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Abstract

Purpose: To evaluate whether optic disc hemorrhages are associated with faster rates of estimated retinal ganglion cell
(RGC) loss in glaucoma.

Methods: A longitudinal observational cohort study of 222 eyes of 122 patients with glaucoma recruited from the
Diagnostic Innovations Glaucoma Study (DIGS) followed for an average of 3.7460.85 years. All subjects had optical
coherence tomography and standard automated perimetry during follow up. Optic disc hemorrhages were detected by
masked evaluation of stereophotographs. Rates of change in estimated numbers of RGCs were determined using a
previously described method. A random coefficients model was used to investigate the relationship between disc
hemorrhages and rates of change in estimated RGC counts over time.

Results: 19 eyes of 18 subjects had at least one disc hemorrhage during follow up. At baseline, average estimated RGC
counts in eyes with and without disc hemorrhages were 677,994 cells and 682,021 cells, respectively (P = 0.929). Eyes with
optic disc hemorrhages during follow-up had significantly faster rates of estimated RGC loss than eyes without disc
hemorrhages (22,233 cells/year versus 10,704 cells/year, P = 0.020). The effect of disc hemorrhages on the rates of estimated
RGC loss remained significant after adjusting for confounding variables.

Conclusion: Eyes with disc hemorrhages showed faster rates of RGC loss compared to eyes without disc hemorrhages.
These results provide further evidence that disc hemorrhages should be considered as an indicator of increased risk for
faster neural loss in glaucoma.
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Introduction

Glaucoma is an optic neuropathy characterized by progressive

loss of retinal ganglion cells (RGCs) and associated morphological

changes to the optic nerve and retinal nerve fiber layer (RNFL).[1]

Visual field loss from glaucoma is irreversible and, therefore, it is

paramount to identify eyes at high risk of progression. Prospective

studies have shown optic disc hemorrhages to be an important risk

factor for the development and progression of glaucoma.[2–6] In

this regard, patients with ocular hypertension who developed a

disc hemorrhage during the course of the Ocular Hypertension

Treatment Study (OHTS) had a nearly four-fold increased risk of

progression to glaucoma.[7] In those with established disease, both

the Early Manifest Glaucoma Trial (EMGT) and the Collabora-
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tive Normal Tension Glaucoma Study have shown an increased

risk of visual field progression in eyes with optic disc hemorrhages

compared to those without.[6]

Recently, Medeiros and colleagues[8] evaluated rates of visual

field progression in eyes with and without optic disc hemorrhages.

Eyes with disc hemorrhages were found to have significantly faster

rates of progressive visual field loss than those without disc

hemorrhages, further supporting disc hemorrhages as an impor-

tant risk marker for progression. De Moraes et al[9] also showed

that disc hemorrhages may be associated with rapid and localized

visual field progression.

Although optic disc hemorrhages are widely appreciated as a

risk factor for progressive glaucomatous visual field loss, visual field

loss ultimately reflects underlying dysfunction and loss of RGCs.

However, the relationship between disc hemorrhages and rates of

RGC loss has not yet been established. Although at present RGC

numbers cannot be directly quantified in vivo in humans, it is

possible to estimate RGC counts from a combination of optical

coherence tomography (OCT) measurements of retinal nerve fiber

layer (RNFL) thickness and standard automated perimetry (SAP)

sensitivities using empirically derived formulas. [10–12]

The purpose of the current study was to estimate longitudinal

rates of RGC loss in patients with glaucoma and to determine

whether the presence of optic disc hemorrhages was associated

with a faster rate of progression.

Methods

This was a longitudinal observational cohort study involving

222 eyes of 122 participants from the Diagnostic Innovations in

Glaucoma Study (DIGS), a prospective longitudinal study

designed to evaluate optic nerve structure and visual function in

glaucoma. The study was conducted at the Hamilton Glaucoma

Center of the Department of Ophthalmology, University of

California San Diego (UCSD). Methodological details have been

described previously.[13] Informed consent was obtained from all

participants, and the institutional review board and human

subjects committee at the University of California San Diego

prospectively approved all methods. All study methods adhered to

the tenets of the Declaration of Helsinki for research involving

human subjects and the study was conducted in accordance with

the regulations of the Health Insurance Portability and Account-

ability Act. And all participants provided their written informed

consent to participate in this study.

