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Abstract: Aims: Bubble entropy (bEn) is an entropy metric with a limited dependence on parameters.
bEn does not directly quantify the conditional entropy of the series, but it assesses the change in
entropy of the ordering of portions of its samples of length 1, when adding an extra element. The
analytical formulation of bEn for autoregressive (AR) processes shows that, for this class of processes,
the relation between the first autocorrelation coefficient and bEn changes for odd and even values
of m. While this is not an issue, per se, it triggered ideas for further investigation. Methods: Using
theoretical considerations on the expected values for AR processes, we examined a two-steps-ahead
estimator of bEn, which considered the cost of ordering two additional samples. We first compared it
with the original bEn estimator on a simulated series. Then, we tested it on real heart rate variability
(HRV) data. Results: The experiments showed that both examined alternatives showed comparable
discriminating power. However, for values of 10 < m < 20, where the statistical significance of the
method was increased and improved as m increased, the two-steps-ahead estimator presented slightly
higher statistical significance and more regular behavior, even if the dependence on parameter m was
still minimal. We also investigated a new normalization factor for bEn, which ensures that bEn = 1
when white Gaussian noise (WGN) is given as the input. Conclusions: The research improved our
understanding of bubble entropy, in particular in the context of HRV analysis, and we investigated
interesting details regarding the definition of the estimator.

Keywords: entropy; bubble entropy; limited dependence on parameters

1. Introduction

In a nonlinear dynamical system, the average rate of divergence of the trajectories
in the state space is captured by the largest Lyapunov exponent [1]. This is also the
rate at which the dynamical system loses information related to the initial condition or,
equivalently, the rate at which information is generated [2]. Motivated by the objective
of distinguishing chaotic systems from periodic and stochastic systems, early works of
Grassberger and Procaccia [3], Takens [4], and Eckmann and Ruelle [5] proposed practical
means of estimating the Kolmogorov—-Sinai entropy, using a time series.

Inspired by many inconclusive results arising from practical applications of the
Kolmogorov-Sinai entropy [6,7], Pincus [8] recognized that, even when only a limited
amount of data is available and the system lacks stationary behavior, entropy can still be
effectively employed to measure the complexity or the degree of repeatability of a time series
and, indirectly, of the system that generated this series. Since then, the use of statistics
quantifying the entropy rate of a time series has flourished, especially for biological series.
However, real signals are inherently contaminated by noise. To deal with an arbitrary
series of observations, Bandt and Pompe [9] suggested avoiding the problem altogether
by measuring the entropy of the probability distribution of ordinal patterns, which, in the
limit, provides an upper bound for the Kolmogorov-Sinai entropy [10].

Along this line, bubble entropy [11] was introduced to quantify the complexity of
a time series by measuring the entropy of the series of swaps necessary to (bubble) sort
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its portions. Thus, complexity is intended not as a lack of similar patterns but as added
diversity in the ordering of the samples across scales. As such, bubble entropy (bEn) does
not directly quantify the entropy rate of the series, as Approximate Entropy (apEn) [8]
and Sample Entropy (sampEn) [12] do, nor the entropy of the distribution of the possible
permutations, as Permutation Entropy (pe) does. bEn measures the increase in the entropy
of the series of sorting steps (swaps), necessary to order its portions of length m, when
adding an extra element.

On the bright side, bEn is an entropy metric, with a limited dependence on parameters.
This is a clear advantage over the other estimators, for which the selection of the values
of the parameters is critical. The computed values, as well as the discriminating power
of the estimators, depend on the parameters, and careful estimation is essential. Taking
into account that this estimation can be proven to be application- or data-dependent,
the minimal dependence on parameters becomes an even more important property.

Both apEn and sampEn need to estimate two parameters: the threshold distance r
and the embedding dimension m. In practice, we have accepted that the best we can do
currently is to omit this step and recruit the typical values: m = 1 or 2, when the length of
the series permits it, and r = 0.2. In a more advantageous position, bEn, similarly to pe,
requires the estimation of only one parameter: the embedding dimension m. Not only are
the degrees of freedom reduced to 1 but the remaining parameter is also an integer number,
whilst the eliminated one is real.

