm{ph}} \ 0 \ \mathrm{V}$		$R_{ m ph}0~{ m V}$
(mW cm ⁻²)	(μA cm ⁻²)	(mA W ⁻¹)	(μA cm ⁻²)		(mA W ⁻¹)
50	1130	22	6	104	2.08
60	1380	23	.0	121	2.02
70	1590	22	7	135	1.93
80	1850	23	.1	148	1.85
90	2060	22	9	165	1.83
100	2390	23	.9	178	1.78

Table S6. PEC hydrogen production of Bi_2X_3 and related heterostructures

Materials	Light	Electrolyte	Bias voltage	H ₂ rate	Ref
				(µmol/cm ² /h)	
Bi ₂ Te ₃				36	
Bi ₂ Se ₃				92	This
$\mathrm{Bi}_2\mathrm{S}_3$		0.1 mol L ⁻¹ Na ₂ S and 0.02 mol		136	work
Bi ₂ Te ₃ /Bi ₂ Se ₃	visible	L-1 Na ₂ SO ₃	-0.1 V vs	172	
Bi ₂ Se ₃ /Bi ₂ S ₃			Ag/AgCl	204	
Bi ₂ Te ₃ /Bi ₂ Se ₃				332	
Bi ₂ Te ₃ /Bi ₂ Se ₃ /				416	
$\mathrm{Bi}_2\mathrm{S}_3$					
Bi ₂ Te ₃ /Bi ₂ Se ₃ /		water		14.32	
Bi ₂ S ₃					

	0.1 M Na ₂ SO ₄		184	
			261	
	0.1 M Na ₂ SO ₃ and Na ₂ S	1.23 V vs RHE	658	
1 sun			1081	[15]
-	0.5 M H ₂ SO ₄	J=10 mA cm ²	170	[16]
visible	0.1 M Na ₂ SO ₃ and 0.1 M Na ₂ S	-0.1 V vs	70	
		Ag/AgCl		[17]
			60	
1 sun	0.2 M Na ₂ SO ₃	0.45 V vs RHE	33.4	[18]
visible	0.25 mol L ⁻¹ Na ₂ S and 0.35 mol	-	23.75	[19]
	L-1 Na ₂ SO ₃			
1 sun	0.1 M Na ₂ S and 0.02 M Na ₂ SO ₃	0.67 V vs.	417	[20]
		RHE		
visible	0.25 mol L ⁻¹ Na ₂ S and 0.35 mol	-0.2 V vs	35.97	[21]
	L ⁻¹ Na ₂ SO ₃	Ag/AgCl		
	visible 1 sun visible 1 sun	1 sun 0.1 M Na ₂ SO ₃ and Na ₂ S 1 sun 0.5 M H ₂ SO ₄ visible 0.1 M Na ₂ SO ₃ and 0.1 M Na ₂ S 1 sun 0.2 M Na ₂ SO ₃ visible 0.25 mol L ⁻¹ Na ₂ S and 0.35 mol L ⁻¹ Na ₂ SO ₃ 1 sun 0.1 M Na ₂ S and 0.02 M Na ₂ SO ₃ visible 0.25 mol L ⁻¹ Na ₂ S and 0.35 mol	1 sun 0.1 M Na ₂ SO ₃ and Na ₂ S 1.23 V vs RHE -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

References:

- [1] Y.-F. Lin, H.-W. Chang, S.-Y. Lu, C. W. Liu, J. Phys. Chem. C 2007, 111, 18538.
- [2] A. Subrati, Y. Kim, Y. Al Wahedi, V. Tzitzios, S. Alhassan, H. J. Kim, S. Lee, E. Sakellis, N. Boukos, S. Stephen, S. M. Lee, J. B. Lee, M. Fardis, G. Papavassiliou, *CrystEngComm* **2020**, *22*, 7918.
- [3] C. Lu, M. Luo, D. Yang, J. Ma, M. Qi, X. Xu, Adv. Mater. Interfaces 2021, 8, 2100913.
- [4] a)S. Sun, R. Gao, X. Liu, L. Pan, C. Shi, Z. Jiang, X. Zhang, J.-J. Zou, *Sci. Bull.* **2022**, *67*, 389; b)K. Alkanad, A. Hezam, Q. A. Drmosh, S. S. Ganganakatte Chandrashekar, A. A. AlObaid, I. Warad, M. A. Bajiri, L. Neratur Krishnappagowda, *Sol. RRL* **2021**, *5*, 2100501; c)S. M. Ghoreishian, K. S. Ranjith, B. Park, S.-K. Hwang, R. Hosseini, R. Behjatmanesh-Ardakani, S. M. Pourmortazavi, H. U. Lee, B. Son, S. Mirsadeghi, Y.-K. Han, Y. S. Huh, *Chem. Eng. J.* **2021**, *419*, 129530; d)C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, *Adv. Mater.* **2021**, *33*, 2100317. [5] D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, H. Sun, *Nano Lett.* **2021**, *21*, 120. [6] C. Xing, W. Huang, Z. Xie, J. Zhao, D. Ma, T. Fan, W. Liang, Y. Ge, B. Dong, J. Li, H. Zhang, *ACS Photonics* **2018**, *5*, 621.
- [7] W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, H. Zhang, *Nanoscale* **2018**, *10*, 2404.

- [8] X. Yang, L. Qu, F. Gao, Y. Hu, H. Yu, Y. Wang, M. Cui, Y. Zhang, Z. Fu, Y. Huang, W. Feng, B. Li, P. Hu, *ACS Appl. Mater. Interfaces* **2022**, *14*, 7175.
- [9] K. Chen, S. Wang, C. He, H. Zhu, H. Zhao, D. Guo, Z. Chen, J. Shen, P. Li, A. Liu, C. Li, F. Wu, W. Tang, *ACS Appl. Nano Mater.* **2019**, *2*, 6169.
- [10] D. Li, S. Hao, G. Xing, Y. Li, X. Li, L. Fan, S. Yang, J. Am. Chem. Soc. 2019, 141, 3480.
- [11] X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang, *Adv. Funct. Mater.* **2017**, *27*, 1606834.
- [12] Y. Zhang, F. Zhang, L. Wu, Y. Zhang, W. Huang, Y. Tang, L. Hu, P. Huang, X. Zhang, H. Zhang, *Small* **2019**, *15*, 1903233.
- [13] Y. Wang, L. Chen, H. Zhou, K. Wei, Z. Zhu, E. Xie, W. Cao, W. Han, *J. Mater. Chem. C* **2019**, *7*, 8011.
- [14] L. Liao, B. Wu, E. Kovalska, F. M. Oliveira, J. Azadmanjiri, V. Mazánek, L. Valdman, L. Spejchalová, C. Xu, P. Levinský, J. Hejtmánek, Z. Sofer, *Nanoscale* **2022**, *14*, 5412.
- [15] P. Subramanyam, B. Meena, D. Suryakala, C. Subrahmanyam, ACS Appl. Nano Mater. **2021**, 4, 739.
- [16] Q. Wang, L. Huang, Y. Wu, G. Ma, Z. Lei, S. Ren, Int. J. Hydrogen Energy 2022, 47, 21361.
- [17] Y.-Y. Geng, C.-L. Tao, S.-F. Duan, J. San Martin, Y. Lin, X. Zhu, Q.-Q. Zhang, X.-W. Kang, S.-S. He, Y.-X. Zhao, X. Li, L. Niu, D.-D. Qin, Y. Yan, D.-X. Han, *Catal. Today* **2020**, *350*, 47.
- [18] F. Li, D. Y. C. Leung, *Chem. Eng. Sci.* **2020**, *211*, 115266.
- [19] Y. Jia, P. Liu, Q. Wang, Y. Wu, D. Cao, Q.-A. Qiao, J. Colloid Interface Sci. 2021, 585, 459.
- [20] M. A. Mahadik, H.-S. Chung, S.-Y. Lee, M. Cho, J. S. Jang, *ACS Sustainable Chem. Eng.* **2018**, *6*, 12489.
- [21] C. Liu, Y. Yang, W. Li, J. Li, Y. Li, Q. Chen, Chem. Eng. J. 2016, 302, 717.