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Abstract

Clinical translation of novel therapeutics that improve the survival and quality of life of patients 

with neurological disease remains a challenge, with many investigational drug and device 

candidates failing in advanced stage clinical trials. Naturally occurring inherited and acquired 

neurological diseases, such as epilepsy, inborn errors of metabolism, brain tumors, spinal cord 

injury, and stroke occur frequently in companion animals, and many of these share epidemiologic, 

pathophysiologic and clinical features with their human counterparts. As companion animals have 

a relatively abbreviated lifespan and genetic background, are immunocompetent, share their 

environment with human caregivers, and can be clinically managed using techniques and tools 

similar to those used in humans, they have tremendous potential for increasing the predictive value 

of preclinical drug and device studies. Here, we review comparative features of spontaneous 

neurological diseases in companion animals with an emphasis on neuroimaging methods and 

features, illustrate their historical use in translational studies, and discuss inherent limitations 

associated with each disease model. Integration of companion animals with naturally occurring 

disease into preclinical studies can complement and expand the knowledge gained from studies in 

other animal models, accelerate or improve the manner in which research is translated to the 

human clinic, and ultimately generate discoveries that will benefit the health of humans and 

animals.
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1. Introduction

The term “companion animal” has various medicolegal and psychosocial definitions that can 

incorporate numerous and diverse species. Here we define companion animals as 
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domesticated animals whose behavioral, emotional, physical and social needs can be readily 

met as companions in the home or in close daily contact with humans (American Society for 

the Prevention of Cruelty to Animals, 2019). This review further and intentionally limits 

companion animals to dogs and cats, as the overwhelming majority of existing translational 

studies of spontaneous neurological disease involve these species.

1.1. Opportunities provided by companion animal models of neurological disease

The potential of naturally occurring animal models to serve as models for human disease 

was recognized nearly a century ago and has had a relatively recent resurgence with the One 

Health initiative (Krogh, 1929; Christopher, 2015). Hundreds of inherited disorders have 

been recognized in domesticated dogs and cats, and the majority of these have a human 

analog (Christopher, 2015; Starkey et al., 2005). The incidence of cancer in companion 

animals is also remarkably similar to humans, which may be partially explained by their 

shared environment and genetic traits (LeBlanc et al., 2016). Parallels in disease onset, 

phenotypes and genotypes, pathophysiology, and progression as well as therapeutic 

responses have also been reported for various human, canine and feline diseases, which may 

facilitate identification of epidemiologic risk factors, biomarkers, and the development of 

effective preventative and therapeutic strategies (Christopher, 2015; Starkey et al., 2005; 

LeBlanc et al., 2016; Parker et al., 2010). Many companion animal diseases are 

overrepresented in specific purebreeds, with founder effects resulting from several hundred 

years of intensely selective mating practices. As genetic heterogeneity is reduced and 

linkage disequilibrium orders of magnitudes higher in companion animals compared to 

humans, the study of disease in purebreeds is a robust tool for genomic mapping (Starkey et 

al., 2005; Parker et al., 2010). In addition, the lifespans of dogs and cats are 3–8 times 

shorter than to humans, which allows for the study of the natural history of disease in a 

compressed timeframe.

In industrialized nations, significant societal value is placed on companion animal ownership 

and healthcare (Einav et al., 2017; Pet industry market size & ownership statistics and 

American Pet Products Association, 2019). Nearly $70 billion was spent on pets in the 

United States in 2017, of which $16.6 billion was used for veterinary care, and there are an 

estimated 90 million pet dogs and 94 million cats residing in 68 % of US households (Einav 

et al., 2017). Similar to trends in human medical practice, a significant proportion of 

companion animal medical expenses are allocated to the management of chronic 

comorbidities and end-of-life healthcare.7 Maintenance of companion animal health is 

evident as growing populations of companion animals are available to participate in 

epidemiological and investigational agent or device trials.

Veterinary medical practice has evolved substantially in the past two decades, with rapid 

growth in the specialty practice sector. (Einav et al., 2017; Pet industry market size & 

ownership statistics and American Pet Products Association, 2019) Clinically ill companion 

animals are frequently managed with diagnostic and therapeutic approaches that are similar 

or identical to those used in human patients. In contemporary veterinary neurological and 

neurosurgical practice, this translates to the ability to thoroughly clinically characterize and 

annotate diseases using state-of-the-art electrophysiologic, genomic, molecular biologic, 
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neuroimaging, and neuropathologic techniques (LeBlanc et al., 2016). In this review, we will 

highlight the use of traditional and emerging quantitative morphometric and functional 

neuroimaging methods as a nearly universal methodological tool employed in translational 

companion animal neurological research.

1.2. Obstacles to the use of companion animal models in neuroscience research

Despite the many advantages of companion animal models described herein, inherent 

limitations exist (Christopher, 2015; Starkey et al., 2005; LeBlanc et al., 2016; Parker et al., 

2010). Although there are many physiologic and genetic similarities between dogs, cats and 

humans, fundamental differences exist that can have profound impacts on drug metabolism, 

efficacy and toxicity. Administration of anesthetics is generally needed to immobilize 

animals during acquisition of diagnostic quality neuroimages. As anesthetics inherently alter 

consciousness, cerebral blood flow, and oxygenation, this requirement has been a major 

impediment to the routine performance of blood oxygen level dependent functional MRI in 

companion animal neurology. Compared to rodent models and humans, the repertoire of 

validated reagents for molecular biological investigations is restricted for companion 

animals; this is particularly true for feline models. The current level of understanding of the 

genetic alterations that define companion animal diseases is also limited, and the 

identification of species-specific drivers of neurological disease is inevitable (LeBlanc et al., 

2016; Connolly et al., 2018). Historically, the ability of translational studies in companion 

animals to truly inform human clinical trials has been hampered by a lack of statistical 

power or inclusion of controls that receive a validated standard of care treatment. 

Companion animal model research is also considerably more expensive and met with more 

public scrutiny and stringent ethical regulations compared to the use of rodents (Baneux et 

al., 2014). Such factors should not preclude the use of companion animal models in 

neuroscience research. Rather, these differences should highlight the need to incorporate 

rational and innovative study designs into companion animal model trials to improve the 

predictive value of preclinical research.

2. Spontaneous neurological diseases in companion animals

2.1. Epilepsy

Epilepsy is one of the most pervasive neurological disorders affecting mammals, with a 

prevalence in domestic dogs of ~0.6–1 %, and an estimated 1–3% prevalence in the human 

population (Kearsley-Fleet et al., 2013; Erlen et al., 2018; G.B.D. Epilepsy Collaborators, 

2019). Spontaneous seizures in companion animals demonstrate good construct validity, 

with the etiologies of canine epilepsies being broad and representative of what is observed in 

humans. Brain tumors, encephalitides, neurodegenerative diseases, stroke, and traumatic 

brain injury are common causes of structural/metabolic epilepsies, and confirmed and 

suspected gene mutations have been observed in cases of idiopathic/genetic epilepsies 

(Blades Golubovic and Rossmeisl, 2017a; Ekenstedt et al., 2012). A robust body of literature 

has documented the etiologic, epidemiologic, pharmacologic, semiologic, and 

electrophysiologic similarities that exist between human and canine epilepsies (Blades 

Golubovic and Rossmeisl, 2017b; Grone and Baraban, 2015; Licht et al., 2002; Potschka et 

al., 2013; Patterson et al., 2015; Mariani, 2015). These studies indicate that canine epilepsies 
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demonstrate considerable seizure phenotypic and electroencephalographic (EEG) face 

validity with humans, encompassing numerous focal and generalized epileptic syndromes. 

Emerging evidence also indicates that epileptic humans and dogs are afflicted by similar 

cognitive and behavioral comorbidities (Packer et al., 2018a; Watson et al., 2018). Although 

much less is known about the neuropathology of the majority of companion animal 

epilepsies, hallmark features of neuronal death, impaired neurogenesis, microglial activation, 

and blood-brain barrier compromise have been described (Matiasek et al., 2015; Troscher et 

al., 2017).

In humans and companion animals, the health burden of epilepsy is significant in terms of its 

association with chronic disability, premature death, and negative socioeconomic impacts 

(G.B.D. Epilepsy Collaborators, 2019; Blades Golubovic and Rossmeisl, 2017b; Packer et 

al., 2018a; Watson et al., 2018; Berendt et al., 2007). Nearly 60 % of epileptic dogs will 

experience one or more episodes of status epilepticus (SE) during their lives (Blades 

Golubovic and Rossmeisl, 2017b; Patterson et al., 2015). SE remains one of the most 

immediately life-threatening neurological conditions for humans and dogs, with associated 

mortality rates approaching 25 % for both species (Blades Golubovic and Rossmeisl, 2017b; 

Patterson et al., 2015). Treatment-refractory seizures are also a significant challenge, being 

reported in 33 % and 25 % of epileptic humans and dogs, respectively. Thus, epileptic dog 

populations offer a unique avenue to investigate the predictive validity of novel 

anticonvulsant drug, diet, or device candidates using safety, pharmacokinetic, or efficacy 

end-points in both acute emergent and chronic clinical settings (Licht et al., 2002; Potschka 

et al., 2013; Patterson et al., 2015).

In certain purebred dogs, the prevalence of epilepsy is significantly higher than that of the 

general population (Kearsley-Fleet et al., 2013). The comparatively limited genetic variation 

present in purebreeds as well as the common popular sire effects seen in inbred dogs offer 

tremendous opportunities to understand the genetics of complex diseases such epilepsy or 

cancer (Ekenstedt et al., 2012). Although to date there has not been a novel causative 

mutation for genetic epilepsy first identified in dogs that was later confirmed to be present in 

people, investigations of canine and human progressive myoclonic epilepsies (PME) have 

clearly illustrated that mutations in the same gene cause similar disease manifestations in 

different species. PME are phenotypically and genotypically heterogeneous metabolic 

diseases characterized by structural/metabolic epilepsy, myoclonus, and relentlessly 

progressive interictal neurological disability. Among the nine genes that have been identified 

in canine PME caused by Lafora disease and neuronal ceroid-lipofuscinoses (ARSG, 

ATP13A2, CLN5, CLN6, CLN8, CTSD, EPM2B, PPT1, and TPP1), eight are associated 

with orthologous mutations in humans that result in the same disease (Ekenstedt et al., 

2012).