The embedding dimension m ranges from 1 to a small integer value, allowing a
systematic estimation of all reasonable values. On the other hand, the domain of r is an
infinite set, making the consideration of all possible, or even reasonable, values impossible.
For a detailed comparison of bubble entropy with other popular entropy metrics, please
refer to [11]. In general, when tested on real data (e.g., the same datasets that are going
to be considered in this paper), bEn displayed higher discriminating power over apEn,
sampEn, and pe, for most values of m.

An analytical formulation of bEn for the autoregressive (AR) processes was recently
made available [13]. This showed that, at least for this class of processes, the relation
between the first autocorrelation coefficient and bEn changes for odd and even values of .
The authors also pointed out that the largest value of bEn did not arise for white noise but
when correlations were large. While these are not issues per se, they triggered the idea that
further refinements and understanding of the definition might be possible.

In this paper, we improve the comprehension of the metric, using theoretical con-
siderations on the expected values for AR processes. We investigate a two-steps-ahead
estimator of bEn, which considers the cost of ordering two additional samples. We also
consider a new normalization factor that gives entropy values bEn = 1 for white Gaussian
noise (WGN). The rest of the paper is structured as follows. Section 3 investigates the
examined normalization factor. Section 4 presents theoretical issues and simulations on the
examined two-steps-ahead estimator, and Section 5 uses real HRV signals to evaluate the
estimator in a real world problem. There is some discussion in Section 6, whilst the last
section concludes this work.

2. Bubble Entropy as a Measure of Complexity

bEn embeds a given time series x = x1, Xy, ..., xy of size N into an m dimensional
space, producing a series of vectors of size N—m+ 1:

X1, Xa, ..., XN, where X; = (Xj,Xj 11, Xj1m—1)- (1)

Each vector X is sorted using the bubble sort algorithm, and the number of swaps (inver-
sions) required for sorting is counted.
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The probability mass function (pmf) p; of having i swaps is used to evaluate the
second-order Rényi Entropy:

(2)
Hgvaps = —log Z pizl 2)
i=0

while the bEn is estimated as the normalized difference of the entropy of the swaps required
for sorting vectors of length m + 1 and m:

1 m+1

Vectors X; are sorted in ascending order; this is only a convention, which does not
affect the time series categorization, nor the value of bEn. Indeed, if we refer to s”" as to
the number of swaps required to sort the vector X; in ascending order, then to sort it in
descending order, m(m —1)/2 — s}” sorting steps are necessary. As such, if p; is the pmf
of the swaps required for sorting all the vectors in ascending order, then sorting them in
descending order will produce the pmf q; = py(;—1)/2—j, which leads to an identical value
of Hgyaps in Equation (2).

In order to make the definition even more comprehensive, we give below an algorith-
mic description of the computation of bEn:

step 1: Compute entropy in m dimensional space:
step 1.1: embed the signal into m dimensional space
step 1.2: for each vector, compute the number of swaps required by the bubble sort to sort it
step 1.3: construct a series with the computed number of swaps
step 1.4: use Rényi entropy (order 2) to compute entropy on this series
step 2: Compute entropy in m+1 dimensional space
step 3: Report the difference of entropy computed in steps 1 and 2

From the standard results in information theory [14], it is possible to cast further light
on bEn. The entropy of the sum of two variables H(X + Y) is always smaller or equal
to their joint entropy H(X,Y). Hence: H(X +Y) — H(X) < H(X,Y) — H(X) = H(Y|X).
The number of swaps S”*! required to sort a vector of length m + 1 is a random variable,
obtained by adding a random number of steps 5", needed to sort a vector of length m, plus

the extra swaps s”*! to take the new sample in its ordered position:
m
sm=Y s (4)
k=1
Sm+l =§m L Sm+1‘ (5)

Setting X = S™ and Y = s"*! in the relation just derived, and remembering that the
mutual information: I(X;Y) = H(Y) — H(Y|X), then:

H(S"*) — H(S™) < H(s"*1[8") = H(sp+1) — 1(S"; Sm41) ©)
or: .
m +
bEn log (m—l) = H:zj;%,s — Hivaps < H(smr1) = 1(8";8m41)- )

bEn is, therefore, limited from above by the entropy of the number of swaps required to
add the extra element in the vector, reduced by the information already carried by the
number of swaps performed before.