At each annual visit during follow-up, patients underwent a

comprehensive ophthalmologic examination including review of

medical history, best-corrected visual acuity, slit-lamp biomicros-

copy, intraocular pressure (IOP), dilated fundoscopic examination,

stereoscopic optic disc photography, Cirrus high definition OCT

(HDOCT) (Carl Zeiss Meditec Inc., Dublin, CA) and SAP using

the Swedish interactive threshold algorithm (SITA standard 24-2;

Carl Zeiss Meditec, Inc, Dublin, Caifornia, USA). In addition,

every six months IOP, SAP, HDOCT images were obtained.

Central corneal thickness was measured once during follow-up

using an ultrasound pachymeter (Pachette GDH 500; DGH

Technology, Inc., Philadelphia, PA). Only patients with open

angles on gonioscopy were included. Subjects were excluded if

they had a best-corrected visual acuity of less than 20/40,

spherical refraction outside65.0 diopters, cylinder correction

outside 3.0 diopters, or both; or any other ocular or systemic

disease that could affect the optic nerve or the visual field.

All patients had a diagnosis of glaucoma at baseline, with

glaucoma defined by the presence of repeatable (. = 3

consecutive) abnormal SAP tests. Eyes with documented evidence

of progressive glaucomatous optic disc changes noted on masked

grading of stereophotographs were also classified as glaucomatous,

irrespective of visual field findings. SAP tests were defined as

normal if the mean deviation (MD) and pattern standard deviation

(PSD) were within 95% normal confidence limits and the

Glaucoma Hemifield Test (GHT) was also within normal limits.

An abnormal SAP test was defined as a visual field with a PSD

with P ,0.05 and/or a GHT outside normal limits. For the

purposes of the analysis, eyes were classified into two groups based

on whether or not a disc hemorrhage was detected on masked

stereophotographs at any period during follow up.

Stereophotographs
All patients had stereoscopic optic disc photographs repeated at

least every 12 months during follow-up. The images were reviewed

with a stereoscopic viewer (Screen- VU stereoscope; PS Manu-

facturing, Portland, Oregon, USA) by 2 or more experienced

graders masked to the subjects’ identity and to the other test

results. The methodology used to grade optic disc photographs for

progression at the UCSD Optic Disc Reading Center has been

provided elsewhere.[13–15] Discrepancies between the 2 graders

were resolved by consensus or adjudication by a third experienced

grader. Disc hemorrhages had to be located within 1 disc diameter

from the optic disc border and not associated with optic disc

edema, papillitis, diabetic retinopathy, central or branch retinal

vein occlusion, or any other retinal disease.

Optical coherence tomography
The Cirrus HDOCT (software v. 5.2, Carl Zeiss Meditec Inc.,

Dublin, CA, model 4000) was used to measure RNFL thickness in

this study. This device uses a superluminescent diode scan with a

center wavelength of 840 nm and an acquisition rate of 27 000 A-

scans per second at an axial resolution of 5 mm. The protocol used

for RNFL thickness measurement was the optic disc cube with

circumpapillary RNFL thickness measurements calculated from a

3.46-mm diameter circular scan (10.87-mm length) automatically

placed around the optic disc. An experienced examiner, masked to

the results of other tests, evaluated the quality of all OCT scans.

Good quality scans had to have focused images from the ocular

fundus, signal strength greater than 7 and presence of a centered

circular ring around the optic disc. Scans were also evaluated as to

the adequacy of the algorithm for detection of the RNFL. Only

scans without overt algorithm failure in detecting the retinal

borders were included in the study.