Identification of definitive mutations causing canine idiopathic/genetic epilepsies has been 

more challenging, supporting research that suggests that many human and canine epilepsies 

are multifactorial disorders caused by genetic, lifestyle, and environmental factors 

(Ekenstedt et al., 2012; Shearin and Ostrander, 2010; Ekenstedt et al., 2011). To date, only a 

single mutation causing a canine idiopathic/genetic epilepsy has been described, which is a 

truncation in LGI2 that causes benign familial epilepsy in Lagotto Romagnolo dogs that 
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spontaneously remits by 4 months of age (Seppala et al., 2011). Through their interactions 

with a disintegrin and metalloproteinase (ADAM) receptors, LGI2 and its human ortholog 

LGI1, which is also a known epilepsy gene, are crucial for cell to cell adhesion, 

syntaptogenesis, and synaptic pruning in the developing brain. The recognition of LGI1 and 

LGI2 mutations provided novel insight into molecular mechanisms of epileptogenesis, being 

the first epilepsy mutations described that do not affect ion channels (Seppala et al., 2011).

Several quantitative MRI and functional neuroimaging techniques have been investigated in 

dogs with idiopathic/genetic epilepsy. Hippocampal atrophy (HA), similar to what is 

described in humans with mesial temporal lobe epilepsy (TLE) and hippocampal sclerosis, 

has been identified in up to 56 % of epileptic dogs in which volumetric MRI analyses are 

performed (Czerwick et al., 2018; Etsey et al., 2017). Studies that have obtained 

contemporaneous EEG on dogs with HA have also demonstrated that epileptiform 

discharges frequently localize to the hemisphere containing the HA (Czerwick et al., 2018). 

Interictal diffusion- and perfusion-weighted MRI abnormalities have also been identified in 

dogs with idiopathic/genetic epilepsy, including increased apparent diffusion coefficient 

values in the piriform lobe, amygdala, and centrum semiovale, as well decreased cerebral 

blood flow compared to healthy controls (Hartmann et al., 2018; Hartmann et al., 2017).

Clinical applications of radiotracer imaging in companion animal epilepsy remains in its 

infancy. The human experience has indicated that PET and SPECT can be highly valuable 

non-invasive tools that assist in the identification of the epileptogenic zone of patients 

undergoing comprehensive and multimodality presurgical diagnostic evaluations in 

consideration for resection of the seizure focus (Sarikaya, 2015). 18Fluoro-2-deoxyglucose 

(18F-FDG) PET imaging of brain glucose metabolism is the most widely utilized and 

available nuclear imaging technique in both humans and companion animals, and interictal 
18F-FDG PET scans in humans typically reveal areas of hypometabolism associated with the 

epileptic focus. In Lagotto Romagnolo dogs with a focal genetic epilepsy, 18F-FDG PET 

scans also revealed reduced glucose metabolism in cortical brain regions associated with 

EEG abnormalities (Jokinen et al., 2014). Epileptic Finnish Spitz dogs have also 

demonstrated to have significantly lower standardized uptake 18F-FDG PET values in the 

hippocampus, occipital cerebral cortex, and cerebellum compared to healthy controls 

(Viitmaa et al., 2014).

Performance of nuclear imaging in companion animal models provides several opportunities 

to advance epilepsy research. These include the characterization of mechanisms of 

epileptogenesis or anticonvulsant drug resistance, interrogation of the utility of novel radio-

pharmaceuticals that are being developed for localization of epileptogenic foci, such as 

through the use of the GABA-A receptor ligands 11C-flumazenil and 18F-flumazenil, and to 

define biomarkers that are predictive of risk of the development of seizures after brain 

injuries, such as trauma, or for the attainment of seizure freedom after seizure focus 

resective surgery (Galovic et al., 2016). With image fusion capabilities and MRI-PET 

scanner availability increasing in veterinary medicine (Fig. 1), the ability to obtain robust 

quantitative morphologic and functional imaging datasets in dogs and cats with epilepsy also 

provides another avenue for potential future epilepsy research.

Partridge and Rossmeisl Page 5

J Neurosci Methods. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Spontaneous epilepsies also exist in domestic cats, although compared to dogs, they are 

relatively poorly characterized and understood. However, there is evidence that a seizure 

phenotype with a worldwide distribution in cats, called feline complex partial seizures with 

orofacial involvement (FEPSO), is associated with pathologies that have striking parallels 

with human leucine-rich glioma-inactivated protein 1 autoimmune limbic encephalitis 

(LGI1-LE) and TLE with hippocampal sclerosis (Troscher et al., 2017; Pakozdy et al., 2014; 

Wagner et al., 2014). FEPSO manifests as focal facial motor seizures and various oral 

automatisms including lip smacking, chewing, licking, swallowing, and vocalization, with 

post-ictal aggression also frequently reported (Troscher et al., 2017; Pakozdy et al., 

2014).Affected cats have brain magnetic resonance imaging (MRI) examinations that 

demonstrate bilateral and often symmetric signal changes in the hippocampi (Fig. 2), and a 

subset of these cats with LGI1-LE will have serum antibodies to the voltage gated potassium 

channel (VGKC) complex protein LGI1 (Pakozdy et al., 2014). Neuropathologic changes 

documented in the hippocampi of cats with LGI1-LE also resemble those seen in humans 

including neuronal degeneration and loss, astrogliosis, and neuroinflammation (Fig. 2) 

(Troscher et al., 2017; Wagner et al., 2014).

Limitations associated with the incorporation of companion animal models into translational 

epilepsy studies exist. These include the reliance on and reliability of owner-based seizure 

reporting and monitoring, the lack of harmonized terminology for seizure semiology, 

challenges associated with obtaining EEG recordings in companion animals, the 

undetermined and likely heterogeneous genetic etiologies of epilepsy in study populations 

that include diverse dog breeds, and differences in physiology and drug pharmacology 

between dogs, cats, and humans. To overcome some of these limitations, consensus 

statements modeled after those published by the International League Against Epilepsy, that 

address the genetics, classification, diagnostic approach to, and treatment of epilepsy in 

companion animals have been developed by joint panels of human and veterinary medical 

epilepsy experts and widely adopted by veterinarians (Berendt et al., 2015; DeRisio et al., 

2015; Bhatti et al., 2015; Potschka et al., 2015). In addition, traditional barriers to the 

electrophysiologic characterization of companion animal seizure disorders are being 

overcome in parallel with improvements in medical device technology. The feasibilities of 

obtaining diagnostic EEG recording in awake dogs in a routine clinical setting using a 

wireless EEG system, as well as chronically in epileptic dogs with cortically implanted 

telemetric EEG devices have been demonstrated (James et al., 2017; Davis et al., 2011). 

These studies illustrate the potential value of companion animals with epilepsy for the 

advancement of quantitative EEG analyses, such as the development of seizure detection 

algorithms.

2.2. Stroke

The Global Burden of Diseases, Injuries, and Risk Factors Study ranked stroke as the second 

most common cause of death and the third most common cause of disability worldwide in 

2010 (Lozano et al., 2012). Dogs with experimentally induced strokes have used been as 

models for decades, as they possess anatomic features including a large gyrencephalic brain 

as well as a ratio and distribution of gray and white matter that is more representative to that 

of humans than rodents (Casals et al., 2011). Given the recent evidence of the benefits of 
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endovascular therapies for the treatment of stroke in humans, canine models will likely 

continue to be used because their cerebrovascular anatomy is amenable to minimally 

invasive, image-guided endovascular interventions (Jovin et al., 2016). This allows for both 

the induction of stroke and assessment of experimental therapeutics.

With widespread availability of MRI in veterinary specialty hospitals, cerebrovascular 

accidents (CVA) are being increasingly recognized in companion animals, especially dogs 

(Garosi and McConnell, 2005). Naturally occurring canine CVA share many similarities 

with the human condition, which makes them a relevant model for the global assessment of 

the safety and efficacy of novel treatments. Ischemic strokes are more common than 

hemorrhagic strokes in both species, and the majority of territorial and lacunar stroke 

topographies that humans experience with their associated clinical symptoms and MRI 

findings have been observed in dogs (Fig. 3) (Garosi and McConnell, 2005; Garosi et al., 

2006; Rossmeisl et al., 2007). Several PET and quantitative imaging techniques have also 

been used in canine stroke models to determine the temporal effects of stroke and its 

treatment on cerebral blood flow and oxidative metabolism, as well as to investigate the use 

of novel radiotracer agents that provide insight into the pathogenesis of and recovery from 

stroke (Kuge et al., 2000; Weyne et al., 1987).

Strokes often occur in dogs within age ranges (8–10 years) equivalent to those of geriatric 

humans, and affected dogs frequently have similar and heterogeneous comorbid risk factors 

for CVA, such as systemic hypertension, chronic kidney disease, atherosclerosis, and 

diabetes mellitus (Garosi et al., 2005a). The National Institutes of Health Stroke Scale, a 

clinical assessment instrument that has been shown to be predictive of stroke outcome in 

humans, has been modified and applied to canine models of stroke (Adams et al., 1999; 

Boulos et al., 2011). Spontaneous canine strokes also provide an avenue to explore 

mechanisms of neuroinflammation or liquid biopsy biomarkers without the confounding 

factor of a surgical or endovascular procedure in experimentally induced stroke that may 

itself cause or contribute to the inflammatory host response (Gredal et al., 2017). The 

neuropathologic features of large artery strokes in dogs are also similar to that humans, 

although mural pathologies described in the deep perforating arteries of humans with 

lacunar infarcts such as fibrinoid necrosis, lipohyalinosis, and segmental arteriolar 

disorganization have not been widely recognized in dogs (Thomsen et al., 2017; Mena et al., 

2004). Additionally, ~25 % of dogs and humans die within the first few weeks of stroke 

onset, with stroke severity being associated with subacute mortality in both species (Garosi 

et al., 2005a).

Several disadvantages are associated with the spontaneous canine stroke model. There are 

considerable differences between humans and dogs regarding the blood supply to the brain. 

In dogs, the cerebral arterial circle receives a significant proportion of blood flow from 

numerous vascular anastomoses derived from branches of the external carotid artery; the 

vertebral arteries contribute more substantially to the total blood supply to the brain through 

perfusion of the rostral thalamus, hypothalamus and caudal cerebrum; and the canine middle 

cerebral artery receives more leptomeningeal circulation from the ipsilateral rostral and 

caudal cerebral arteries (Jewell, 1952; Symon, 1960). These collateral pathways serve to 

protect the canine brain against the effects of cerebral arterial occlusion, and result in canine 
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infarct volumes that are relatively limited in size compared to those seen in humans. 