In the following, we will use the term bE#n y;, instead of simply bEn, which has been
used until now. We want to make a clear distinction between this definition and an
alternative one, which will be considered later in this paper.
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3. On the Investigation of the Normalization Factor
The normalization factor log (m“) in Equation (3) is given by the difference in the
maximum swaps quadratic entropy, which is Ugy,ps = log {( Um 1} for the embedding

dimension m and ugj;%,s log {M + 1} for embedding dimension m + 1, when ne-

glecting the term +1 in the logarithms. This term corresponds to the no swaps performed state
and the simplification contributes toward a more elegant definition, without significant
influence on the numerical value, especially for larger values of m.

Common definitions of entropy present maximum entropy values when WGN is
given as the input. However, in our previous work [13], we showed that bEn_; is not
maximal for WGN. Signals produced by the AR model with large and positive one-step
autocorrelation tended to require a broader range of swaps than WGN, and the uniform
distribution had the largest entropy among all discrete probability mass functions. We will
come back to this observation, after we introduce one more definition: bEnf‘H.

The analytical value of bEn_; for WGN can be obtained in a simpler fashion than that
described in [13]. The probability generating function of the number of inversions required
to sort a random permutation of m numbers [15] is given by:

1ot E o 1(14z) (T +z4 2" ®)
m! )

Indeed, according to Equation (5), the total number of swaps required for a WGN is a
random variable obtained as the sum of m independent discrete uniform random variables
with support [0, k] and k = 0...m — 1. Thus, given k samples, which are already sorted,
anew random value in position k + 1 requires any from 0 to k inversions, each with the prob-
ability 1/ (k + 1), to be swapped into the correct position. The probability generating func-
tion for the number of additional inversions is: s 1(z) = (1+z + 22+ ---+25)/(k+1).
The probability generating function of the total number of inversions hy 1 (z) is given as
the product of the additional permutations and h(z), where hy(z) = 1:

1+z+22+-- - +2F
k+1

M1(2) = ske1(2)i(z) = hi(2). ©)

As the number of permutations with no inversions is 1, we can obtain Equation (8).
Then, from the definition of the probability generating function, the pmf p;, having i
swaps, is the coefficient of the i-order term in the polynomial ki, (z), or:

1 (dha(2)\ K0
n=a(a) o

dz! 1!

The entropy of the series of swaps, for WGN, is a growing function with m:

@) 19 0)]
ngaps = - IOg Z il ’ (11)
i=0 :
and the bEn of a WGN:
m+1
bEI’lX\;GN = (Wg;vt%)s swaps) / 10g ( 1 > : (12)

Having now the values of entropy of the series of swaps for a WGN, for any value of
m, we define, as bEn* 11, the ratio:
bEn,q Hgvt})s Hgg/vaps

WGN m+1
bEn+1 Wswaps - I/vsygvaps

(13)
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In other words, bEn’, is the difference of the entropy in the dimensional spaces m+1 and
m, normalized with the difference of the entropy of WGN in these spaces.
Let us cover the benefits of using this definition. In Figure 1, we generate a series from
the AR process of order 1:
x[n] = —ayx[n — 1] + w(n], (14)
where a; € [—1,1], and w[n] is WGN with the mean y = 0 and variance ¢2 = 1. The cor-
relation atlag kis v, = E [x[n}x[n — k]} and 71/79 = —a;. Numerical estimates of bEn?,

were computed over 1000 Monte Carlo simulations with a series of N = 10° samples.

2

I oF
g g
o R
~ ~

1 1

1.5} m=2,4,6,810 | 1.5} m=2,4,6,8,10
m=3,5,7,9 m=35,7,9
2 . . . ) , . .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
7/% 7/%

Figure 1. Numerical estimates of bEn,; and bEn’; for sequences generated by the AR process of
order 1, x[n] = —ajx[n — 1] + w(n], where a; € [—1,1], and w[n] is a WGN with zero mean and
variance 02, = 1. 74 is the correlation at lag k, and 71 /y9 = —ay. In the left subfigure, the definition

of bEn 1 was used in the simulations, whilst, in the right subfigure is the definition of bEn",. In the
right panel, bubble entropy is always one for WGN.