Standard automated perimetry
All visual fields were evaluated by the UCSD Visual Field

Assessment Center (VisFACT).[16] Visual fields with more than

33% fixation losses or false-negative errors, or more than 15%

false-positive errors, were excluded. Visual fields exhibiting a

learning effect (i.e., initial tests showing consistent improvement on

visual field indices) were also excluded. Visual fields were further

reviewed for the following artifacts: eyelid and rim artifacts, fatigue

effects, inappropriate fixation, evidence that the visual field results

were caused by a disease other than glaucoma and inattention.

Estimation of retinal ganglion cell number
The estimates of RGC counts were obtained according to the

model developed by Medeiros et al[11,12,17] based on empirical

formulas derived by Harwerth et al[10] for estimating ganglion

cell counts from SAP and OCT. The model uses information from

structural and functional tests to derive a final estimate of the

RGC count in a particular eye. The details of the model and the
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empirical formulas used to derive RGC counts have been

described in detail in previous publications. [11,12,17] In brief,

the initial step of the model consists in translating SAP sensitivity

values into RGC counts using empirical formulas derived by

experimental research in monkeys and subsequently translated to

normal and glaucomatous human eyes. The following formulas

were used to estimate the number of RGC somas in an area of the

retina corresponding to a specific SAP test field location at

eccentricity ec with sensitivity s in decibels:

m~ 0:054X ecX1:32ð Þ½ �z0:9

b~ {1:5X ecX1:32ð Þ½ �{14:8

gc~
s{1ð Þ{b

m
z4:7

SA Pr gc~
X

10(gcX0:1)

In these formulas, m and b represent the slope and intercept,

respectively, of the linear function relating ganglion cell quantity

(gc) in decibels to the visual field sensitivity (s) in decibels at a given

eccentricity. To account for the total number of ganglion cells in

an area of the retina, the cell density derived from each perimetry

measurement was considered to be uniform over an area of retina

corresponding to an area of 666 degrees of visual space that

separates test locations in SAP. By applying the above formulas, a

SAP-derived estimate of the total number of RGCs (SAPrgc) was

obtained by adding the estimates from all locations in the visual

field. The structural part of the model consisted in estimating the

number of RGC axons from RNFL thickness measurements

obtained by OCT. The model took into account the effect of aging

in the axonal density and the effect of disease severity on the

relationship between neuronal and non-neuronal components of

the RNFL thickness estimates obtained by OCT. To derive the

total number of RGC axons from the global RNFL thickness

measurements obtained by OCT (OCTrgc), we applied the

following formulas:

d~ {0:007Xageð Þz1:4

c~({0:26XMD)z0:12

a~averageRNFLthicknessX10870Xd

OCTrgc~10 log að ÞX10{c½ �X0:1f g

In the above formulas, d corresponds to the axonal density

(axons/mm2) and c is a correction factor for the severity of disease

to take into account remodeling of the RNFL axonal and non-

axonal composition. These calculations provide an estimate of the

number of RGCs from 2 sources, one functional and on structural.

A combined calculation of RGC counts was performed according

the following formula:

RGCcount~ 1zMD=30ð ÞXOCTrgcz({MD=30)XSA Pr gc

The rationale for using a weighting system for deriving the final

RGC count is described by Medeiros et al, [11] [12] [17] but in

essence it relies on the fact that the accuracies of clinical perimetry

and imaging tests are inversely related to disease severity.

