
Ecology and Evolution. 2019;9:12915–12927.	 ﻿�   |  12915www.ecolevol.org

1  | INTRODUC TION

Urbanization is altering community structure and functioning in 
both terrestrial and marine ecosystems worldwide (Alberti et al., 
2017; Bulleri & Chapman, 2010; Firth et al., 2016; Forman, 2014; 

Gaston, 2013). Particularly, urban infrastructure is often associated 
with enhanced thermal patterns, which can affect human health, 
and plant and animal distribution and abundance in terrestrial eco‐
systems (Larsen, 2015; Wilby & Perry, 2006). Thus, mapping the 
thermal mosaics found within urban environments such as cities and 
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Abstract
Urbanization is altering community structure and functioning in marine ecosys‐
tems, but knowledge about the mechanisms driving loss of species diversity is still 
limited. Here, we examine rock thermal patterns in artificial breakwaters and test 
whether they have higher and spatially less variable rock temperature than natural 
adjacent habitats, which corresponds with lower biodiversity patterns. We estimated 
rock temperatures at mid‐high intertidal using infrared thermography during mid‐
day in summer, in both artificial (Rip‐raps) and natural (boulder fields) habitats. We 
also conducted diurnal thermal surveys (every 4  hr) in four seasons at one study 
site. Concurrent sampling of air and seawater temperature, wind velocity, and topo‐
graphic structure of habitats were considered to explore their influence on rock tem‐
perature. Rock temperature was in average 3.7°C higher in the artificial breakwater 
in two of the three study sites, while air temperature was about 1.5–4°C higher at 
this habitat at summer. Thermal patterns were more homogeneous across the artifi‐
cial habitat. Lower species abundance and richness in the artificial breakwaters were 
associated with higher rock temperature. Mechanism underlying enhanced substrate 
temperature in the artificial structures seems related to their lower small‐scale spa‐
tial heterogeneity. Our study thus highlighted that higher rock temperature in arti‐
ficial breakwaters can contribute to loss of biodiversity and that integrated artificial 
structures may alter coastal urban microclimates, a matter that should be considered 
in the spatial planning of urban coastal ecosystems.
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city boundaries can help to develop specific mitigation strategies 
to cope with the urban “heat island” effects and its impact on local 
biodiversity (Kuttler, 2008; Larsen, 2015; Oke, 1989). Few attempts, 
however, have been made to determine the variation of temperature 
associated with urban coastal marine structures and their associated 
impacts on marine coastal community structure.

In marine coastal ecosystems, air, substrate, and seawater tem‐
perature play a major role as main drivers of both benthic and pe‐
lagic species' distribution, abundance, and life‐history traits at local 
and global scales (e.g., Helmuth et al., 2006; Lima et al., 2016; Petes, 
Mouchka, Milston‐Clements, Momoda, & Menge, 2008; Sunday, 
Bates, & Dulvy, 2012). Variation in thermal patterns can have sig‐
nificant impacts on the strength of biotic interactions and concom‐
itantly on community structure (Broitman, Mieszkowska, Helmuth, 
& Blanchette, 2008; Broitman, Szathmary, Mislan, Blanchette, 
& Helmuth, 2009; Kordas, Harley, & O'Connor, 2011; Monaco, 
Wethey, & Helmuth, 2016). Spatial variation in heat and desiccation 
stress, for example, has been shown to affect both mobile and sessile 
species distributions (Helmuth et al., 2006, 2002; Lima et al., 2016; 
Seabra et al., 2011). Given the increasing frequency and effects of 
environmental fluctuations like “heat waves” in temperate systems 
(Wernberg et al., 2012), many species have been strongly impacted 
by high levels of air desiccation stress, or increase in seawater tem‐
perature, often causing massive mortalities and community phase 
shifts (Garrabou et al., 2009; Wernberg et al., 2016, 2012). There 
is, therefore, growing concern about how changes in temperature 
regimes are modified by local anthropogenic factors, which will sub‐
sequently affect patterns of species distribution and composition.

The addition of built coastal infrastructures is causing a trans‐
formation of coastal landscapes with an associated decline of bio‐
diversity, homogenization of biota and increase in the frequency 
of nonindigenous, exotic species (e.g., Airoldi, Turon, Perkol‐Finkel, 
& Rius, 2015; Bulleri & Chapman, 2010; Dafforn et al., 2015; Firth 
et al., 2016). Construction of structures such as concrete seawalls, 
granite breakwaters, groynes, jetties, and boat ramps, for example, 
are increasing in most countries for multiple purposes (Aguilera, 
2018; Bulleri & Chapman, 2010; Firth et al., 2014; Gittman et al., 
2015; Moschella et al., 2005; Waltham & Sheaves, 2015). These 
structures can differentially affect coastal ecosystems, but the gen‐
eral pattern observed is that they harbor fewer species compared 
with natural (reference) habitats (Firth et al., 2016, 2014; Perkins, 
Ng, Dudgeon, Bonebrake, & Leung, 2015) and alter species compo‐
sition by reducing settlement of habitat‐forming species (Aguilera, 
Broitman, & Thiel, 2014; Firth et al., 2014), disrupting species in‐
teractions (Ferrario, Iveša, Jaklin, Perkol‐Finkel, & Airoldi, 2016; 
Iveša, Chapman, Underwood, & Murphy, 2010; Klein, Underwood, & 
Chapman, 2011), enhancing presence of invasive species (Airoldi et 
al., 2015; Bulleri & Airoldi, 2005; Bulleri, Airoldi, Branca, & Abbiati, 
2006), and affecting connectivity (Bishop et al., 2017) and the func‐
tional structure of marine ecosystems (Mayer‐Pinto et al., 2018). In 
part, loss of species richness on these infrastructures seems related 
to their low spatial heterogeneity as compared with natural shores 
(Aguilera et al., 2014; Coombes, La Marca, Naylor, & Thompson, 