Relatively smaller infarct volumes and the dominance of the tegmentospinal tracts rather 

than the pyramidal system in the regulation of movement also contribute to the rapid and 

dramatic recovery of motor system dysfunction that is often observed in dogs with stroke 

(Rossmeisl et al., 2007; Garosi et al., 2005a; Symon, 1960; de Oliveira-Souza, 2017). In 

companion animals, it is also common for the clinical diagnosis of stroke to be delayed by 

several days after the appearance of neurological dysfunction, which significantly limits 

opportunities to deliver and evaluate therapeutics in the peracute “golden hours” after stoke 

onset (Rossmeisl et al., 2007; Garosi et al., 2005a).

2.3. Alzheimer’s disease and cognitive dysfunction syndrome

In companion animals and humans, age is a significant risk factor for cognitive impairment 

(Hebert et al., 2013; Alzheimer’s Association Report, 2018). The risk for developing 

Alzheimer’s disease (AD), the predominant cause of human dementia, increases 

dramatically with age. Approximately 3 % percent of people age 65–74, 17 % of people age 

75–84, and 33 % of those older than 85 have AD (Hebert et al., 2013). Cognitive 

dysfunction syndrome (CDS) is a neurodegenerative disorder affecting geriatric dogs and 

cats characterized by age-related cognitive decline sufficient to affect daily activities, with 

specific neurobehavioral manifestations that cannot be attributed to other medical 

conditions. CDS is highly prevalent in companion animal populations, affecting ~25 % of 

dogs and cats 11–14-years of age and 50–66% of dogs and cats 15+ years of age (Neilson et 

al., 2001; Moffat and Landsberg, 2003).

Clinical signs of CDS in animals mirror those of AD and include disorientation, anxiety, loss 

of previously learned behaviors (i.e. housetraining or work-related tasks), disrupted 

circadian rhythms (excessive daytime somnolence with increased nocturnal aimless activity 

or vocalization), and diminished social interactions with human caregivers and other animals 

(Neilson et al., 2001). The neuropathology of CDS resembles AD, with the brains of dogs 

and cats affected with CDS demonstrating atrophy of cerebral cortex and basal ganglia 

secondary to neuronal loss, cerebral microbleeds, microgliosis, and the presence of 

extraneuronal and vascular β-amyloid (Aβ) plaques, particularly in the frontal lobes and 

hippocampus, and intraneuronal hyperphosphorylated tau pathologies (Schmidt et al., 2015; 

Head et al., 2005).

Traditional structural neuroimaging features of CDS are also similar to those seen in the 

later stages of AD, with cortical atrophy, particularly of the medial temporal lobes and 

hippocampi, a reduced size of the interthalamic adhesion, and ventriculomegaly being 

commonly observed (Trzepacz et al., 2014). Recent research in humans has demonstrated 

the utility of quantitative structural MRI and functional neuroimaging techniques such as 
18F-FDG PET for cerebral metabolism and Pittsburg compound-B PET (PiB-PET) for 

amyloid imaging to demonstrate characteristic signatures in the brains of AD patients that 

my facilitate diagnosis prior to the onset of symptoms (Trzepacz et al., 2014). PiB-PET 

scans have been performed in dogs with CDS; however, studies performed to date indicate 

that PiB retention patterns in the canine brain are markedly different from those of humans 
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with AD, and PiB retention does not appear correlate with histological distribution of Aβ 
pathology in dogs (Fast et al., 2013).

As is true for people with AD, there is no cure or currently effective preventative strategies 

for CDS, and the healthcare burden associated with cognitive decline is expected to grow 

significantly as the human and pet populations grow and age (Hebert et al., 2013). As there 

is only one FDA-approved drug, selegeline, for dogs with cognitive impairment, dogs are 

being used as models in the investigation of a spectrum of novel disease modifying 

approaches with potential human applications including nutritional, pharmacologic, 

immunotherapeutic, and behavioral interventions (Pan et al., 2010; Davis et al., 2017).

2.4. Lysosomal storage diseases

Lysosomal storage diseases (LSD) comprise a group of over 70 rare inherited metabolic 

diseases in humans, many of which have been identified in dogs and cats (Gurda et al., 2017; 

Sun et al., 2018; Skelly and Franklin, 2002). The majority of LSD in humans and companion 

animals are inherited in an autosomal recessive manner, and are caused by deficient activity 

of a single enzyme resulting in impaired catabolism of metabolic substrates within 

lysosomes. Accumulation of undegraded products within cells causes enlargement of cells, 

cellular dysfunction, and eventually cell death. As most lysosomal enzymes are nearly 

ubiquitously expressed in mammalian tissues, clinical manifestations of phenotypes can be 

quite heterogeneous and are frequently referable to involvement of multiple organ systems 

(Beck, 2001). Even among affected individuals carrying identical mutant alleles, remarkable 

phenotypic variability is often observed due to modifying genes and epigenetic factors, 

particularly in those LSD with a late (adult) onset (Beck, 2001). An additional mechanism of 

phenotypic heterogeneity is the variable levels of residual enzyme activity associated with 

different defective alleles that cause LSD (Beck, 2001). Despite the relatively protean 

clinical manifestations of LSD, symptoms reflective of central nervous or neuromuscular 

system dysfunction are found in most disease variants and are often the earliest apparent or 

most severely debilitating phenotypes of LSD (Gurda et al., 2017; Sun et al., 2018; Skelly 

and Franklin, 2002).

Numerous canine and feline LSD are highly faithful models of disease, with mutations 

involving orthologous genes resulting in the same pathological, diagnostic imaging, and 

biochemical abnormalities that are observed in human patients (Fig. 4]; Table 1]) (Berg et 

al., 1997; Skelly et al., 1996; Menon et al., 1992; He et al., 1999; Yogalingam et al., 2002; 

Yogalingam et al., 1996; Ray et al., 1998; Fyfe et al., 1999; Seppala et al., 2013; Gilliam et 

al., 2015; Victoria et al., 1996; Yamato et al., 2002; Sanders et al., 2013; Somers et al., 

2003). These companion animal models of LSD have made substantial contributions to the 

understanding of disease pathophysiology including how specific genotypes produce disease 

phenotypes as well as to the molecular bases of the different levels of lysosomal enzymatic 

activity observed in patients (Yogalingam et al., 2002; Yogalingam et al., 1996; Ray et al., 

1998; Fyfe et al., 1999; Seppala et al., 2013; Gilliam et al., 2015).

Quantitative neuroimaging techniques have been employed for decades to further 

characterize structural nervous system abnormalities, pathophysiological mechanisms, and 

biochemical aberrations associated with various companion animal LSD variants, as well as 
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to catalog morphological and functional correlates of therapeutic interventions (Middleton et 

al., 2018; Choi et al., 2015; Li et al., 2018; Kumar et al., 2016; Vite et al., 2001; Vite et al., 

2013; Magnitsky et al., 2010). High-field morphometric MRI scans are frequently used to 

longitudinally quantify grey and white matter volumetric changes that occur in LSD and 

their treatment (Vite et al., 2001; Vite et al., 2013). Diffusion tensor MR imaging (DTI), and 

magnetization transfer MR imaging (MTI) are widely used techniques that have proven 

beneficial for assessment of the structure, integrity, and organization of white matter tracts in 

canine and feline LSD, and in some cases have revealed useful imaging biomarkers for 

specific LSD variants (Middleton et al., 2018; Choi et al., 2015; Li et al., 2018; Kumar et al., 

2016; Magnitsky et al., 2010). Proton magnetic resonance spectroscopy may also be 

employed to identify unique spectral signatures that correlate with accumulation of 

undigested metabolic substrates within tissues (Magnitsky et al., 2010).

Canine and feline models with orthologous mutations have also had important roles in 

advancing therapies for LSD, including hematopoietic stem cell transplantation, enzyme 

replacement therapy (ERT), and gene therapy (Gurda et al., 2017; Bradbury et al., 2015). 

Currently, a major obstacle to the treatment of central nervous system manifestations of LSD 

is the inability to deliver macromolecular therapeutic agents, such as systemically 

administered ERT, across the blood-brain barrier. Dog and cat models have been used 

extensively to demonstrate the feasibility, safety, and potential efficacy of intrathecal or 

intracerebrally delivered ERT or gene therapies, and have subsequently informed the rational 

design of comparative trials in humans (Kakkis et al., 2004; Kondagari et al., 2015). In 

aggregate, studies in companion animal models have demonstrated the potential for these 

therapeutic approaches to ameliorate clinical signs of disease, slow disease progression, 

reduce substrate accumulation within affected tissues, favorably influence biochemical 

disease markers, and improve neuropathological lesions (Bradbury et al., 2015; Kakkis et al., 

2004; Kondagari et al., 2015; Taylor et al., 1992; Walkley et al., 1994; Richter et al., 2015).

2.5. Movement disorders

Companion animals, particularly dogs, display a broad phenotypic range of abnormal 

involuntary movements (Table 2) (Richter et al., 2015; Urkasemsin and Olby, 2014; Podell, 

2004; Waln and Jankovic, 2015; Pancotto and Rossmeisl, 2017; Gilliam et al., 2014; 

Bhalerao et al., 2002; Quitt et al., 2018; Lowrie et al., 2018; Gill et al., 2012; Kolicheski et 

al., 2017; Geiger and Klopp, 2009; Gill et al., 2011). These movement disorders (MD) are 

classified using a scheme that parallels that of humans in which the abnormal movement is 

first defined as hyperkinetic or hypokinetic, followed by the frequency that the abnormal 

movements are observed (episodic/paroxysmal or constant/continual), and then a description 

of the cardinal phenotypic manifestation of the abnormal movement (dyskinesia, dystonia, 

myoclonus, myokymia/neuromyotonia, and myotonia) (Richter et al., 2015; Urkasemsin and 

Olby, 2014; Podell, 2004; Waln and Jankovic, 2015). Etiologies of MD in companion 

animals are equally diverse. Examples that recapitulate human conditions (Table 2) include 

autoimmune disorders (stiff-dog-syndrome (Pancotto and Rossmeisl, 2017), canine 

epileptoid cramping syndrome (Lowrie et al., 2018)), inherited glial (KCNJ10, 

spinocerebellar ataxia with myokymia, seizures, or both (Gilliam et al., 2014)) or 

sarcolemmal (CLCN1, myotonia congenita (Bhalerao et al., 2002; Quitt et al., 2018)) ion 
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channelopathies, spinal cord serotonin deficiency (Scottish terrier cramp (Geiger and Klopp, 

2009)), glycine transporter mutations (Startle disease (Gill et al., 2011)), and suspected 

neurodegenerative diseases of subcortical circuits and basal nuclei (Garosi et al., 2005b).