Statistical Analysis
Descriptive statistics included mean and standard deviation and

t-tests for normally distributed variables and median, interquartile

range and Wilcoxon rank-sum for non-parametrically distributed

variables. The evaluation of the effect of optic disc hemorrhages

on rates of estimated RGC loss was performed using random

coefficients models. These models are a type of linear mixed model

that involves both random intercepts and random slopes, which

consider the clustered structure of the data, allowing the residuals

associated with the longitudinal measures on the same unit of

analysis to be correlated. The details of the use of these models for

evaluation of rates of change in glaucoma and to model

longitudinal processes have been reported previously. [18–21]

The estimated number of RGCs was considered the dependent

variable in the model. Disc hemorrhage (variable HEMOR-

RHAGE) was included as a fixed-effect covariate with a value of 1

if the eye had a disc hemorrhage detected during follow up and a

value of 0 if no disc hemorrhage was detected. The variable TIME

(time from baseline in years) was included as a continuous

predictor. The significance of the coefficients associated with the

variable TIME indicated whether there is a significant trend in

RGC estimates over time, i.e., whether RGC estimates tended to

decrease or increase significantly over time. The two-way

interaction between TIME and HEMORRHAGE (TIME x

HEMORRHAGE) was included in the model to evaluate whether

there was a significant difference in estimated RGC counts over

time between patients with and without disc hemorrhages.

Random coefficients models were also used to evaluate the

effect of possible confounding factors on the relationship between

change in estimated RGC loss over time and disc hemorrhages.

Variables investigated included mean IOP, CCT, baseline age,

ancestry and gender. Interaction terms were included to investi-

gate the effect of particular variables on rates of estimated RGC

count change over time. To enable better interpretation of

coefficients, the variables CCT, IOP and age were centered on the

respective sample means.

All statistical analyses were performed with commercially

available software (Stata, version 13; StataCorp LP, College

Station, Texas, USA). The alpha level (type I error) was set at 0.05.

Results

The study included 222 eyes of 122 participants with glaucoma

followed for an average of 3.7460.85 years. During follow up 19

of 222 eyes (8.6%) had at least one disc hemorrhage detected. 3

eyes had disc hemorrhages located in the superior region of the

optic disc, 13 had inferior disc hemorrhages and 2 had both

superior and inferior hemorrhages. Table 1 shows the demo-

graphic and clinical characteristics of the two groups at baseline.

There was no statistically significant difference in age, ancestry or

gender between those with and without disc hemorrhages. There

was also no significant difference in SAP MD or average RNFL

thickness at baseline for those with and without disc hemorrhages

during follow up. The mean estimated number of RGCs at

baseline was similar in both groups with an estimated

682,0216152,455 cells in those with disc hemorrhages compared

to 677,9946196,568 cells in eyes without disc hemorrhages

(P = 0.929). Figure 1 shows the distribution of estimated number of

RGCs at baseline for the two groups.

Table 2 shows the results of the random coefficients model

investigating the relationship between estimated RGC counts over

time in patients with and without disc hemorrhages. On average,

eyes with and without disc hemorrhages lost RGCs during follow-

up, however, eyes with disc hemorrhages had a faster rate of loss.

Retinal Ganglion Cell Loss in Glaucoma Patients with Disc Hemorrhage
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Table 1. Demographic and clinical characteristics of the eyes included in the study.

No Disc Hemorrhage (203 eyes, 104 patients) Disc Hemorrhage (19 eyes, 18 patients) P value

Age, years a 68.6610.7 71.4611.4 0.309

Gender 0.567

Female 56 (46%) 11 (9%)

Male 48 (39%) 7 (6%)

Ancestry 0.196

European 69 (57%) 14 (11%)

African 29 (24%) 2 (1.5%)

Other 6 (5%) 2 (1.5%)

Baseline MD, dB b 22.7 (21.69) 21.8 (21.72) 0.415

(23.53 to 20.36) (23.15 to 20.33)

Baseline VFI, % b 93.5 (98) 96.1 (98.5) 0.633

(93 to 99) (95.5 to 99)

Baseline RNFL thickness, mm a 77.9612.7 78.8612.4 0.970

Baseline estimated RGC count a 677,9946196,568 682,0216152,455 0.929

Baseline IOP, mmHg 15.564.6 15.664.5 0.981

Mean IOP, mmHg a 14.964.7 15.964.3 0.097

CCT, mm a 545.4640.3 542.8644.7 0.968

Follow up, years a 3.760.8 3.960.9 0.087

Legend:
dB: decibels; MD = mean deviation, VFI = visual field index, Baseline estimated RGC count = estimated number of retinal ganglion cells at baseline (when TIME = 0);
RNFL = retinal nerve fiber layer, IOP = intraocular pressure; CCT = central cornea thickness
aMean6SD
bMean, (median), interquartile range
doi:10.1371/journal.pone.0105611.t001