2015; Firth et al., 2014, 2013). Specifically, the reduction in fre‐
quency of topographic elements related to spatial heterogeneity, 
like rocks or tide pools, crevices, pits and/or depressions, in artificial 
infrastructures have been considered one of the main factors related 
to the reduction in abundance of “rare” and habitat‐forming species 
in these habitats (Coombes et al., 2015; Liversage, Cole, Coleman, & 
McQuaid, 2017; Loke, Bouma, & Todd, 2017; Loke, Ladle, Bouma, & 
Todd, 2015; Martins, Jenkins, Neto, Hawkins, & Thompson, 2016). 
These topographic features are microhabitats, which function as ref‐
uges to reduce thermal stress for both invertebrate and algal species 
(Garrity, 1984; Williams & Morritt, 1995) although rock pools can 
also become stressful environments in terms of temperature and 
salinity (Chan, 2000; Firth & Williams, 2009; Morritt et al., 2007). 
Thus, strategies to enhance the ecological value of artificial infra‐
structures in different latitudes are being made based on the provi‐
sion of these refuges (Strain et al., 2018).

The spatial homogeneity which characterizes artificial infra‐
structures can, therefore, impose a great challenge for intertidal 
species that live in these habitats (Chapman, 2003, 2006, 2012), 
which have developed a suite of behavioral strategies like aggrega‐
tion, that is, either inside or outside crevices (Aguilera & Navarrete, 
2011; Cartwright & Williams, 2012; Chapperon & Seuront, 2011a, 
2011b; Garrity, 1984; Harper & Williams, 2001; Moreira, Chapman, 
& Underwood, 2007), aggregating towering and mushrooming (Ng 
et al., 2017; Williams et al., 2005), sun orientation shell movement 
(Muñoz, Randall Finke, Camus, & Bozinovic, 2005), adopt sloping or 
vertical shaded habitats (Lima et al., 2016; Miller, Harley, & Denny, 
2009), or take refuge underneath boulders (Liversage, 2016) to cope 
with wave and thermal stress. This lack of suitable habitat hetero‐
geneity seems especially relevant in artificial breakwaters made of 
granite boulders or “rip‐raps” which, despite their reduced small‐
scale (few cms) spatial heterogeneity, have increased structural com‐
plexity at larger scales (tens of meters). This large‐scale complexity 
is produced by the presence of irregular interstices or gaps left be‐
tween “rip‐rap” joints, which can be used as refuge by medium to 
large size species like crabs or rats (Aguilera, 2018). Presently, there 
is scarce information about the thermal patterns of these artificial 
structures (Seuront et al., 2018), and how these influence the abun‐
dance, distribution, and occurrences of intertidal species. Higher and 
more homogeneous substrate temperature in artificial breakwaters 
may have a primary role on supporting less species compared with 
natural habitats.

Here, we examine substrate temperature patterns on artificial 
breakwaters made of granite boulders to evaluate if the spatial vari‐
ation in thermal patterns could correlate with patterns of intertidal 
species abundance, distribution and richness. In addition, we exam‐
ined the diurnal variability of thermal patterns in both artificial and 
natural habitats such as boulder fields, which are analogue of their 
whole structural complexity, to evaluate whether the artificial habi‐
tat has the potential to emit more heat at evening and night and thus 
having higher rocky and air temperature than natural adjacent hab‐
itats. We hypothesized that 1) mean substrate temperature should 
be higher, but spatially less variable, in artificial breakwaters than in 
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natural habitats (e.g., boulder fields) given their lack of small‐scale 
(few cm) spatial heterogeneity and that 2) thermally homogeneous 
patterns on the artificial infrastructure would be correlated to lower 
species abundance and richness in this habitat compared with the 
natural habitats.

In Chile, more than 45% of the human population lives in coastal 
cities with higher densities concentrated between 29° and 35°S 
(Hidalgo, Arenas, & Monsalve, 2009). Coastal armoring is one of the 
most important but less recognized management conflicts in pres‐
ent‐day Chile and is proceeding either to expand human settlements 
as disaster prevention/mitigation infrastructure, or for the develop‐
ment of new activities related to mining, tourism, deep‐water har‐
bors or leisure activities (Aguilera, 2018). To date, very few attempts 
have been made to incorporate coastal planning of artificial infra‐
structure management into the legal framework of the country, like 
in most South American countries (de Andrés, Barragán, & Scherer, 
2018; Barragán & de Andrés, 2016).

2  | METHODS

2.1 | Study system

We considered two study sites in Coquimbo region (29°S), La 
Herradura (29°58′S‐71°20′W), located in Coquimbo city and Caleta 
Hornos (29°62′S‐71°29′W), about 50 km north from La Herradura 
(see Figure 1). Natural boulder fields are also common in these sites 
and resemble (~1 m2 boulder size) the artificial breakwaters but dif‐
fer from them in shape (i.e., they are more ovoid than rip‐raps). Along 
this coast, ports and harbors are associated with large (100–300 m 
long) artificial breakwaters made of granite boulders (1 m2 rip‐raps). 