The majority of canine MD are breed-associated conditions, which provides an additional 

opportunity for studies of homogeneous inbred dogs to facilitate the identification of the 

pathophysiologic mechanisms of and evaluate therapeutics for inherited diseases. For 

example, episodic falling syndrome in the Cavalier King Charles Spaniel, which is 

phenotypically similar to human hyperekplexia, is caused by a deletion in BCAN (Gill et al., 

2012). BCAN encodes the brevican protein, an extracellular matrix (ECM) proteoglycan that 

is highly expressed in the central nervous system and is involved in perineuronal ECM 

network regulation of neuronal plasticity, axonal guidance, and cellular adhesion (Gill et al., 

2012). Clinical signs in dogs with episodic falling can be ameliorated with acetazolamide or 

clonazepam therapies. Border terriers with gluten-sensitive epileptoid cramping syndrome 

and autoantibodies directed against transglutaminase and gliadin have provided evidence 

that the dog may also be a good model for the study of non-celiac gluten sensitivity (NCGS) 

(Lowrie et al., 2018). NCGS comprises a spectrum of disorders in people with diverse 

multisystemic symptoms affecting the gastrointestinal tract, skin, and nervous system that all 

result from an immune response triggered by the ingestion of gluten.117 In affected Border 

terriers, clinical manifestations of epileptoid cramping syndrome improve or resolve when 

dogs are fed a gluten-free diet (Lowrie et al., 2018). Gluten-free dietary modification has 

also been demonstrated to alleviate ataxia and parkinsonian symptoms in some humans with 

celiac disease or NCGS (Hadjivassiliou et al., 2003; Di Lazzaro et al., 2014).

Advanced neuroimaging plays a pivotal role in the management of individual patients with 

MD by excluding malformations, encephalitides, cerebrovascular events and neoplasms as 

potential etiologies for the observed phenotypic abnormality (Masalachi et al., 2012; Wu et 

al., 2011). The shaking (sh) pup, a companion animal model of the human X-linked 

leukodystrophy Pelizaeus-Merzbacher Disease (PMD), provides an excellent example of 

translational applications for quantitative MRI imaging studies. The sh pup phenotypically 

manifests with a juvenile-onset diffuse, action related myoclonus that results from a 

mutation in the myelin PLP gene. This inhibits oligodendrocyte development and 

subsequently causes severe and diffuse hypomyelination, although axons are mostly spared. 

DTI and MTI MR studies in sh pups have provided significant and translationally relevant 

insight into mechanisms of dysmyelination, and age-related brain white matter maturation 

patterns in this model (Samsonov et al., 2012; Sanmamed et al., 2016).

2.6. Neuro-oncology

Relevant pre-clinical in vivo research models are necessary to advance novel diagnostic and 

treatment regimens for primary CNS tumors in people. Historically, rodent models have 

been widely used for pre-clinical in vivo research, but inherent limitations preclude direct 

translation of any derived pre-clinical results to humans. Despite these limitations, rodent 

models are easy to obtain and economical, especially when a large number of subjects are 

needed for statistical significance (Sanmamed et al., 2016). Genetically engineered mice 

(GEM) have the advantage of an intact immune system, which helps generate a more 
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physiologically relevant tumor microenvironment, providing an opportunity to evaluate 

response to immunotherapy, such as checkpoint inhibition (Sharpless and Depinho, 2006). 

Engineering these mice is time consuming and expensive, and may lead to variability in 

clinical presentation due to unexpected phenotypes (Lin, 2008; Talmadge et al., 2007). 

Patient derived xenograft (PDX) tumor models share the characteristic cellular complexity 

and histologic architecture of the tumor in its natural state, but lack an intact immune 

system, limiting their utility in research investigating immune responses (Williams et al., 

2013; Candolfi et al., 2007).

Practically speaking, the small size of most rodent models makes serial brain tissue sample 

collection and other neurosurgical therapeutic manipulations challenging. Additionally, 

tumors are often experimentally induced and lack important histologic features of naturally- 

occurring tumors, such as endothelial cell proliferation (Candolfi et al., 2007; Stoica et al., 

2004). Given these limitations, murine models may respond differently than human tumors 

to novel cancer therapies and accurate evaluation of such treatments in conjunction with 

surgical resection presents a significant challenge. The use of canines as a large animal pre-

clinical model for human investigations may serve to overcome these limitations due to their 

larger size, presence of an intact immune system and similarities in tumor histologic, 

molecular and neuro-imaging characteristics (Stoica et al., 2004; Lipsitz et al., 2003; Sturges 

et al., 2008; Dobson et al., 2002). Canine brain tumors occur spontaneously, and since 

people and dogs are exposed to similar environments and factors capable of influencing 

tumorigenesis, dogs likely represent a more appropriate pre-clinical model.

Dogs and humans are the only species that frequently develop spontaneous brain tumors, 

and with similar incidence. The incidence of spontaneously arising primary brain tumors is 

approximately 14–20 per 100,000 dogs compared to an estimated 29.9 per 100,000 persons, 

and is likely underestimated in dogs due to owners electing humane euthanasia prior to 

obtaining a definitive diagnosis (Ostrom et al., 2018; Hu et al., 2015). The incidence of 

primary brain tumors is highest in middle-aged to older dogs, with a median age of 9–10 

years, which correlates well with human disease, in which incidence is greatest in people 

over the age of 70 (Porter et al., 2010; Wiemels et al., 2010). Like humans, meningiomas are 

the most common primary brain tumors in dogs, followed by gliomas, of which 

glioblastoma is the most common malignant histologic subtype (Snyder et al., 2006; Platt et 

al., 2001).

Canine patients presenting with brain tumors often have significant clinical signs that can be 

objectively characterized using tools similar to those used in humans. These include 

neurologic examination, modified Glasgow Coma Scale, canine Karnofsky performance 

score, Engel seizure classification, and Modified Rankin Score (Rossmeisl et al., 2015a; 

Peus et al., 2013). Likewise, shared MRI neuroimaging diagnostic and treatment response 

assessment approaches are currently in use for primary brain tumors in both species, which 

may further facilitate translation of novel therapies between canine and human patients 

(Young et al., 2011; Packer et al., 2018b; Rossmeisl et al., 2014).

2.6.1. Malignant glioma—Malignant gliomas are the most common subtype of 

malignant primary brain tumors in humans and glioblastoma multiforme (GBM), in 
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particular, are leading causes of cancer-related death in adults and children. This is due to 

the incredibly aggressive, invasive and neurologically destructive nature of these tumors, 

making complete surgical excision nearly impossible. Additionally, its ability to produce a 

highly immunosuppressive microenvironment and location behind the blood brain barrier 

(BBB) allow it to evade immune system detection and limit effective therapeutic options 

(Chen and Hambardzumyan, 2018; Stupp et al., 2005). Thus, these tumors carry a grave 

prognosis with median survival times of only 14–16 months following a combination of 

aggressive surgery, radiation therapy and chemotherapy (Dolecek et al., 2012).

Gliomas are also common in dogs, and as in humans, their risk increases with age (Hayes et 

al., 1975; Song et al., 2013). The median age at diagnosis is 8–9 years in canine patients, 

which corresponds to the median age at diagnosis in humans of 50–70 years (Stupp et al., 

2005). In dogs, a significant breed predisposition has been identified in brachycephalic 

breeds, with Boston terriers, Boxers and Bulldogs being over-represented (Hu et al., 2015). 

This suggests glioma-associated genetic aberrations contribute to tumor development, some 

of which have previously been identified in canine and human glioma patients. An across 

breed genome-wide association study identified a significant locus on canine chromosome 

26 containing single nucleotide variants most commonly associated with coding regions of 

CAMKK2, P2RX7 and DENR, thus these genes appear to influence glioma susceptibility 

(Truve et al., 2016). In both species, clinical presentation of affected patients may vary based 

on primary tumor size and location in proximity to intracranial structures. The most 

common clinical signs associated with canine gliomas are seizures and behavior changes, 

due to the fact that they arise from the forebrain in the majority of patients (Bagley et al., 

1999). People often present with signs related to increased intracranial pressure, including 

headache and progressive neurologic deficits, with seizures occurring in 25–50% of patients 

(Davis, 2016).

The shared histologic and diagnostic imaging features of canine gliomas with their human 

counterparts facilitate comparative classification and grading of tumors using a revised 

classification system, and objective therapeutic response assessments using the Response 

Assessment in Neuro-Oncology (RANO) criteria (Young et al., 2011; Rossmeisl et al., 2014; 

Koehler et al., 2018). Magnetic resonance imaging (MRI) is considered the gold standard 

imaging technique for detection and classification of brain tumors in human and canine 

patients. MRI characteristics of canine gliomas have been described and share numerous 

features with their human counterpart (Young et al., 2011; Rodenas et al., 2011). In dogs, the 

majority of gliomas appear as intra-axial tumors associated with both gray and white matter 

located within the telencephalon or diencephalon in close contact with the lateral ventricle. 

In both species, most tumors appear hypointense on T1-weighted images and hyperintense 

on T2-weighted images (Pancotto and Rossmeisl, 2017; Gilliam et al., 2014). Common 

features include contrast-enhancement, ring-like contrast enhancement, intralesional cystic 

regions and hemorrhage (Young et al., 2011; Rodenas et al., 2011; Wisner et al., 2011; 

Stadler et al., 2017; Bentley et al., 2013). Similar imaging appearances have been described 

in humans (Pronin et al., 1997). Canine and human gliomas are frequency associated with 

marked edema, creating a moderate to severe mass effect. However, their infiltrative growth 

can limit distinction of tumor margins from surrounding normal brain parenchyma, resulting 

in misdiagnoses of non-neoplastic lesions. Gliomas appear to be the tumor type most 
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commonly associated with intracranial hemorrhage in both canine and human patients 

(Wisner et al., 2011; Bentley et al., 2013; Pronin et al., 1997). Currently, no imaging features 

have been identified that reliably distinguish between glioma subtypes in neither canine nor 

human patients. Thus, histopathology remains the gold standard for definitively diagnosing 

intracranial neoplasia (Rossmeisl et al., 2015b).