Figure 1. Boxplots showing the distribution of estimated number of retinal ganglion cells (RGCs) at baseline in eyes with and
without optic disc hemorrhages during follow up. Box: median, and interquartile range. Boxplot with whiskers with maximum and minimum
1.5 IQR.
doi:10.1371/journal.pone.0105611.g001
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This is evident in the model from the significant value (P = 0.020)

of the interaction term (HEMORRHAGE X TIME). The variable

HEMORRHAGE was not statistically significant in the model,

indicating that there was no significant difference in estimated

RGC counts at baseline in eyes with and without disc hemor-

rhages. The interaction term (HEMORRHAGE X TIME)

indicates the effect of the presence of disc hemorrhage on slopes

of change in estimated RGC counts over TIME (i.e., change in

estimated RGC counts during follow up). As the absence of a disc

hemorrhage was used as the reference category (no hemor-

rhage = 0), the coefficient of the variable TIME indicates the rate

of loss in the eyes without a disc hemorrhage detected during

follow up. The mean estimated rate of RGC loss in the group

without disc hemorrhages was 10,704 cells per year. The estimated

rate of RGC loss in the group with disc hemorrhages was obtained

by adding the coefficient for TIME (210,704 cells per year) to that

of the interaction term HEMORRHAGE X TIME (211,529 cells

per year), which resulted in an estimated loss of 22,233 cells per

year.

Table 3 shows the results of a multivariable model including

confounding variables. To investigate the effect of these variables

on rates of change in estimated RGC counts, variable-time

interaction terms (VARIABLE X TIME) were also included for

each of these variables. The interaction term IOP X TIME was

significant in the model (P = 0.033), indicating that eyes with

higher IOP during follow-up had significantly faster rates of

estimated RGC loss. However, there was no significant effect of

age or CCT on rates of RGC loss, with the interaction terms AGE

X TIME and CCT X TIME not significant in this sample

(Table 3). There was also no significant effect of ancestry or

gender on rates of RGC loss (P = 0.266 for ANCESTRY X TIME

and P = 0.980 for GENDER X TIME).

Figure 2 shows slopes of change over time in estimated RGC

counts in individual eyes with and without disc hemorrhage

included in the study and Figure 3 shows the distribution of

estimated slopes of RGC loss in these eyes. Examples of eyes with

and without optic disc hemorrhages are shown in Figure 4.

Discussion

This study demonstrates that glaucomatous eyes with disc

hemorrhages are likely to demonstrate faster rates of RGC loss

compared to glaucomatous eyes without disc hemorrhages. This

finding provides further evidence that disc hemorrhages are an

important indicator of increased risk of progression in glaucoma.

We found that eyes with optic disc hemorrhages during follow up

lost on average an estimated 22,232 RGCs per year, a rate twice as

fast as the 10,704 cells per year estimated loss in eyes in which a

disc hemorrhage was not detected during follow up. In agreement

with previous studies[8] [22–28], higher mean IOP during follow-

up was also associated with faster rates of progression; even when

Table 2. Results of the random coefficients model examining the association between rates of change in estimated number of
retinal ganglion cells (RGCs) and the presence or absence of disc hemorrhages during follow up.