In the subfigure on the left hand side of Figure 1, we used the definition of bEn_,
as we did in [13]. In the subfigure on the right hand side of the figure, we can see the
difference, in the same experiment, when bEnTH was used. Please note that, with the
definition of bEn’,, the entropy for WGN (71/79 = —a1 = 0) is equal to 1 for all values
of m.

Since, this is an important property, we found the normalization proposed in Equa-
tion (13) to be more appropriate than the one in Equation (3), which was used until now.
In fact, values of bubble entropy computed with this normalization can be used to com-
pare different processes and/or to put them in relation with WGN (a bEn larger than one
means that the pmf of the number of swaps becomes more “spread out” than for a WGN,
when m increases). This normalization further reduces the dependence on the residual
parameter m, as nearly identical values of bEn for 1 /g > 0 and m > 2 in the right panel
of Figure 1 show.

The value of Wy ,,s in Equation (11) is exact; however, its computation is challenging
for large values of m, due to the growth of the factorial term. However, in this situation,
when m is large, for the central limit theorem, the discrete pmf p; converges in distribution
to a normal probability density function (pdf), with the same mean and variance. Due
to the symmetry of the pmf, the mean of p; is piswaps = m(m — 1)/4, which can also be
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obtained as pswaps = [d/m(z)/dz](,—1). The variance can be obtained from the probability
generating function:

. {d2hm(z) L di(z) [dhm(z)r} mim = 1)@m+5) o
(==1)

Uswaps -

dz? dz dz - 72

Alternatively, agwaps can be computed by observing that the variance of the discrete uniform
distribution has the probability generating function sy (z) = (1 +z 422+ --- +2zF1) /kis
(k? — 1) /12. The total number of inversions is the sum of m independent random variables
and, as a consequence, o is the sum of the single variances:

m—1 12
k*—1 m(m—1)2m+5)
2 _ _

The Rényi entropy of order 2 (or quadratic entropy) of a normal pdf is % log(470?), where
o? is its variance. When m is large, we can then approximate the entropy of the series of
swaps for a WGN with:

m(m—1)(2m+5)

1
Wewaps ~ 5 log|m 18 . (17)

In our numerical tests, the approximation holds well for values of m > 30, where the
error is already smaller than 1%,,. For smaller values of m, Equation (11) should be
employed instead.

4. On the Investigation of the Two-Step-Ahead Estimator of Bubble Entropy

Let us stay for a while at Figure 1. In both subfigures of Figure 1, for anti-persistent
noise, i.e., when 1 /79 approaches —1, the values of entropy become negative for even
values of m, whilst they are largely positive for odd values of m. This is another issue that
gives us motivation for further investigation.

In Figure 2, the average numerical values of ngvaps form =2,...,11 are presented,
using the same simulations described in Figure 1. The lines at the lower part of the figure
correspond to lower values of m. When m is even and -y /g is approaching to —1, we can
observe that Hs'ﬁ‘j;ql)s < Hgiaps 18 a possible condition, something that results in negative
values (bEn’; < 0).

m=2

-1 -0.5 0 0.5 1
/%

Figure 2. The average numerical values of Hgyps form = 2,...,11 (bottom to top), using the same

simulations described in Figure 1.

Even though this is not a problem per se, to further analyze this observation, we
plotted the pmfs in Figure 3. In this figure, four pmfs obtained from the 1st order AR
model, averaging over 100 Monte Carlo runs, with the series length N = 10°, are displayed.
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The four pmfs express the number of swaps necessary to sort: (a) an m = 12 long sequence
with 71 /79 = 0, that is WGN; (b) an m = 12 long sequence with y1/7y9 = 1, thatis a

random walk; (c) an m = 12 long sequence with 71 /¢ = —1, that is an anti-persistent noise;
and (d) an m = 13 long sequence with 71 /g = —1 depicting again anti-persistent noise.
015 [

antipersistent noise (m=13)
antipersistent noise (m=12) ; ; /

pmf

0.05 r white Gaussian noise

random walk

10 20 30 40 50 60 70

number of swaps

Figure 3. Probability mass functions of the number of swaps sorting series with v /vy = —1,
/7 =0,71/7=1

It is interesting to note that, given the fact that WGN does not display the largest value
of Hgyaps, its pmf is more concentrated around the average pswaps = m(m — 1) /4 than that
of the random walk. More interesting is the observation that the pmf of the anti-persistent
noise is further concentrated around the mean. In the case in which m = 12, two peaks
appear at piswaps 1= /4.