Even though computed tomography (CT) is no longer considered the gold-standard 

diagnostic modality for diagnosing intracranial neoplasia, it is frequently used in veterinary 

medicine, as it is more widely available and less cost prohibitive (Stadler et al., 2017). CT 

continues to be used in companion animals for radiation therapy and stereotactic procedural 

planning, as well as image-guided neurosurgical interventions (Fig. 5) (Rossmeisl et al., 

2015b; Kani et al., 2019). Similar to humans, brain biopsy is one of the most frequently 

performed stereotactic intracranial procedure performed in companion animals, and it has a 

reported diagnostic accuracy of 95 % for intracranial tumors in dogs (Rossmeisl et al., 

2015b; Kani et al., 2019). Results from a study comparing mensuration and predictability of 

canine glioma type and grade between CT and MRI suggests both imaging modalities are 

equivalent for tumor mensuration. Overall accuracy of CT in predicting tumor type and 

grade was 46.7 % and 53.3 % respectively. Overall accuracy of MRI in predicting tumor 

type and grade was similar at 53.3 % and 60 % respectively (Stadler et al., 2017).

Numerous functional and quantitative neuroimaging techniques have been employed in dogs 

and cats with brain tumors for several different indications (Fig. 6]). Diffusion and perfusion 

imaging techniques, such as dynamic contrast enhanced-CT and dynamic contrast enhanced-

MRI, and proton magnetic resonance spectroscopy (MRS) have been primarily evaluated as 

non-invasive methods to discriminate inflammatory, neoplastic, and vascular brain lesions or 

to differentiate various histopathologic types or grades of brain tumors (MacLeod et al., 

2009; Zhao et al., 2010; Sutherland-Smith et al., 2011; Stadler et al., 2014). The utility of 

perfusion imaging and MRS to discriminate tumor recurrence from reactive-treatment 

induced changes or necrosis are also being explored in dogs with brain tumors (Rossmeisl et 

al., 2014). 18F-FDG PET imaging of canine brain tumors has been performed and typically 

reveals areas of hypermetabolism corresponding to the presence of tumor (Fig. 6) (Kang et 

al., 2009). Other novel PET radiotracers designed to interrogate cellular proliferation (11C 

2’-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil [FMAU]) and apoptosis (18F-C-SNAT 

[caspase-sensitive nanoaggregation tracer]) have also been investigated in dogs with brain 

tumors as quantitative therapeutic response surrogates (Conti et al., 2008).

MRI neuronavigation and real-time intraoperative-MRI guided monitoring are also used 

clinically and in research settings to manage brain tumors in dogs (Fig. 5) (Wininger, 2014). 

These techniques may be combined with quantitative imaging sequences, such as DTI and 

tractography (Fig. 6), to facilitate tumor resection and minimize damage to eloquent brain 

regions or to confirm accurate delivery of macromolecular therapeutic payloads that require 

intratumoral delivery in order bypass the blood-brain-barrier.

Canine and human gliomas share the same histologic subtypes, however the overall 

frequency of each subtype differs between species. In dogs, 30–50% of all canine 

neuroepithelial tumors are classified as oligodendrogliomas, compared to only 10–15% of 
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all human neuroepithelial tumors, however high grade oligodendrogliomas predominate in 

dogs (Koehler et al., 2018). The most frequent glioma subtype encountered in humans is 

astrocytoma, accounting for 60–70% of all neuroepithelial tumors, of which the majority are 

grade IV (glioblastoma) (Dolecek et al., 2012; Rossmeisl, 2017). Despite these differences, 

canine gliomas share a number of immunohistochemical characteristics with their human 

counterpart. Olig2 expression in grade II and III oligodendrogliomas has been described in 

both species (Herranz et al., 2016; Rhee et al., 2009). Expression of Olig2 and nestin appear 

highest in canine glioblastoma, which suggests the presence of neural cells increases with 

tumor grade (Herranz et al., 2016). Additionally, cells obtained from the center of the tumor, 

regardless of tumor type, have been shown to contain a higher proportion of progenitor cells 

compared to the periphery, suggesting these cells are capable of adapting to a hypoxic 

environment. Similar immunohistochemical patterns have been described for human 

gliomas, thus spontaneously arising canine gliomas may represent a clinically relevant 

model for investigation of novel therapies, in particular those specifically designed to target 

cancer stem cells (Herranz et al., 2016; Phillips et al., 2006).

One of the hallmarks of human and canine malignant glioma is the induction of an 

immunosuppressive tumor microenvironment, allowing it to evade immune system detection 

(Dix et al., 1999; Nduom et al., 2015). Increased intratumoral infiltration of CD4+, CD8+ 

and CD4+Foxp3+ T cells has been described in both species. The relative proportion of 

CD4+Foxp3+ regulatory T cells and plasmacytoid dendritic cells in peripheral blood appears 

greater in canine glioma patients compared to normal dogs. The presence of increased 

circulating regulatory T cells in both species suggests these cells share similar functions in 

glioma-induced immunosuppression (Filley et al., 2018; Berghoff et al., 2015; Kmiecik et 

al., 2013; El Andaloussi and Lesniak, 2006; Jacobs et al., 2009). Additionally, canine and 

human gliomas have been shown to express programmed death ligand 1 (PD-L1) with a 

greater proportion of associated T-lymphocytes expressing immune checkpoint receptors, 

cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) 

(Filley et al., 2018; Berghoff et al., 2015). When bound to specific ligands expressed on the 

surface or either antigen presenting cells or tumor cells, these receptors inhibit T-cell 

immune function. Thus, activation of these immune checkpoint receptors in human gliomas 

via binding of PD-1 to PD-L1 further suppresses anti-tumor immune responses (Filley et al., 

2018; Berghoff et al., 2015; El Andaloussi and Lesniak, 2006). The relative expression of 

these immune checkpoint receptors by regulatory T cells may vary between individuals of 

the same or different species. In one study, CTLA-4 expression by regulatory T cells was 

relatively low compared to the remaining lymphocyte population in normal patients, whereas 

regulatory T cells had relatively increased CTLA-4 expression in human glioma patients 

(Nduom et al., 2015; El Andaloussi and Lesniak, 2006). The introduction of immune 

checkpoint inhibitors has revolutionized cancer treatment by removing the brake on immune 

system activation and allowing immune-mediated destruction of cancer cells. Unfortunately, 

checkpoint inhibitors developed for human use lack utility in canine patients due to minimal 

cross reactivity between human and canine PD-1, PD-L1 and CTLA-4, as well as the 

potential for severe systemic side effects. This has led to the development of monoclonal 

antibodies specific to canine PD-1 and PD-L1 for further investigation into their potential 

efficacy in treating various canine cancers (Maekawa et al., 2017; Nemoto et al., 2018). 
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Given the aforementioned similarities in immunologic signatures between canine and human 

gliomas, spontaneously arising canine glioma may provide a clinically relevant model for 

further investigation into these novel therapies.

Molecular and genetic profiling of brain tumors has led to the discovery of genetic mutations 

shared between canine and human malignant gliomas. Somatic mutations of the 

retinoblastoma transcriptional corepressor 1 (RB1), tumor protein p53 (TP53) and receptor 

tyrosine kinase/phosphoinositide 3-kinase (RTK/PI3K) signaling pathways have been 

identified in the majority of human gliomas. RB1 and TP53 are prototypical tumor 

suppressor genes that are essential for regulating cell division and preventing tumor 

formation. In contrast, the RTK/PI3K signaling pathway promotes cell growth and 

proliferation, however this pathway is regulated by activation of phosphatase and tensin 

homolog (PTEN). Inactivation of PTEN or activating mutations in PI3K itself have been 

identified in GBM and may contribute to tumorigenesis. Amplification of CDK4, a cyclin-

dependent kinase associated with cell cycle progression, is a common mutation affecting the 

RB1 pathway in human gliomas and appears to also be upregulated in canine gliomas (Filley 

et al., 2018; Cancer Genome Atlas Research N, 2008). Alterations in p53 pathway signaling 

have been identified in human and canine gliomas, such as overexpression of the 

transcription factor, Olig2, which ultimately antagonizes p53 function and promotes tumor 

progression (Ligon et al., 2007; Mehta et al., 1995; York et al., 2012). Human gliomas 

frequently harbor activating mutations in epidermal growth factor receptor (EGFR) and 

platelet derived growth receptor alpha (PDGFRA), with PDGFRA amplification occurring in 

high-grade gliomas of canine patients as well (Brennan et al., 2013; Reifenberger and 

Collins, 2004). EGFR and PDGFR are receptor tyrosine kinases involved in the activation of 

cell signaling pathways that normally control cell division and survival, thus these activating 

mutations result in uncontrolled cell growth and likely contribute to the aggressive behavior 

of affected tumors.

Overexpression of numerous other proteins essential to cellular proliferation and regulation 

has been documented in gliomas from both species, including the following: receptor 

tyrosine kinases, ephrin type-A receptor 2 (EphA2), and c-Met (hepatocyte growth factor 

receptor), which regulate tissue homeostasis under normal conditions; the potent angiogenic 

factor, vascular endothelial growth factor (VEGF); alpha3-beta1 integrin, urokinase-type 

plasminogen activation receptor (uPAR) and matrix metallopeptidases 2 (MMP-2) and 9 

(MMP-9), which are proteins that contribute to cellular migration, invasion and metastasis; 

insulin like growth factor binding protein 2 (IGFBP2), which is highly expressed in CNS 

tissue and contributes to tumor growth by prolonging the half-life and thus growth 

promoting effects of insulin growth factor; (IGF); and interleukin 13 receptor subunit alpha 

2 (IL-13RA2), which binds IL-13 with high affinity, resulting in decreased tumor 

immunosurveillance and apoptosis (Verhaak et al., 2010; Boudreau et al., 2017; Dickinson et 

al., 2006; Pandya et al., 2012; Debinski et al., 2013). This suggests that human and canine 

gliomas arise from alterations of common pathways, and may therefore yield similar 

responses to treatment. The value of using spontaneously arising canine gliomas for 

investigation of novel therapies targeting these altered signaling pathways was demonstrated 

by a group that generated monoclonal antibodies against IL-13RA2 with cross reactivity 

between humans and dogs, as well as a recombinant bacterial cytotoxin to target this 

Partridge and Rossmeisl Page 16

J Neurosci Methods. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



receptor, which is over-expressed in gliomas of both people and dogs.188 Successful 

inhibition of IL-13 signaling by blocking this receptor may boost anti-tumor immune 

responses and ultimately improve tumor control.