Rip‐raps present in the study sites were built mostly with diorite and 
gabbro rocks, quarried from the coast near Coquimbo city. Thus, 
they resemble in geochemical composition to natural boulders found 
in the study locality (e.g., have biotite and hornblende minerals). 
Thus, these artificial habitats seem relatively similar in large‐scale 
spatial structure and geochemical composition but are different in 
topographic features like rock shape and surface topography (e.g., 
differences in pits and crevices availability) compared to the natural 
boulder fields present at the study sites (see Figure S1 in Appendix). 
Differences in color between natural rocks and rip‐raps (brownish 
vs. clear, respectively) seem directly related to presence sessile spe‐
cies and microalgae cover and bare rock (see main Results).

The Coquimbo region, where most part of the study was con‐
ducted, experiences a more temperate four‐season weather system 
characterized by a frequent southerly wind and cloud accumula‐
tion compared with zones north of this latitude (Rahn, 2012; Rahn 
& Garreaud, 2011). During the afternoon, the coastal southerly 
winds reinforce which contrast with the alongshore warm air advec‐
tion from heated land (Rahn & Garreaud, 2011). The port area of 
Coquimbo city is characterized by average air temperatures which 
fluctuates from 15.4°C in autumn, 12.5°C in winter, and 14.4°C in 
spring, with summer temperatures fluctuating from a maximum of 
21.7°C to a minimum of 9°C (CEAZA‐met, 2018). Seawater tempera‐
tures fluctuate from 9 to 18°C (Valle‐Levinson et al., 2000).

We investigated the thermal patterns of both artificial breakwa‐
ters and natural boulder fields in the three study sites at Coquimbo 
(29°S), and additionally, we consider two sites at the locality of 
Iquique (20°S), which is a city port with a more subtropical climate 
(Figure 1). At these sites, rip‐raps and natural boulders are larger 
than in Coquimbo (~2.25  m2), but they are relatively similar in 

F I G U R E  1  Study sites. Location of 
the different study sites and habitats in 
Coquimbo (29°S) and Iquique (20°S), and 
small town (Caleta Hornos, CH) located 
close to Coquimbo city (~40 km from the 
La Herradura Bay). Right panel show the 
specific location of artificial breakwaters 
(red) and natural habitats (blue) 
considered in the study. Sites located in 
Iquique (20°S) were only considered for 
the substrate thermal pattern surveys
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mineral concentration and color. This last locality was considered to 
test the generality of the artificial–natural differences in rocky tem‐
perature given this experiences much higher temperatures during 
summer than Coquimbo (i.e., averages fluctuates from 19 to 25°C). 
At Coquimbo, we considered three artificial breakwaters, one asso‐
ciated with a mining port (Compañía Minera del Pacífico; hereafter 
CMP), another located in the wharf of the Universidad Católica del 
Norte (hereafter UCN), both at La Herradura Bay, and another lo‐
cated in a fishermen wharf located in Caleta Hornos (CHa) (Figure 1). 
Correspondingly, three natural boulder fields close (less or 600 m 
away) to the artificial habitats were selected: Pérgola (PG) and La 
Pampilla (PP) at La Herradura Bay, and one site close to Caleta 
Hornos (CHn) (Figure 1). Thus, we considered paired “artificial–nat‐
ural” habitat comparison at each locality, that is, CMP‐PG, UCN‐PP, 
and CHa‐n. At Iquique, we selected two artificial breakwaters and 
a corresponding natural adjacent rocky habitat at two sites: one 
located in the shipping port of the city (EPIa‐n) and another in the 
Cavancha Península (CAVa‐n) (both sites separated by about 3 km). 
All sites were selected based on accessibility and similarity in rip‐rap 
dimensions. The study was conducted in the mid‐high intertidal zone 
during low tide, thus reducing the potential effect of frequent rock 
moisture on thermal patterns.

2.2 | Spatial‐temporal variation in thermal patterns

To characterize the thermal patterns of both artificial and natural 
habitats at the different study sites, we estimated the rock temper‐
ature at different locations of the rip‐raps and boulders sites. We 
selected four groups of two rip‐rap or boulders across each artifi‐
cial breakwater and boulder fields (see Figure S2A in Appendix). In 
each group, we selected two zones on individual rip‐rap and boul‐
ders; either the “side” or “top,” and another zone located in the in‐
tersection (“union”) between two rip‐raps or boulders (Figure S2A). 
In zones “top” and “sides,” two 20 × 20 cm quadrats were randomly 
located, while in zone “union,” one quadrat was located given limita‐
tions of space between boulders and feasibility to correctly estimate 
thermal patterns there. In all quadrats, we estimated the substrate 
temperature of the area using thermal images (see below). In total, 
we estimated 325 rock temperatures throughout the study. Each 
natural–artificial habitat pair (see Figure 1) was sampled at the same 
day with about 30 min of differences between each survey. Boulders 
and rip‐raps sampled in the study were similar in orientation (most 
were northwest‐oriented, see Figure S3 in Appendix), and thus, wind 
exposure (southwest) was expected to be similar between the con‐
sidered habitat types (Figure S3).