Parameter Coefficient 95% CI P value

Intercept 685,548 658,957 to 712,139 ,0.001

TIME (years) 210,704 213,611 to 27,797 ,0.001

HEMORRHAGE (1 = Yes) 3,321 287,472 to 94,114 0.943

HEMORRHAGE x TIME 211,529 221,222 to 21,834 0.020

Legend:
Intercept = estimated number of retinal ganglion cells at baseline; TIME = duration of follow-up; HEMORRHAGE X TIME = interaction between the presence or absence of
disc hemorrhage and the variable TIME; Coefficient = estimated value of each parameter; 95% CI = confidence interval.
doi:10.1371/journal.pone.0105611.t002

Table 3. Results of the random coefficients multivariable model examining the association between estimated number of retinal
ganglion cells (RGCs) and disc hemorrhages, including potentially confounding variables and their interactions with time.

Parameter Coefficient 95% CI P value

Intercept 683,257 660,261 to 706,254 ,0.001

TIME (years) 210,915 213,821 to 28,009 ,0.001

HEMORRHAGE (1 = Yes) 25,973 252,748 to 104,694 0.518

HEMORRHAGE x TIME 211,698 221,287 to 22,109 0.017

Age 26,413 28,453 to 24,373 ,0.001

Age X TIME 123 2126 to 372 0.332

Mean IOP 1,297 2205 to 2,800 0.091

Mean IOP x TIME 2579 21,111 to 247 0.033

CCT 1,403 857 to 1,949 ,0.001

CCT x TIME 211 281 to 59 0.758

Legend:
Intercept = estimated number of retinal ganglion cells at baseline; TIME = duration of follow-up; HEMORRHAGE X TIME = interaction between the presence or absence of
disc hemorrhage and the variable TIME; Coefficient = estimated value of each parameter; 95% CI = confidence interval.
doi:10.1371/journal.pone.0105611.t003
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accounting for IOP, however, the presence of a disc hemorrhage

was still associated with a faster rate of RGC loss.

The present results are in agreement with previously published

studies that have shown disc hemorrhages to be associated with

structural and functional loss in glaucoma. For example, Medeiros

and colleagues[8] have previously shown that rates of progressive

visual field loss in eyes with optic disc hemorrhage were

significantly faster than in eyes without disc hemorrhages.

Furthermore, De Moraes and colleagues studied the relationship

between optic disc progression and rates of visual field change in

389 treated glaucoma patients and recently reported disc

hemorrhage to be the single most significant predictor for

progressive visual field loss.[29] They found the presence of a

disc hemorrhage to be a strong predictor of future visual field

progression with an odds ratio of 5.38. Our study supports these

previous conclusions, and also provides new information as we

examined the relationship between disc hemorrhages and

estimated changes in underlying neuronal loss in glaucoma.

Importantly, the estimated RGC counts were derived from a

combination of structural and functional information and these

estimates have been shown to have better ability to detect and

stage glaucomatous damage than isolated measures. [11,12]

Previous studies have examined the spatial relationship between

disc hemorrhages and structural and functional losses. [30–36]

Although previous studies have not examined the association

between RGC loss and disc hemorrhages, it is widely recognized

Figure 3. Histogram showing the distribution of slopes of change in estimated retinal ganglion cell (RGC) counts in eyes with and
without disc hemorrhage during follow up.
doi:10.1371/journal.pone.0105611.g003

Figure 2. Change in estimated number of retinal ganglion cells (RGCs) over time in eyes with and without disc hemorrhages during
follow up.
doi:10.1371/journal.pone.0105611.g002
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that disc hemorrhages are commonly located at the border of or

close to areas of retinal nerve fiber layer defects or neuroretinal

rim loss. [30,32–34] This suggests that the location of disc

hemorrhages may provide information regarding the location of

RGC loss. Although we did not examine localized rates of RGC

loss, we found the commonest location for disc hemorrhages was

the inferior temporal sector of the optic disc, in agreement with

previous observations. In our sample, in 15 of 19 eyes (83%) the

disc hemorrhage was located at the inferior temporal region of the

optic disc or peripapillary RNFL.