The utility of spontaneous canine gliomas as clinically relevant models has already been 

demonstrated in several pre-clinical trials investigating various therapeutic methods. A study 

demonstrating the safety and potential efficacy of dendritic cell vaccination in canine glioma 

patients with tumor cell lysates in combination with in situ adenoviral IFNg gene transfer 

led to its translation to a human clinical trial (Pluhar et al., 2010; Xiong et al., 2010; Castro 

et al., 2014). Clinical trials involving dogs with spontaneous gliomas have advanced the use 

of convection-enhanced delivery (CED) as a drug delivery platform for malignancies within 

the CNS through improved cannula design, therapeutic planning and real-time MRI 

monitoring (Fig. 5) (Saito and Tominaga, 2017; Dickinson et al., 2010). Irreversible 

electroporation (IRE) is a non-thermal ablation method that relies on short, intense, 

monopolar pulses to ablate tumor tissue (Rossmeisl, 2017; Garcia et al., 2012; Garcia et al., 

2017; Ellis et al., 2011; Rossmeisl et al., 2013a). Transient disruption of the blood brain 

barrier outside the zone of ablation following IRE delivery provides an opportunity for 

therapeutic delivery to microscopic tumor cells extending beyond visible tumor margins, a 

major source of disease recurrence (Garcia et al., 2012; Hjouj et al., 2012). Safety and 

preliminary efficacy of IRE has been demonstrated in normal dogs and dogs with 

spontaneous gliomas (Fig. 5) (Rossmeisl et al., 2015a; Rossmeisl, 2017; Garcia et al., 2017; 

Ellis et al., 2011). These preliminary studies have led to the development of numerical 

treatment planning models that improve the accuracy of tumor ablation, resulting in a 

submillimeter line of demarcation between ablated and normal brain tissue (Garcia et al., 

2017; Garcia et al., 2017; Ellis et al., 2011; Rossmeisl et al., 2013a). High-frequency 

irreversible electroporation (H-FIRE) represents the next generation of IRE as it is 

associated with fewer technical challenges than typical IRE, and appears to preferentially 

target malignant cells in vitro (Ivey et al., 2015; Miklovic et al., 2017). In contrast to IRE, H-

FIRE uses ultra-short (1us), bipolar pulses, which minimizes nerve and muscle excitation, 

thus negating the need for cardiac synchronization and paralytics during treatment delivery 

(Arena et al., 2011; Siddiqui et al., 2016; Sano et al., 2018). Clinical trials evaluating the 

efficacy of H-FIRE in dogs with spontaneous brain tumors are currently ongoing, and could 

potentially lead to its translation into human patients (Latouche et al., 2018).

2.6.2. Meningioma—Meningiomas represent the most common subtype of primary 

CNS tumors in dogs, comprising about 30–45% of all primary CNS tumors (Hu et al., 2015; 

Snyder et al., 2006; Song et al., 2013). They are the most common benign intracranial tumor 

in people, but second most common subtype overall, comprising 27–33% of all primary 

CNS tumors (Ostrom et al., 2018; Wiemels et al., 2010). The median age at diagnosis in 

dogs is significantly older than other tumor types with a range of 10–11 years, which 

corresponds to the median age at diagnosis in humans of 65 years and older (Hu et al., 2015; 

Snyder et al., 2006; Song et al., 2013). Dogs > 15 kg have an increased risk of meningioma 

compared to dogs < 15 kg (Song et al., 2013). A breed predisposition exists with Boxers, 

Golden Retrievers, Miniature Schnauzers, Rat Terriers and dolichocephalic breeds in general 

being over-represented. The most common presenting clinical signs in canine meningioma 
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patients are altered consciousness, seizures and vestibular dysfunction, due to compression, 

invasion and inflammation of adjacent CNS tissue (Snyder et al., 2006; Hicks et al., 2017; 

Motta et al., 2012). Likewise, the most common symptoms reported in human patients 

include alterations in cognitive and functioning behaviors, headaches, visual impairment, 

migraines and neuralgia (Tsikoudas and Martin-Hirsch, 1999). Many of the symptoms 

reported in humans may go undetected in canine patients, allowing these tumors to grow 

undetected for a longer duration.

The shared histologic and diagnostic imaging features of canine meningiomas with their 

human counterparts facilitate comparative classification and grading of tumors using the 

World Health Organization (WHO) criteria (Sturges et al., 2008; Montoliu et al., 2006). 

Meningiomas are extra-axial tumors located within the dura mater but outside the brain 

parenchyma, but direct parenchymal invasion can occur (Sturges et al., 2008; Motta et al., 

2012). MRI has the greatest accuracy and sensitivity for diagnosing canine and human 

intracranial meningiomas based on imaging characteristics (Engelhard, 2001). Canine 

intracranial meningiomas typically appear as well-defined heterogenous, isointense solitary, 

broad-based extra-axial masses within the olfactory or frontal lobes, but may occur in other 

locations less commonly (Rodenas et al., 2011; Wisner et al., 2011). Homogenous contrast 

enhancement is noted on T1W image in approximately 60–70%, and most meningiomas are 

hyperintense or isointense to cortical gray matter on T2W images (Sturges et al., 2008; 

Wisner et al., 2011). Approximately 95 % of canine meningiomas are accompanied by 

edema, which improves visualization of the internal tumor margin in T2W images (Sturges 

et al., 2008). The dural tail sign, due to thickening of adjacent meninges, supports a 

diagnosis of an extraaxial lesion but is not pathognomonic for meningioma, especially in 

humans where it represents reactive meninges rather than tumor extension (Wisner et al., 

2011; Griffin et al., 2016; Graham et al., 1998; Cherubini et al., 2005; Chen et al., 1992; 

Elster et al., 1989). In contrast to human intracranial meningiomas, correlations between 

tumor grade and any MRI features, tumor location, and pattern of edema have not been 

consistently demonstrated in dogs (Sturges et al., 2008; Chen et al., 1992; Elster et al., 

1989). Likewise, an association between tumor subtype and these same variables appears to 

be lacking (Sturges et al., 2008). Thus, as with other primary brain tumors, histopathology is 

necessary to make a definitive diagnosis and may be obtained via CT-guided frame-based 

stereotactic biopsy as previously described, or following surgical removal (Kani et al., 

2019).

Canine meningiomas can be divided into three major histologic groups based on the WHO 

classification system. The first group includes benign, slow growing tumors of various 

subtypes, the second group atypical tumors, and the final group anaplastic tumors (Sturges et 

al., 2008; Montoliu et al., 2006). According to the WHO classification system, 

approximately 56–63% of canine intracranial meningiomas are benign (grade I), 23–43% 

are atypical with invasion into the brain (grade II), and < 10 % are malignant (grade III) 

(Sturges et al., 2008). Regardless of grade, all canine meningiomas are capable of brain 

invasion, which can make surgical removal more challenging. Likewise, the incidence of 

atypical meningiomas in dogs is higher than their human counterparts, which may explain 

the difference in therapeutic response observed, as canine meningiomas tend to be more 

resistant to therapy (Sturges et al., 2008; Mariani et al., 2015; Suzuki et al., 1994). Canine 

Partridge and Rossmeisl Page 18

J Neurosci Methods. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



meningiomas share many characteristic immunohistochemical patterns with their human 

counterpart, including those observed with vimentin and S100 labeling (Montoliu et al., 

2006). In both species, high-grade meningiomas tend to display stronger levels of the 

glucose transporter, GLUT 1, expression. Decreased expression of the adhesion molecule, E-

cadherin has been associated with more malignant meningiomas in both species (Montoliu 

et al., 2006; Ramos-Vara et al., 2010; Barnhart et al., 2002). Progesterone receptors, unlike 

estrogen receptors, are expressed by most canine meningiomas, where the number of 

progesterone receptors correlates inversely with tumor grade and survival (Roser et al., 

2004; Baxter et al., 2014; Theon et al., 2000; Mandara et al., 2002; Adamo et al., 2003; 

Parker et al., 2010; Fakhrjou et al., 2012). Likewise, most human meningiomas express 

progesterone receptors rather than estrogen receptors, but an association between receptor 

expression and prognosis has not been made to date (Roser et al., 2004; Baxter et al., 2014; 

Theon et al., 2000; Mandara et al., 2002; Adamo et al., 2003; Parker et al., 2010; Fakhrjou et 

al., 2012). Cyclooxygenase-2 (COX-2) expression has been identified within canine, feline, 

and human meningiomas, but an association between level of expression and tumor grade 

and local invasion has only been identified in human meningiomas (Lee et al., 2014; 

Rossmeisl et al., 2009; Samarani et al., 2018). Thus, further evaluation into the role of 

COX-2 in tumorigenesis and the therapeutic potential of COX-2 inhibition is warranted, for 

which dogs and cats may serve as relevant spontaneous animal models.

Alterations in a number of cell signaling pathways are frequently shared between canine and 

human meningiomas. VEGF expression appears to be present in all canine meningiomas and 

correlates inversely with survival time (Dickinson et al., 2006; Platt et al., 2006a). Likewise, 

VEGF expression has been associated with tumor recurrence in humans, making it a 

potential therapeutic target in both species (Lee et al., 2014; Preusser et al., 2012). As in 

malignant gliomas, increased presence of interleukin IL13RA-2 compared to normal brain 

has been documented in canine and human meningiomas (Debinski et al., 2013). Thus, its 

potential use as a target for imaging and therapy parallels that described for malignant 

gliomas.

Despite the extensive number of shared characteristics between canine and human 

meningiomas, species-specific differences exist. The loss of a chromosome 22, secondary to 

mutations in the NF2 gene, has been identified in nearly 50 % of human meningiomas 

(Tabernero et al., 2013). NF2 expression in canine meningiomas does not appear to differ 

from normal canine tissues and chromosomal analysis failed to identify deletion of NF2 

(Courtay-Cahen et al., 2008). CSF glutamate levels appear to be reduced in human patients 

with benign brain tumors in contrast to the elevated glutamate levels detected in the CSF of 

canine patients (el-Yazigi and Al-Mefty, 1985; Platt et al., 2006b). These distinct molecular 

markers may serve as molecular targets for future therapy.