We used infrared thermal imaging as a noncontact and noninva‐
sive technique for temperature measurement (Lathlean & Seuront, 
2015; Lathlean, Seuront, & Ng, 2017; Seuront et al., 2018). This 
method is widely used in a range of fields, especially in intertidal 
rocky shore systems (Chapperon & Seuront, 2011a, 2011b; Lathlean, 
Ayre, & Minchinton, 2012; Lathlean & Seuront, 2015; Rojas et al., 
2013), and allows measurement of the complex thermal patterns of 
natural and/or artificial surfaces at micro‐scales (few cm's) (Seuront 

et al., 2018). We used this technique because we were focused 
on the spatial patterns of substrate temperature instead of organ‐
isms' tissue temperatures, for which data loggers or thermocouples 
would be more appropriated (see Judge, Choi, & Helmuth, 2018). 
Notwithstanding, we use HOBO TidbiT v2 temperature logger in‐
stalled in each site to complement recording of temperature tem‐
poral variability. Thermal images were obtained with a Fluke Ti110 
camera (Fluke Corporation, Everett, WA, USA). The thermal sensi‐
tivity of the thermal camera is <0.021C at 30°C, and the tempera‐
ture measurement accuracy is 2%. Emissivity values of the substrata 
were set at 0.95 appropriated for rocky substrate and following pre‐
vious studies (Chapperon & Seuront, 2012; Lathlean et al., 2017). 
Images were subsequently analyzed in the laboratory using Fluke 
Smart View software version 3.15 (Fluke Corporation, USA, 2016) 
(see Figure S4). In addition, to examine the variability of the diur‐
nal thermal pattern (hereafter “diurnal surveys”), we selected one 
artificial breakwater and the corresponding boulder field located at 
La Herradura Bay at Coquimbo, and conducted the same protocol 
during different day phases: sunrise (8:00 hr), mid‐day (12:00 hr), af‐
ternoon (16:00 hr), and evening (20:00 hr). Each sampling conducted 
during the different day phases, at both habitat types, was con‐
ducted at the same day with a maximum of 10–12 min of differences 
between habitats for a corresponding day phase (it should be noted 
that sites were separated by less than 600 m). Diurnal surveys were 
conducted in two random days during summer (January), autumn 
(May), winter (August), and spring (November) of 2018. Autumn and 
winter sampling included partial cloudy days, while spring and sum‐
mer included completely sunny days. Sampling was conducted at the 
same rip‐raps and boulder field groups at different seasons.

2.3 | Environmental and topographic variables

Concurrently with thermal pictures and at each site and habitat, we 
estimated (1) air temperature and wind velocity measured between 
0.5 and 1.5 m above the substrate surface with a digital thermom‐
eter and anemometer, respectively; (2) seawater temperature (1 m 
depth) with a digital thermometer (Extech TM25); (3) rock slope of 
each quadrat at each sampled rip‐rap or boulder with a digital incli‐
nometer (Bosch Professional GIM60L); (4) orientation (south–north, 
east–west) of each group of rip‐raps or boulders with an analogue 
compass, and (5) topographic complexity measured at two scales; 
(a) among boulder or rip‐rap which we called “structural complexity” 
(see Figure S2A in Appendix) and (b) at the within boulder scale (i.e., 
at each quadrat), using the “link‐chain” method (Beck, 1998).

2.4 | Species abundance and richness

At each 20 × 20 cm quadrat positioned in the different boulder and 
rip‐rap zones at different time, we estimated the density and percent 
cover of invertebrates and algae, respectively, by means of digital 
pictures (Canon PowerShot 30 Mega Pixels). This study was con‐
ducted only for the locality of Coquimbo. Density of mobile species 
was estimated in situ and corroborated through digital photograph 
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analyses. Percentage cover of algae and sessile invertebrates was 
analyzed using the software CPCe (Coral Point Count with Excel ex‐
tensions) (Kohler & Gill, 2006).

2.5 | Statistical analyses

To examine the effect of habitat type (artificial/natural) and posi‐
tion sampled to the mean substrate temperature (ST_mean), and to 
deal with differences in sample size between union versus the other 
positions (i.e., side and top) (Bates, Mächler, Bolker, & Walker, 2015; 
Bolker et al., 2009) we used a random‐intercept general linear mixed 
model (LMM) including habitat type (two levels: artificial, natural; 
fixed), site (random and nested in habitat type), and position (side, 
top, union; fixed and orthogonal to habitat type) as explanatory fac‐
tors. Individual boulder groups sampled at each habitat was consid‐
ered the random factor. The three sampling dates were pooled for 
analyses. We also constructed a “null” model (only with the random 
factor) in order to calculate the marginal and conditional pseudo‐R2 
as coefficients of determination of the main model, where the first 
represents the variability accounted for the fixed component of the 
model and the second represents the variability accounted for the 
entire model (i.e., both fixed and random effects included). These 
analyses were performed using the library MASS, MuMIn, and lme4 
in the R programming environment version 3.5.0 (Bates et al., 2015; 
R Core Team, 2018).

We expected that topographic elements related to thermal mi‐
crohabitats (crevices, depressions, pits, etc.) had an effect (i.e., re‐
duction or increase) especially on minimal substrate temperature 
recorded. Thus, we evaluated the effect of topographic complexity 
(small scale) and rock slope on minimum substrate temperature (ST_
min) recorded on each position for both habitat type, with a multi‐
ple linear regression model using slope and structural complexity as 
explanatory variables. This model allowed us to explore the effects 
of the interaction between slope and complexity on ST_min con‐
sidering both habitat types. We evaluate the effects of mean rock 

temperature on biotic variables like abundance and species richness, 
with a polynomial regression model (order  =  2) and with a simple 
linear model, respectively, after inspection of the general trend be‐
tween explanatory and predictor variables. Homogeneity of vari‐
ances was graphically explored by means of residuals versus fits and 
normal Q‐Q plots. Species abundance data were log‐transformed to 
meet the assumptions of normality and homoscedasticity.