Optic disc hemorrhages in glaucoma may be a marker of

pressure-related glaucomatous damage. It has been proposed that

serious consideration should be given as to advancing treatment if

a disc hemorrhage is seen. [2,37–39] Indeed a previous study has

shown that lowering of IOP is likely to slow further visual field loss

after a disc hemorrhage.[8] Although eyes with disc hemorrhages

show faster rates of change on average compared to those without

hemorrhages, it is important to emphasize that the rates of

progression in eyes with disc hemorrhages can be widely variable.

While some eyes develop fast progression, others continue to

progress at a relatively slow rate despite the presence of a new

hemorrhage. Therefore, the decision to intensify treatment in the

presence of a disc hemorrhage should always take into account the

risk of development of functional impairment or disability from the

disease, as well as considerations about the patient’s life

expectancy and potential risks and side effects of treatment.

It is also important to emphasize that, although eyes with disc

hemorrhages showed faster rates of estimated RGC loss compared

to those without hemorrhages, a causal relationship between

hemorrhages and progression cannot be established. It is possible

that hemorrhages may be a marker for higher susceptibility to

glaucoma progression, but without being in the causal pathway of

neural damage. In this situation, ocular hypotensive treatments

would still slow down the rate of progression in eyes with

hemorrhages, as previously established, but they would not

necessarily decrease the incidence of hemorrhages. In fact, results

from the EMGT did not show a difference in the incidence of

hemorrhages between treated and untreated groups followed over

time.[6] A recent report examined rates of visual field progression

before and after a disc hemorrhage.[9] Localized visual field loss

was found to occur prior to disc hemorrhage and to continue after

the event. This observation suggests that disc hemorrhages may be

both a product of progressive glaucomatous damage and an

indicator of possible future progression.

This study has limitations. First, empirically derived formulas

were used to estimate the number of RGCs and the original

formulas were derived from studies in a primate model of

glaucoma and likely need refinement.[10] However, the formulas

have been validated in multiple external human cohorts [11,12,17]

and the RGC estimates obtained using these formulas are closely

related to the findings of human histological studies. [10,40–42]

Another potential limitation is that some patients in the no

hemorrhage group may have experienced a disc hemorrhage that

went undetected during follow up. This is a potential problem as

disc hemorrhages may resolve fairly quickly. Kitazawa and

colleagues reported that disc hemorrhages are typically present

for 4 weeks to 2 months before they resorb and disappear. [43] It is

important to note that even if some patients without observable

disc hemorrhage may have had undetected bleeding during follow-

up, this would actually tend to decrease the difference between the

two groups. Therefore, our results may be seen as conservative

estimates of the differences in rates of change between the two

groups. Moreover, evaluation of stereophotographs is a good

method for detection of disc hemorrhages. In the OHTS 84% of

patients with disc hemorrhages were identified only in photo-

graphs whereas only 16% were identified by both clinical

examinations and photographs. [5] It should also be acknowl-

edged that we did not examine the temporal relationship between

the appearance of a disc hemorrhages and disease progression.

Instead, rates of RGC loss were calculated for the entire follow up

period and disc hemorrhages could have occurred at any time

during follow up. This approach was used due to the relatively

limited follow up time available with HDOCT measurements.

Future studies should attempt to investigate the temporal

relationship between optic disc hemorrhages, structural measure-

ments and estimated rates of RGC loss in glaucoma.

In conclusion, this study indicates that glaucomatous eyes with

disc hemorrhages during follow up are likely to show faster rates of

RGC loss compared to glaucomatous eyes without disc hemor-

rhages. Our results provide further evidence that disc hemorrhages

Figure 4. Example of an eye of a 77-year-old patient with a disc hemorrhage during follow up. Standard automated perimetry pattern
deviation plot, optic disc photographs and optic coherence tomography results are shown at the time of disc hemorrhage and also of selected tests
during follow-up. The estimated retinal ganglion cell count at baseline was 630,974 cells and decreased to 494,237 cells at the last follow up, with an
estimated loss of 21,541 cells per year.
doi:10.1371/journal.pone.0105611.g004
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are an important clinical finding and should be considered as an

indicator of increased risk for faster neural loss in glaucoma.
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