Complete surgical resection is a primary mode of therapy for meningioma in canine and 

human patients (Sturges et al., 2008; Apra et al., 2018). The reported median survival time 

of canine patients following surgery alone is approximately 10.5 months (Hu et al., 2015; 

Motta et al., 2012; Axlund et al., 2002; Greco et al., 2006). The friable and infiltrative nature 

of meningiomas makes complete excision difficult in some cases, and differences in 

outcomes depend largely on tumor location and extent of surgery with radical complete 
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resection yielding superior outcomes (Greco et al., 2006; Klopp and Rao, 2009; Klopp et al., 

2000). In dogs, tumors located within the skullbase region or brainstem are not easily 

accessible, thus surgical resection is often associated with significant morbidity (Klopp et 

al., 2000; Niebauer et al., 1991). Hypofractionated radiation therapy and stereotactic 

radiosurgery offer alternative treatment options for canine meningioma with comparable 

median survival times of 10–17 months (Hu et al., 2015; Griffin et al., 2016; Mariani et al., 

2015; Theon et al., 2000; Keyerleber et al., 2015; Bley et al., 2005). Likewise, adjuvant 

radiation therapy is typically reserved for atypical or anaplastic meningiomas in human 

patients (Apra et al., 2018). Multimodal therapy involving a combination of surgery 

followed by adjuvant radiation therapy appears to prolong survival times in canine patients 

with reported increases in median survival times to 17–30 months (Axlund et al., 2002; 

Keyerleber et al., 2015; Brearley et al., 1999). Chemotherapeutics used for treatment of 

meningioma in humans include hydroxyurea, sandostatin and IFN2b, of which the 

therapeutic potential for canine meningioma remains unknown (Hu et al., 2015; Moazzam et 

al., 2013). By comparison, palliative therapy for canine meningiomas patients has been 

associated with a survival time of about 2 months (Foster et al., 1988; Rossmeisl et al., 

2013b).

The utility of spontaneously occurring canine meningiomas as a clinically relevant model 

has previously been demonstrated by a number of pre-clinical trials. A study demonstrating 

improvement in median survival of canine meningioma patients receiving an adjuvant 

autologous vaccine lysate/TLR ligands following tumor resection resulted in translation to 

human meningioma patients. Induction of antibody-dependent cell-mediated cytotoxicity to 

autologous and allogeneic tumor cells following vaccine delivery was documented in both 

species (Andersen et al., 2013). These findings suggested the presence of common antigens 

across species, which allowed for translation into human patients. Stem cells and 

recombinant viral vectors are currently being evaluated for their potential as gene therapy 

vectors in both humans and animal models (Bexell et al., 2013; Chauvet et al., 1998).

2.6.3. Secondary (metastatic) tumors—Brain metastases occur in 10–20% of human 

cancer patients, most commonly from primary lung tumors, followed by melanoma, renal, 

breast and colorectal cancers (Barnholtz-Sloan et al., 2004; Posner and Chernik, 1978). By 

comparison, the most common secondary intracranial neoplasia in dogs is hemangiosarcoma 

(29 %) followed by carcinoma (12 %) and lymphoma (12 %) (Snyder et al., 2008; Johnson 

et al., 2014). In both species, the majority of these tumors predominantly metastasize to the 

CNS via hematogenous spread, however spread along the cranial nerves has also been 

documented (Pekmezci and Perry, 2013). In general, metastatic tumors are typically located 

within the gray-white matter interface, a likely consequence of neoplastic emboli becoming 

lodged within the narrowed vessels present within this region (Wisner et al., 2011). 

Additionally, local extension of tumors originating outside of the CNS, such as nasal 

carcinomas, may occur via direct tumor invasion across the ethmoid turbinates and 

cribriform plate. Direct invasion of extracranial meningiomas via the optic foramen has been 

reported in canine patients (Johnson et al., 2014). Prognosis is generally poor in all patients, 

however newer approaches to individualized therapy have been capable of improving overall 

survival and quality of life (Lin and DeAngelis, 2015).
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MRI characteristics of various secondary CNS tumors have been described, many of which 

are shared amongst human and canine patients. Metastatic hemangiosarcoma typically 

appears as multiple mass lesions with mixed signal intensity in T1W and T2W images. 

Contrast enhancement is variable but occurs most commonly along the tumor periphery. 

Intratumoral hemorrhage is common and peritumoral edema may be marked (Wisner et al., 

2011). Likewise, features of metastatic carcinoma include multiple ill-defined mass lesions 

with contrast enhancement and peritumoral edema. Unlike metastatic hemangiosarcoma, 

intratumoral hemorrhage is not typically present in metastatic carcinoma lesions (Wisner et 

al., 2011). In people, CNS metastases from lung cancers and melanoma are more likely to be 

associated with multiple metastases compared to the solitary brain metastasis seen in breast, 

renal and colorectal carcinomas (Delattre et al., 1988; Nussbaum et al., 1996). Tumor 

associated hemorrhage in people occurs most often with metastases from melanoma and 

clear cell renal cell carcinoma (Wronski and Arbit, 2000; Wronski et al., 1996). Canine and 

human metastatic lesions share a number of macroscopic features, such as sharp 

demarcation with rare infiltration into the surrounding brain, and peri-tumoral edema. These 

similarities may help facilitate translation of novel therapies via direct comparison of 

therapeutic response.

The majority of CNS metastases share histologic features with the primary tumor in canine 

and human patients, however grade and differentiation may vary, necessitating 

immunohistochemistry for confirmation (Pekmezci and Perry, 2013). Additionally, 

differentiating primary from secondary CNS tumors in patients with only one or two lesions 

can be a diagnostic challenge. Various immunohistochemical markers have been used to 

further characterize CNS tumors and distinguish between primary and secondary tumors. 

Markers frequently used for identification of metastatic tumors include pancytokeratin, 

vimentin, CD31, melanA, S100 (melanoma, glioma) and lymphoma markers (Johnson et al., 

2014). Gliomas are typically negative for these markers but positive for glial markers, such 

as GFAP, OLIG2 and SOX2, facilitating differentiation from metastatic tumors (Pekmezci 

and Perry, 2013).

Treatment of brain metastases in canine and human patients typically involves a combination 

of targeting the tumor itself and symptomatic therapy with steroids, antiepileptic drugs and 

anticoagulants. In people, the type of definitive therapy chosen is based on the number, size 

and location of metastatic lesions, primary tumor type and extent of systemic disease (Lin 

and DeAngelis, 2015). The majority of CNS metastases in humans affect the cerebrum, 

allowing for image-guided metastasectomy, typically via stereotactic radiosurgery, to control 

symptoms associated with disease and improve overall quality of life (Tan and Black, 2007; 

Lim et al., 2004). Likewise, the majority of metastases in dogs affect the cerebrum, but 

standard treatment typically involves some combination of whole brain radiation therapy, 

stereotactic radiosurgery and/or systemic chemotherapy, with surgical metastasectomy rarely 

performed (Snyder et al., 2008). Regardless, chemotherapy is the treatment of choice in 

patients with chemosensitive primary tumors, such as small-cell lung carcinoma in people 

and lymphoma in either species. Resistance to therapy is not uncommon due to acquired 

mutations of neoplastic cells comprising the metastases. This has been documented in 

human and canine patients, thus molecular and genetic profiling of the metastatic lesions 

could aid in identification of targets for investigation of novel therapies to delay or even 
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prevent spread to the CNS (Campbell et al., 2010; Shah et al., 2009; Einav et al., 2017; Park 

et al., 2016).

2.7. Spinal cord injury

Traumatic spinal cord injury (SCI) is a significant source of morbidity, mortality, and 

healthcare expenditures in both humans and companion animals (World Health 

Organization, 2019; National Spinal Cord Injury Statistical Center, 2019; Kwon et al., 2015; 

Moore et al., 2016). SCI globally affects up to 500,000 people each year, and for those 

suffering severe and complete SCI, clinically meaningful recovery of neurological function 

rarely occurs (World Health Organization, 2019; National Spinal Cord Injury Statistical 

Center, 2019). The required care for the trauma and disabilities resulting from SCI are 

associated with costs of $1 M/per person in the first year after injury and up to $5 M/per 

person over their lifetime (National Spinal Cord Injury Statistical Center, 2019). Naturally 

occurring traumatic SCI is extremely prevalent within the pet dog population, with ~20,000 

new cases evaluated by veterinary neurosurgeons annually (Moore et al., 2016), which is 

comparable to the ~18,000 new cases of human SCI seen in the United States each year.266 

Thus, there exists a robust population of dogs to serve as translational models for the 

development of diagnostics and interventions for SCI, and an international canine SCI 

clinical trials consortium has been formed to facilitate this effort (Moore et al., 2017).

In dogs, naturally occurring SCI is primarily caused by intervertebral disc herniation 

(IVDH) secondary to degeneration of the nucleus pulposus or vertebral fracture/luxation. 

Both of these types of SCI result in a lesion that forms from a combination of spinal cord 

contusion and compression (Moore et al., 2017; Sharif-Alhoseini et al., 2017). IVDH is by 

far the predominant mode of SCI in dogs, and commonly affects the thoracolumbar spinal 

cord segments of small, chondrodystrophic breeds of dogs such as Dachshunds, French 

Bulldogs, Corgis, and Beagles (Olby et al., 2003). Dogs with SCI experience a full range of 

neurological disability that parallel those described in the human Abbreviated Injury Scale 

(AIS) (Maiman et al., 2018). Approximately 15 % of dogs with IVDH-SCI present with 

severe injuries equivalent to human AIS-A status (complete sensorimotor loss below the 

level of injury), and among those, 50 % will be permanently paralyzed and incontinent 

(Olby et al., 2003). Many owners are dedicated to the life-long care of dogs with SCI that 

fail to recover neurological functions, which also provides a substantial population available 

for study of interventions focused on chronic SCI, which has been identified as a critical 

need by the human medical community (Olby et al., 2003; van Middendorp et al., 2016).

Another advantage of the use of the dogs with SCI is that these cases will be clinically 

managed with approaches that closely parallel those used in humans. Multiple, quantitative 

end-point assessment instruments have been developed for canine SCI, and when 

implemented as a suite of tests could provide more global and clinically relevant measures 

of outcome. Ordinal gait scales have been validated and can statistically discriminate 

differences in neurological recovery in populations of dogs with SCI (Levine et al., 2009a; 

Olby et al., 2001). More complex computational evaluations of locomotor ability, such as 

kinematic and treadmill gait analyses, are surrogates that allow interrogation of the effects of 

an intervention on the integrity of specific neuronal circuits that contribute to limb 
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movement (Hamilton et al., 2007). Magnetic resonance imaging (MRI) is routinely used in 

dogs to diagnose the etiology of SCI and plan for surgical spinal cord decompression and 

vertebral stabilization. As is observed in humans with SCI, the degree of intramedullary 

signal change observed on MRI correlates with the level of neurological impairment 

determined with ordinal gait scores (Levine et al., 2009b). Existing evidence demonstrates 

the potential utility of MRI as a prognostic biomarker, with several studies reporting that the 

severity and extent of T2-weighted hyperintensity within the spinal cord is negatively 

correlated with recovery of locomotor function (Levine et al., 2009b; Boekhoff et al., 2012). 