For the diurnal survey, we explored the general thermal patterns 
averaging maximum rock temperatures recorded at different sea‐
sons in both habitats. Thus, we tested between‐habitat differences 
in maximum substrate temperature recorded at different times or 
phases (hours), and averaged across seasons (i.e., four daytime sam‐
plings conducted at four different seasons), using a mixed effect 
model with habitat and daytime as fixed factor and the sampling 
replicates as random factor. Thus, we considered a random inter‐
cept model obtained with a maximum likelihood estimate (Zuur et al., 
2009). Pseudo‐R2 as coefficients of determination was estimated as 
before. Analyses were made using the library MASS, lme4 and lmerT-
est in the R‐environment (R Core Team, 2018).

To examine the variation in substrate temperature mapped in 
the different positions of boulders and rip‐raps in the localities of 
Coquimbo (29°S) and Iquique (20°S), we estimated the coefficient of 
variation (CV) for each position and habitat pooling for all sampling 
dates. We estimated the confidence intervals (95%) of the coeffi‐
cient of variation through bootstrapping our results and assuming a 
normal distribution of our data sets (Manly 1998).

3  | RESULTS

3.1 | Spatial–temporal thermal patterns and 
environmental variables

Most topographic and environmental variables were relatively simi‐
lar between the habitats types considered with the exception of 
the structural complexity (large scale), which was variable among 

F I G U R E  2   Box plot of (a) the substrate 
(ST), (b) air (Air T) and (c) seawater 
temperature, and (d) wind velocity, 
estimated in rip‐raps (Artificial) and 
boulder field (Natural) at the different 
sites considered. The black line in each 
box is the median, the boxes define the 
hinge (25, 75% quartile, and the line is 
1.5 times the hinge). Points outside the 
interval (outliers) are represented as dots
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sites and different between habitat types (Figure S2A,B, Table S1 
in Appendix). Artificial rip‐raps had a relatively higher complexity 
than natural boulder fields, but this was dependent on locality (i.e., 
two localities were different while the other not; see Figure S2B). 
Similarly, small‐scale topographic complexity was similar between 
habitat types (Figure S2D). There were significant negative effects 
of topographic complexity (small scale) and slope on average mini‐
mum substrate temperature in both rip‐raps and boulders (Table S2). 
Air temperature was higher in the artificial than the natural habitat 
(Figure 2a), which was variable across sites (Table S3a). Substrata 
temperature had a significant effect on air temperature, but ex‐
plained very little of the variability observed across habitats and 
sites (R2 = .0597; n = 321, SE = 2.96). No differences in seawater tem‐
perature nor wind velocity were observed between habitat types 
(Figure 2b and c, Table S3c in Appendix).

Substrate temperature was variable among localities and was, on 
average, about 1.5–5°C higher in the artificial habitats (Figure 3a). 
Median substrate temperature was 33°C with a maximum of 35°C 

in the rip‐raps, while in natural boulders, median values fluctuated 
between 25–27°C (see insert in Figure 3a). Substrate tempera‐
tures varied significantly within the different positions sampled 
on rip‐raps and boulders (Figure 3b), with the top of rip‐rap having 
higher substrate temperatures (ST) than “side” and “union” positions 
(Figure 3b). The “side” and “union” positions had similar averaged 
substrate temperature (ST_mean), which were significantly lower 
in the natural than the artificial habitat (Figure 3b, Table S4), es‐
pecially in the CMP‐PG comparison, where the ST_mean was sig‐
nificantly lower at compared with the others artificial‐natural sites 
pairs (Figure 3a, Table S4). In contrast, no differences were observed 
between habitat at Caleta Hornos (CHn‐a, Figure 3a). Habitat and po‐
sition (fixed effects) contributed thus about 50% of the variation of 
substrate temperature (marginal pseudo‐R2 =  .468). In general, the 
ST_mean recorded across different zones of boulders and at the dif‐
ferent localities was less variable in the artificial habitat for all po‐
sitions considered as indicated by the lower median coefficient of 
variation estimated (black dot in Figure 3c and see Table S5).

F I G U R E  3   Box plot of (a) the rock or 
substrate temperature (ST) recorded at 
the different habitats across localities, 
and (b) substrate temperature and (c) 
coefficient of variation (CV) recorded at 
the different positions on the rip‐raps 
and natural boulders. Insert in A shows 
a box plot with the total average rock 
temperature recorded for the artificial and 
natural habitat in all localities considered 
in Coquimbo (30°S). The black line in each 
box is the median, the boxes define the 
hinge (25% and 75% quartile, and the line 
is 1.5 times the hinge). Points outside 
the interval (outliers) are represented as 
dots. Sites in (a) correspond to artificial 
breakwaters (CH_a, CMP, UCN) and 
corresponding natural boulder fields 
(CH_n, PG, PP) considered in the 
“artificial–natural” habitat comparisons
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Net differences in substrate temperatures between the artificial 
and the natural habitat recorded within each quadrat at the differ‐
ent natural habitat/rip‐rap position considered, showed contrast‐
ing patterns. At Coquimbo (29°), at two sites, the artificial habitat 
showed a net and significant (i.e., 95% CI do not cross zero) increase 
in substrate temperature compared with the natural (adjacent) hab‐
itat (grey symbols in Figure 4) with, on average, substrate tempera‐
ture being about 3.9–5.0°C higher than the natural habitat. At Caleta 
Hornos (CHa‐n), however, there was no recorded difference in sub‐
strate temperature (Figure 4). At the two additional localities sam‐
pled in Iquique (19°S), the artificial habitat had significantly higher 
rock temperature compared with the natural habitat (red symbols in 
Figure 4). Even at EPIa‐n site in Iquique, we found the largest average 
difference in rock temperature (i.e., 5.9°C, Figure 4).