This is something that occurs generally for even values of m. In fact, sorting the
degenerate limit sequence 1, —1, ..., —1 always requires m/2 swaps more than sorting
the series —1,1,...,1. On the contrary, for odd values of m, there is always only a single
peak at piswaps, since sorting the series 1, —1,...,1 and —1,1,...,—1 has the same cost:
(m —1)(m+1)/8. To illustrate this single peak, the pmf for v /9 = —1 and m = 13 is also
included in the figure. The larger spread around the mean, due to the two peaks appearing
for even values of m, explains why ng;%,s < Hgyaps is possible.

The above conclusions led us to define a two-steps-ahead estimator for bubble entropy
by setting:

2
bEn*. — Hgvtps_Hgvaps 1
iy = Wm+2 Wi : ( 8)
swaps — *Yswaps

In other words, instead of computing the difference in entropy between spaces with
dimensions m and m + 1, we consider the variation between the spaces m and m + 2 (hence
the pedix +2 instead of +1). This consideration allows us to compare the number of
swaps required to sort the vectors belonging to odd dimensional spaces (m odd) with
odd dimensional spaces (m + 2 odd) and even dimensional spaces (m even) with even
dimensional spaces (m + 2 even), eliminating the asymmetry detected between odd and
even spaces. It also leads to positive and growing entropy values, as shown in Figure 4,
in contrast to the behavior observed in Figure 1.



Entropy 2021, 23, 761

8 of 13

1.3}
1.2 ¢
LLl1r
0
S
R 1
o
0.9+
0.8 m = 2,4,6,8,10 -
m = 3,579
0.7 ‘ ‘ ‘
-1 -0.5 0 0.5 1
Y1/
Figure 4. The average numerical values of bEn?,, using the same simulations (and legend) in
Figure 1.
To rationalize the relation between bEni‘H and bEn?,, we notice that:
m—+2 m—+1 m—+1 m _ pym+2 m
(staps - staps) + (staps - staps) - staps - staps- (19)
Indeed:
Hm+2 —_ Hm
: m-+2 m+1 pym+1 m swaps swaps
min (staps - HSWapS’ staps - staps) < 2 < (20)
m+2 m+1 m+1 m
< max (staps - stapS/ staps - staps)

and, in practical applications, where empirically Hgy o5 is found to decrease with m:

m+2 _ pgm

m—+2 m-+1 swaps swaps m—+1 m
staps - staps < 2 < staps - staps- (21)

When m is large, the two bracketing values approach and:

Hgév—‘gzs - ngl/va S
Hg?/v:%)s - Hg«vaps ~ %, (22)
or, equivalently, for a WGN:
W;n tzs - W;n aps
ngtllas - ngaps ~ P 2 P : (23)

While Equation (23) is exact for a stationary process in the limit m — +oco, we empirically
verified that it holds sufficiently well for “practical” values of m. For example, the difference
is smaller than 5% when m > 8.

Now, taking the ratio side by side of Equations (22) and (23), we derive that:

bEn}, ~ bEn},. (24)

Therefore, the two estimators provide estimates that are quantitatively equivalent (e.g.,
both are 1 for a WGN).

5. Experimental Analysis

In order to support our theoretical considerations, we tested our observations on real
HRYV signals as well, obtained from Physionet [16]. The first data set is the Normal Sinus
Rhythm (NSR) RR Interval Database (nsr2db). This database includes beat annotations for
54 long-term ECG recordings of subjects in normal sinus rhythm (30 men, aged 28.5 to 76,
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and 24 women, aged 58 to 73). The original ECG recordings were digitized at 128 samples
per second, and the beat annotations were obtained by automated analysis with manual
review and correction.