Emerging data also suggests that utilization of combinations of anatomical and quantitative 

MRI data, such as diffusion tensor or MTI (Fig. 7]), may improve neurobehavioral and 

electrophysiological outcome prediction in both humans and dogs with SCI (Griffin et al., 

2013; D’Souza et al., 2017).

The dog model of SCI is highly amenable to electrophysiological evaluations of spinal cord 

and urinary functions using equipment identical to that used in humans. Although not 

commonly used in clinical settings, spinal-evoked potentials and somatosensory evoked 

potentials (SSEPs) have been shown to correlate with clinical assessment of SCI severity in 

dogs (Shores et al., 1987; Poncelet et al., 1993). Severe SCI in dogs also leads to 

abnormalities of urine storage and voiding that require time intensive and chronic care 

(Freeman et al., 2013). Urodynamic assessments performed in dogs with SCI-induced 

neurogenic incontinence have revealed similar abnormalities as observed in humans 

including low bladder capacity and compliance, detrusor overactivity during filling, and 

detrusor-sphincter dyssynergia (Granger et al., 2013). Electrophysiological evaluations allow 

opportunity for more objective assessments of spinal cord integrity in animals models in the 

assessment of recovery following SCI, or the specific effects of interventions intended to 

improve urinary function, as was demonstrated in dogs with implanted sacral nerve root 

stimulators (Granger et al., 2013).

Quantitative and clinically relevant evaluations of sensory disturbances have been more 

challenging to develop, which is at least partly due to the difficulties with inferring 

neurobehavioral manifestations of pain in animal models. However mechanical sensory 

threshold measurements and thermal threshold testing have both been validated in dogs with 

SCI. Both of these techniques have been shown to discriminate healthy dogs from those with 

SCI, and normalization of the sensory threshold parallels locomotor recovery (Song et al., 

2016; Gorney et al., 2016). The utility of quantitative sensory testing is also being 

investigated in dogs with spinal cord disorders associated with chronic neuropathic pain 

pathologies and phenotypes (Sparks et al., 2018).

There has been a long history of canine clinical trials contributing to the advancement of 

pharmaceuticals, biologicals, and medical devices intended for the treatment of acute and 

chronic SCI. A phase I trial in dogs with SCI was paramount to the translation of 4-

aminopyridine to the human clinic, although late stage human trials with this agent failed to 

meet their primary endpoints (Blight et al., 1991; Cardenas et al., 2014). Trials in SCI have 

also been pivotal to the development of intravenous surfactant and oscillating electrical field 

therapies (Laverty et al., 2004; Borgens et al., 1999). More recently, rigorously designed and 

controlled canine clinical trials have been conducted to further investigate acute 
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neuroprotective strategies and stem-cell therapeutics that showed promise in laboratory 

settings. A randomized, placebo-controlled clinical trial evaluated the effects of polyethylene 

glycol (PEG) and methylprednisolone sodium succinate (MPSS) on the locomotor outcome 

of dogs with complete SCI, but was terminated prematurely after interim analyses indicated 

that detecting a significant treatment effect would be futile (Olby et al., 2016). Another 

placebo-controlled trial investigated a metalloproteinase inhibitor (GM6001) in a population 

of dogs with acute SCI. Although significant biochemical inhibition of metalloproteinases 

was achieved in the treatment group, locomotor outcomes were not significantly different 

between dogs that received GM6001 or those which received vehicle (DMSO), indicating it 

was likely the vehicle which influenced recovery (Levine et al., 2014). Trials in dogs with 

SCI have also demonstrated the safety, feasibility, and potential utility of various types of 

cell-based regenerative strategies including autologous adipose derived stem cells, olfactory 

ensheathing cells, and bone-marrow derived mesenchymal stem cells (Granger et al., 2012; 

Penha et al., 2014; McMahill et al., 2015). Results of these studies have been reviewed 

elsewhere (McMahill et al., 2015).

3. Conclusions

Numerous naturally occurring neurological disorders that occur in companion animals, such 

as epilepsy, cognitive dysfunction, and brain cancer, faithfully recapitulate key clinical, 

neuroimaging, and pathobiological features of human disease, and remain a significant 

health burden to all affected species. In this review we have provided examples of successful 

multidisciplinary collaborations and experimental methods that illustrate the utility of 

companion animal models to expand our mechanistic understanding of human and animal 

neurological diseases, accelerate or improve the manner in which research discoveries are 

translated to the human clinic, and provide unique training opportunities to the next 

generation of neuroscientists and clinicians. We acknowledge that a single ideal model 

organism currently does not exist for any human neurological disease. However, integration 

of companion animals with spontaneous diseases into comprehensive multi-species research 

programs can complement and expand the aggregate knowledge obtained from studies in 

other animal models, and allow for the fluid and bidirectional flow of data between affected 

species that can ultimately benefit the health of humans and animals. There are many 

examples of how human healthcare discoveries have benefited veterinary medical practice. 

Following the introduction of the anticonvulsants fosphenytoin and levetiracetam to the 

human market, these drugs were rapidly assimilated into veterinary practice where they were 

subsequently shown to be safe and effective for the treatment of canine status epilepticus 

(Blades Golubovic and Rossmeisl, 2017b; Patterson et al., 2015). In addition, although the 

majority of translational trials in companion animals are not conducted specifically to attain 

approval for veterinary marketing, there is precedent that data from such studies provided 

proof-of-concept and impetus to conduct the trials that led to the approval of the same drugs 

as novel therapeutics for pets (Thamm et al., 2014; London et al., 2014).
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Fig. 1. 
MRI-18F-FDG PET brain scan in a dog. Raw 18F-FDG PET sagittal image (A), T2W 

structural sagittal MRI image (B), and (C) MRI-PET fusion image. There is diffusely high 
18F-FDG PET uptake by the brain, particularly in the gray matter.
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Fig. 2. 
Brain magnetic resonance imaging (MRI) and neuropathologic features of feline LGI1-

limbic encephalitis (LE). T1-weighted, post-contrast (A) and T2-weighted (B) images from 

an age-matched, healthy control cat with normal hippocampal morphology. MRI from a cat 

with LGI1-LE demonstrating bilaterally symmetric and marked contrast enhancement (C) 

and T2-hyperintensity (D) within the hippocampus. Hippocampal pyramidal cell 

degeneration in feline LGI1-LE (E) is characterized by acidophilic neuronal necrosis, H&E 

stain.
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Fig. 3. 
Canine ischemic and hemorrhagic strokes. T2-weighted (A) and fluid-attenuated inversion 

recovery (B) MRI of middle cerebral artery territorial ischemic infarction. T2-weighted (C) 

and T1-weighted (D) MRI of lacunar ischemic infarction of the caudate nucleus. T2* 

gradient echo (E) MRI and corresponding gross pathologic (F) specimen of hemorrhagic 

infarct in the frontal lobe with concurrent cerebral microbleeds (blue arrows).
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Fig. 4. 
Neuronal ceroid lipofuscinosis in a 3-year-old beagle dog. Transverse (A) and sagittal (B) 

T2-weighted brain MRI demonstrating generalized brain atrophy characterized by shrunken 

gyri and cerebellar folia, widened sulci, and dilation of the ventricular system compared to 

an age-matched control (inset, B). Microscopic section of the cerebellar cortex (C) 

demonstrating Purkinje cell loss and Luxol fast blue-positive perikaryal cytoplasmic 

substrate accumulation visible within residual Purkinje cells (black arrows). Fluorescent 

micrograph (D) illustrating aggregates of autofluorescent storage bodies present in a 

Purkinje cell.
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Fig. 5. 
Image-guided treatments of canine malignant gliomas including convection enhanced drug 

delivery (CED; A–E) and irreversible electroporation (F–J) ablative treatment. Intraoperative 

transverse T2-weighted MRI image (A) of a canine high-grade oligodendroglioma in the 

frontal lobe of the cerebrum before convection enhanced delivery (CED) treatment with 

IL-13RA2 and EphA2 targeted bacterial cytotoxins. Sequential (B–E) 3DT1-weighted MRI 

intraoperative images showing intratumoral catheter placement (C, arrow), and progressive 

distribution of the gadolinium-labeled cytotoxins within the tumor mass during the CED 

infusion. Pretreatment transverse, post-contrast T1-weighted MRI image of a canine 

glioblastoma (F) in the right parietal lobe of the cerebrum. Following computed tomographic 

(CT)-guided stereotactic insertion of electrodes into the target (G, H), the tumor is ablated 

with irreversible electroporation according to the therapeutic plan (I). Follow-up MRI 

performed after treatment (J) demonstrates a significant reduction in the tumor volume.
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Fig. 6. 
Neuro-oncological applications of quantitative and functional neuroimaging techniques in 

dogs. Two-dimensional diffusion tensor (DTI, A; left panel) and three-dimensional 

tractography (A; right panel) illustrating white matter anatomy and tracts to facilitate 

surgical approach corridors for surgical treatment of canine malignant glioma. Multivoxel 

proton magnetic resonance spectroscopy (B) in canine glioblastoma, with intratumoral 

region of interest (arrow) illustrating elevated choline and lactate peaks and lower N-

acetylaspartate (NAA) and creatine compared to normal brain. Perfusion MRI imaging (C, 

D) with cerebral blood volume (CBV) map demonstrating elevated intratumoral CBV in a 

canine meningioma (C) and comparison of contrast-enhanced T1-weighted MRI (D; top left 

panel) and perfusion MRI (D; top right panel) in canine glioblastoma with superior spatial 

resolution of blood-brain barrier permeability distribution within same lesion evident on the 

perfusion imaging map. Contrast-enhanced T1-weighted MRI (E; left panels) and 

corresponding 18F-FDG PET-CT scans (E; right panels) of canine histiocytic sarcoma 

demonstrating hypermetabolic region in area of the tumor.
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Fig. 7. 
Anatomical and quantitative magnetic resonance imaging (MRI) of canine spinal cord injury 

secondary to cervical intervertebral disc herniation. Sagittal (A) and transverse (B) T2-

weighted anatomical cervical spinal cord MRI demonstrating marked extradural spinal cord 

(SC, panel B) compression from herniated disc (arrows) between the second and third 

cervical vertebrae. Processing of quantitative magnetization transfer (MTI; C–E) and 

diffusion tensor (DTI; F–H) sequences, in which manual regions of interest delineate the 

spinal cord on the MT1 (C), MT0 (D), fractional mean diffusivity (MD; F) and fractional 

anisotropy (FA; G) and images, and the magnetization transfer ratio (MTR; E) and DTI (H) 

are subsequently calculated with commercial software.
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