Maximum averaged (over the four seasons) daytime substrata 
temperature (ST_max) recorded at La Herradura in Coquimbo were 
variable in both habitats, peaking at mid‐day (12:00  hr; 30°C) for 
the boulder fields and at 16:00 hr for the artificial habitat (~37°C, 
Figure 5a). Rock temperature was about 30°C at 20.00 hr at eve‐
ning in the artificial habitat (red line in Figure 5a). This pattern was 
more evident during summer, when median substrate temperature 
recorded during the afternoon and evening (i.e., 16:00 and 20:00 hr 
pooled data; Figure 5b) was about 5°C higher in the artificial than the 
natural habitat (Figure 5b). Despite temperature differences being 
less marked during early morning and mid‐day, a significant effect of 
habitat (natural) × time was observed (see Table S6 in Appendix). The 
“Conditional” pseudo‐R2 (0.201) suggest an important effect of both 
fixed but also random effects (plots) altogether instead of considering 
the fixed effects alone in the model (“Marginal” pseudo‐R2 = 0.172). 

The overall daily pattern in substrate temperature was consistent 
between summer and winter, but was less evident during autumn 
in which differences were less marked (see Figure S5 in Appendix). 
Average daytime variation in air temperature (0.5–1.5 m above the 
substrata) showed a pattern consistent with that of the substrate 
temperatures, thus showing higher air temperatures in the artificial 
habitat than the natural one (Figure 5c,d). Differences in air tem‐
peratures between the artificial and the natural habitat were, how‐
ever, more marked in summer during the afternoon and evening 
(16:00–20:00 hr), compared with the artificial habitat being about 
3.5°C higher (median values) than the natural habitat (see Figure 5d).

3.2 | Species abundance and richness

Species abundance and richness were variable in the different po‐
sitions and habitats considered (Figure 6). Mobile species densities 
were reduced in the artificial habitat, although littorinid snails such 
as Echinolittorina peruviana and Austrolittorina araucana reached 
large densities accounting for most of the mobile species density 
recorded in this habitat (see outliers in “side” in Figure 6a). There 
was a weak, nonlinear negative relationship between mobile species 
density with substrata temperature (Polynomial order 2; R2 = .049; 
SE = 27.19; p =  .0001). Both algae and sessile invertebrate species 
cover (%) was lower in the artificial habitat as compared with the 
natural habitat but depending on specific comparison (Table S7a in 
Appendix). Thus, cover on “top” of rip‐raps had significantly lower 
cover than “sides” or “unions” (Figure 6b). In general, bare rock 
cover reached about 85% in the artificial habitat. Barnacles (Jehlius 
cirratus), mussels (Perumytilus purpuratus) and noncalcareous algae 
like Hildenbrandia lecanelleri were, however, abundant in the natu‐
ral habitat reaching about 80%–90% on the “sides” and “unions” of 
boulders. In contrast, no mussels were observed in the rip‐raps and 
cover of barnacles and algae was low (less than 30% in average). It 
should be noted that, despite the general trends was that the arti‐
ficial habitats had lower species abundances, some natural habitats 
(e.g., in PG natural site) had also reduced species cover (see negative 
coefficients in Table S7a). Species richness was lower in the artificial 
versus the natural habitat for the different within boulder or rip‐raps 
position considered (Figure 6c). Average substrate temperature (ST_
mean) had a significant negative effect on species richness recorded 
in the study (Table S8).

4  | DISCUSSION

Field sampling showed strong spatial variation in the thermal pat‐
terns in artificial as well as natural habitats, with the top position of 
boulders having higher temperatures than either sides or between‐
boulder unions. Small‐scale spatial complexity (few cm) was similar 
between habitat types and was associated with lower substrate 
temperature, suggesting an important role of topographic elements 
(e.g., between‐boulders, rip‐raps interstices) in reducing heat for 
intertidal organisms. In general, the artificial habitat experienced 

F I G U R E  4   Differences in substrate temperature (°C) between 
the artificial (AR) and the natural habitat (NA) for the different 
sites considered (CHn, PG, PP, EPIn, and CAVn correspond to the 
natural habitats, CHa, CMP, UCN, EPIa and CAVa are the artificial 
breakwaters considered at the different localities). Bars are 95% 
confidence intervals estimated through a bootstrapping procedure. 
Positive values show net increase in substrate temperature in the 
artificial habitat compared with the natural one. Red diamond and 
triangle are sites located in Iquique, at northern Chile (20°S)
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higher average and maximum substrate temperatures than the natu‐
ral habitats, but showed less spatial variability, being about 3.7°C 
higher in four out of the five study sites in Coquimbo (29°S) and 

Iquique (20°S). Importantly, both sessile and mobile species abun‐
dance and richness were negatively related with peaks of sub‐
strate temperature. Specifically, thermal pattern found in artificial 