The second data set is the Congestive Heart Failure (CHF) RR Interval Database (chf2db).
This database includes beat annotations for 29 long-term ECG recordings of subjects aged
34 to 79 years, with congestive heart failure (NYHA classes I, II, and III). The subjects
included eight men and two women; gender was not known for the remaining 21 subjects.
The original ECG recordings were digitized at 128 samples per second, and the beat
annotations were also obtained by automated analysis with manual review and correction.

The HRYV series were obtained from the beat annotation files. Only normal-to-normal
beat intervals were considered. To reduce the impact of artifacts on the estimates of the
metrics, we removed all NN intervals, which differed more than 30% from the previous
NN interval.

Our target was to compare the discriminating power of the two definitions of bubble
entropy, bEn’,; and bEn?,, to separate the two groups of subjects. We used p-values (the
Mann-Whitney U test) as a criterion. We computed the bubble entropy for bEn’,; and
bEn’, for values of m ranging from m = 1 to m = 50. In Figure 5, we present the box plots
for both bEn’; (the top subfigure of Figure 5) and bEn’, (the bottom subfigure or Figure 5).

(a)

Or-rANNITOLONDDPOT-NDTVONDDO = N® T
CFNOTOONOD T - = == ANANANNNNAND OO OO

Embedding dimension (m)

(b)

%ﬁ i

AL
M

! — nsr2
0.9 4

Or-rANNITOONDDOTANNDTDONDDO
CTNOTOONOD T == ANANNNNNNNN O ®

Embedding dimension (m)

Figure 5. Box-plots for the values of bEn}, (a) and bEn}, (b) for the controls (nsr2) and congestive
heart failure patients (chf2), while m rangesinm =1, ...,50.

For the simulations and as expected from the theoretical considerations, the values of
bEn’, and bEn’,, were similar. Normal subjects displayed a bEn that was larger than CHF
patients for small values of m (<5), while it became smaller when m is large. The results
of the statistical test are depicted in Figure 6. The blue dashed line represents p-values
computed with bEn, whilst the green line shows the corresponding p-values for bEn’,.
Please note that this is a log plot. There are two main conclusions from this graph:
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The p-values computed by bEn’, were smaller than those computed with bEn?,,

especially in the region of 10 < m < 20, where the method appeared to succeed with
better classification, which improved as m increased.

bEn’, presented a smoother behavior, especially in the same area: 10 < m < 20. This
is in accordance with the our main hypothesis that the method behaves in a different
way for odd and even values of m.

10";

Statistical significance level

102
107

erg

Statistical significance (p-value)

108

1g0l 1 I
0 5 10 15 20 25 30 35 40 45 5C
Embeddina dimension (m)

Figure 6. Comparison using the discrimination between the control and congestive heart failure
patients (nsr2db and chf2db databases). Blue line depict p-values computed for the bEn’; estimator
and green lines depict bEn?,.

In order to have a better sense of the discriminating power of the method, we marked
on Figure 6 the statistical significance level (blue solid line at 0.05) and the p-values com-
puted by Detrended Fluctuation Analysis (DFA) [17], index DFAa;, and DFAw;. In the
context of HRV series obtained from 24-h Holter recordings, the slope DFAx; is typically
found to be in the range 0.9 < a; < 1.2 for normal subjects, DFAx; > 1.33 for CHF patients
and DFA«; > 1.5 for subjects who survived a myocardial infarction [18]. Bubble entropy
always presents significantly better categorization than DFAw; and better categorization
than DFAwx, for 12 < m < 25.

For completeness, in Figure 7, we present the Area-Under-the-ROC-Curve (AUC)
computed when using either bEn’, and bEn’, to discrimnate the two populations. We
also included the 95% confidence intervals, computed using bootstrap (1000 iterations),
to compensate for the low dimension of the two populations. Coherent conclusions can
be drawn from these plots. The results in the figure confirm that bEn discriminated the
HRYV series of normal subjects and CHF patients when m was small (m < 4) with an AUC
comparable to DFAx;. We speculate that the characteristics of the signal they are picking
up might be the same.