F I G U R E  5  Substrate and air 
temperatures recorded during daytime 
sampling (n = 37 estimations per 
hour per habitat in each season). (a) 
Maximum averaged (4‐seasons) substrate 
temperature recorded at different hours in 
both the artificial and the natural habitats, 
(b) boxplot of the maximum substrate 
temperature recorded at afternoon and 
evening (16:00–20:00 hr) in summer, 
(c) average (4‐seasons) air temperature 
recorded at different hours in both 
the artificial and the natural habitats 
(0.5–1.5 m above the substrata), and (d) 
boxplot of the air temperature recorded at 
afternoon and evening (16:00–20:00 hr) 
in summer. The line in each box is the 
median, the boxes define the hinge (25% 
and 75% quartile, and the line is 1.5 times 
the hinge). Points outside the interval 
(outliers) are represented as dots
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infrastructures like rip‐raps in the mid‐to high intertidal level were 
associated with reduced abundance and species richness. Between‐
habitat differences in thermal patterns were persistent during the 
day and maintain relatively similar at different seasons, with the 
substrate temperature recorded in the artificial infrastructure being 
higher in the afternoon. Our study is among the first to report the 
thermal patterns of coastal artificial infrastructures and their poten‐
tial consequences on biodiversity patterns. While more information 
is required to determine how substrate thermal patterns influence 
microclimatic conditions on urbanized coasts, it seems that artificial 
infrastructures like rip‐raps may contribute to local coastal warming.

4.1 | Higher substrate temperature in artificial 
habitats and consequences for biodiversity

Reduced topographic heterogeneity in artificial infrastructures is as‐
sumed to account for the reduction and variation in species abun‐
dance and diversity (Firth et al., 2013; Loke et al., 2015). Differences 
in spatial complexity at small scales (few cm) between artificial and 
natural habitats are, therefore, well correlated with species occur‐
rences due to the presence or absence of refuges to reduce desicca‐
tion stress like shaded crevices, or rock pools (Aguilera et al., 2014; 
Firth et al., 2013). In our study, we found relatively higher species 
abundance and species richness in the natural versus the artificial 
habitats, a pattern commonly observed in different coasts world‐
wide (e.g., Firth et al., 2016; Firth et al., 2014; Perkins et al., 2015). 
We also observed a significant negative effect of substrate tempera‐
ture on sessile species cover and species richness, with both vari‐
ables showing a pattern consistent with the between‐boulder spatial 
variation in substrate temperature. In addition, we observed lower 
variation in substrate temperature along the artificial infrastruc‐
ture. Interestingly, despite small‐scale (few cm) substrate complexity 
showed a negative relationship with rock temperature, this was simi‐
lar in both habitats. However, large‐scale complexity (at the scale 
meters) was higher in the artificial habitat suggesting that cavities 
or interstices among rip‐raps were larger than in the natural boul‐
der fields. It seems improbable, however, that small‐ or large‐scale 
complexity can account for the observed differences in rock tem‐
perature. In this context, substrate roughness, and/or boulder shape 
may have a role limiting/allowing substrate heat absorbance/reflec‐
tance (recorded by the thermal camera) and/or propagule settlement 
contributing to thermal variability and, as a consequence, species 
occurrences. Substrate roughness may also vary with age, accord‐
ing to decomposition of material through time especially in artificial 
structures. In our study localities, rip‐raps were built in relatively 
similar years (Coquimbo: 2003–2004; Iquique: 2005), and some 
degree of erosion could be expected on them. Substrate roughness 
can promote effective settlement of algae and sessile invertebrates 
(Coombes et al., 2015) by increasing moisture and thus reducing sub‐
strate temperature. In addition, rough and textured surfaces reflect 
light less efficiently, and have a higher emissivity than smooth ones 
(Seuront et al., 2018). Boulder topography, for instance, could ac‐
count for differences in exposure to sun heating or shading potential 

(Chapman, 2012; Liversage, 2016). Artificial boulders or rip‐raps 
tend to be “block‐shape,” while natural boulders are more “round” 
(ovoid in shape), and thus will experience different exposure to inso‐
lation, heat absorbance/reflectance and then emissivity (Lathlean et 
al., 2017; Seuront et al., 2018). In our study, rocks present at the rip‐
raps and natural boulder field, were characterized by a relatively sim‐
ilar concentration of plagioclase and quartz, biotite, and hornblende 
mineral. However, geochemical differences may account for differ‐
ences in thermal absorbance patterns (Lathlean & Seuront, 2015), 
and could be important in other locations or latitudes and should be 
considered in further studies. In addition, granite boulders could be 
more alkaline or acid (lower pH) than natural boulders which could 
account for differences in temperature and/or biodiversity. We did 
not measure rock pH in the field and, at known, no studies have 
provided information about comparison of acidity in rip‐raps versus 
natural rocks and thus we do not speculate in this context. Given 
our results, it seems that organisms could experience more thermally 
stressful conditions (Helmuth et al., 2006; Somero, 2002) in rip‐raps, 
potentially contributing to the lower occurrences of both sessile and 
mobile organisms observed in these habitats. It should be noted that 
absence of foliose algae or mussels, and reduced cover of barnacles 
in the mid‐high intertidal zone in the artificial habitat may, them‐
selves also contribute to increased thermal stress (Helmuth et al., 
2006; Lathlean et al., 2012) as biogenic heterogeneity has an impor‐
tant role providing thermal refuges (Cartwright & Williams, 2012). 
However, given we did not explore thermal stress of organisms, 
which requires a complementary and/or more appropriated tem‐
perature‐recording methodology (Judge et al., 2018), we can only 
speculate in this context. Notwithstanding, it should be noted that 
presence/absence of sessile species may also reduce (e.g., microal‐
gae, foliose algal forms) or even increase (e.g., dark crustose algae) 
the rock temperature recorded, and thus, a negative or positive tem‐
perature‐species cover relationship could be expected.

4.2 | Could artificial infrastructures modify coastal 
microclimate?

Commonly, in coastal cities, heat extremes are expected to be 
less severe than in valleys or inland suburbs as sea breezes can 
regulate heat waves by reducing city temperatures (Kuttler, 2008). 
Nevertheless, as in other cities, coastal artificial infrastructures have 
the potential to store‐emit heat (i.e., gain or lose heat) and to contrib‐
ute to rising air and substrate temperature during sunny days which 
has been poorly explored previously. In our study, rock temperature 
was about 3.7–5.8°C higher in the artificial infrastructure than the 
adjacent natural habitat. In addition, in the artificial infrastructure, 
the air temperature recorded at 1.0–1.5  m above the substrata 
was higher than in the natural habitat despite similar wind speeds. 
It appears, therefore, that rip‐raps effectively maintains higher air 
temperatures than other neighboring areas, a pattern commonly 
observed within the urban environment (Larsen, 2015; Oke, 1988). 
In this context, in our study we observed that air temperature de‐
creased at late evening (during sunset) in the natural boulder field, 
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but maintained >1.5°C higher in the artificial habitat. This pattern 
was observed in all seasons, but was more evident during summer 
when air temperatures were about 3.5–4.0°C higher in the artificial 
habitat. Given that artificial infrastructures made of granite boulders 
or rip‐raps are frequently associated with other coastal infrastruc‐
tures such as seawalls, wharfs, roads, and pedestrian walkways, the 
net effect of these integrated structures on microclimatic conditions 
at night (by heat release) may contribute to local coastal warming in 
relatively similar ways as built infrastructures generates urban “heat 
island effect” in inland cities (Kuttler, 2008; Oke, 1989), a phenom‐
enon that requires further examination in coastal marine habitats.

4.3 | Ecological engineering solutions for rock 
temperature increase at artificial habitats

Thermal regulation by green infrastructure is an important concern 
in urban areas and a matter of critical consideration for urban plan‐
ning (Gunawardena, Wells, & Kershaw, 2017). Equivalent strategies 
are recently being implemented in urbanized seascapes (Dafforn et 
al., 2015; Strain et al., 2018), where an increase of spatial com‐
plexity‐heterogeneity (Loke & Todd, 2016) by the addition of rock 
pools (Browne & Chapman, 2011; Chapman & Blockley, 2009; 
Evans et al., 2016; Firth et al., 2014; Waltham & Sheaves, 2018), 
crevices and pits (Martins, Thompson, Neto, Hawkins, & Jenkins, 
2010), among other topographic features, to artificial infrastruc‐
tures has the potential to reduce thermal stress to organisms and 
are important strategies for rehabilitation of coastal urban systems 
(Strain et al., 2018). We demonstrate that artificial structures like 
rip‐raps or granite boulder breakwaters have higher rock tempera‐
tures than natural substrates, which can even influence the local 
air temperature and can contribute to alter abundance and bio‐
diversity patterns. Artificial breakwaters are also thermally more 
homogeneous at the scale of meters than natural habitats, indicat‐
ing that intertidal organisms experience a more similar tempera‐
ture pattern across the artificial habitat with reduced frequency 
of thermal refuges as in the natural habitats. This pattern could 
also explain the potential for artificial tilt boxes to provide mi‐
croclimate ledges in shading zones along artificial breakwater in 
estuarine systems (Waltham & Sheaves, 2018). Initial practical in‐
dications would be executed based on our main results, to reduce 
or mitigate enhanced rock temperature in artificial breakwaters 
at mid‐high intertidal levels. Choice of material with reduced po‐
tential to absorb/accumulate heat would be important during the 
design stage for construction of artificial structures. In addition, 
creation of small‐scale (cm) spatial heterogeneity in “top” or “sides” 
of rip‐raps with construction of grooves, pits, and/or small rock‐
pools and transplant of mussels could complementarily increase 
thermal refuges availability for species settlement and or aggrega‐
tions (Evans et al., 2016; Firth et al., 2013; Martins et al., 2010; 
Morris, Golding, Dafforn, & Coleman, 2018; Strain et al., 2018). In 
addition, “among rip‐raps” union, spaces or interstices would be 
modified through installing rock pools (Browne & Chapman, 2011; 
Waltham & Sheaves, 2018) to enhance water retaining features in 

a proportion of the breakwaters (e.g., ~10%) high enough to re‐
duce overall structure heat gain. Ecological engineering solutions 
to enhance biodiversity and values for ecosystem functioning in 
artificial infrastructures, should consider the complex spatial‐tem‐
poral thermal structure of these novel habitats in their research 
and planning agendas. Therefore, future studies could consider 
complementary methodologies to deal with variation of thermal 
patterns at different spatial scales (e.g., see Judge et al., 2018; 
Lathlean & Seuront, 2015 for reviews), in a suite of integrated 
coastal artificial infrastructures. This could shed light on the po‐
tential large‐scale effect of coastal urban infrastructures in con‐
tributing to exacerbate the local effect on biota of frequent heat 
waves, and in the subsequent alteration of the coastal climate.
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