Then, bEn shows a very large AUC also for about 15 < m < 25. While DFAx; detects
the long-term memory characteristics of the series, it does not distinguish between the two
populations, so the features detected by bEn might be different. Of note, the definition
of bEn permits the exploration of ranges of m, which are not typically accessible with
other entropy measures, such as ApEn or SampEn (m was rarely larger then 3, due to
convergence issues) or Permutation Entropy (typical values of m are smaller than 10 as the
factorial terms increase very quickly).
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Figure 7. Area-Under-the-ROC-Curve (AUC) values when using bEnj_1 (blue sketched line, a) and
bEn?, (green solid line, b) to distinguish between subjects in the nsr2db and chf2db databases.
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The 95% confidence intervals, also reported, were obtained with 1000 bootstrap resamplings. The
gray sketched and solid lines are the AUC values for DFAx; and DFAay, respectively, as well as their
95% confidence intervals (shaded areas).

6. Discussion

Even though this paper examines alternatives in the definition of bubble entropy, we
took the opportunity to summarize in this last section some conclusions on the comparison
of bubble entropy with other popular definitions, especially in the m-dimensional space.

Definitions in the m-dimensional space extract more sensitive information compared
with the more classic definitions in 1-dimensional space. They not only exploited the values
of the samples but also their order. If, for example, we shuffle the samples of a time series,
the values of both Shannon and Rényi entropy will be unaffected. Due to their increased
sensitivity, definitions in m-dimensional space became quite popular and are valuable tools
in entropy analysis.

Approximate and sample entropy are almost always used in research work involving
entropy analysis, especially in biological signals. We chose to compare bubble entropy
with those widely accepted estimators. We already discussed, in the introductory section,
the main advantages of bubble entropy analysis against approximate and sample entropy,
emphasizing the minimal dependence on parameters. We also discussed the discriminating
power, not only for approximate and sample entropy but also for permutation entropy,
an entropy metric that inspired bubble entropy.

As stated above, it was not the objective of this paper to make a comparison between
bubble entropy and other entropy metrics. For this, we refer the interested reader to our
previous work [11]. However, to add perspective, we included into Figures 6 and 7 the
values of DFA w; and a;. Detrended fluctuation analysis does not quantify entropy-related
metrics, but it is a “fractal” method that proved effective in distinguishing healthy subjects
from CHF patients [18]. The values of DFA«; are also related to the Hurst exponent for
long-term memory processes, as well as bubble entropy in [19].

7. Conclusions

The contributions of this paper are two-fold. First, we introduced an alternative
normalization factor for bubble entropy, based on the theoretical value of bubble entropy,
when WGN is given as input. With the new normalization factor, the entropy of WGN is
always equal to 1, for every value of m. While theoretically interesting, this consideration
does not affect the discriminating power of the method, since this is only a common
scalar value.

The second contribution of this paper is the investigation of a two-steps-ahead es-
timator for bubble entropy. Since we showed that (rarely) is there (when the series are
strongly anti-correlated) an asymmetry in the cost of bubble sorting between odd and even
dimensional spaces, we computed the bubble entropy to compare the entropy between em-
bedding spaces with odd dimensions or between embedding spaces with even dimensions.
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The advantage of this approach was illustrated with experiments with both simulated and
real HRV signals.

The simulated WGN signals showed that, for anti-persistent noise, where the asym-
metry between spaces with odd and even dimensions was maximally expressed, bubble
entropy presented similar values for all values of m, in contrast to the initial approach,
where the entropy values for anti-persistent noise were significantly different between
successive values of m. Theoretically, this consideration improves the discriminating power
of the method, even though conditions similar to strongly anti-persistent noise are not
often found in HRV signals.

For completeness, we performed experiments with real HRV signals, which were
publicly available and are widely used. The experiments showed that both examined
definitions showed comparable discriminating power between the NSR and CHEF signals.
However, for values of 10 < m < 20, the two-steps-ahead estimator presented slightly
higher statistical significance and more regular behavior, with a smoother difference be-
tween successive values of m.

The research increased our understanding of bubble entropy, in particular in the
context of HRV analysis. The two-steps-ahead estimator, while a minor refinement, should
not be ignored in future research directions.
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The following abbreviations are used in this manuscript:

AR AutoRegressive

HRV  Heart Rate Variability
WGN  White Gaussian Noise
NSR  Normal Sinus Rhythm
CHF  Congestive Heart Failure
ECG  Electrocardiogram
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