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Compared with marine organisms, research on microplastics (MPs) in freshwater

organisms is still less although MPs have been widely found in the freshwater ecosystem.

Hypoxia is a ubiquitous issue in freshwater aquaculture, and under such scenarios, the

toxic effects of MPs on typical aquaculture fish need to be clarified. In this study, we

studied the effects of MPs (polystyrene) on specific growth rate (SGR), hypoxia-inducible

factor-1α (HIF-1α), tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interferon

(IFN) in the yellow catfish (Pelteobagrus fulvidraco) under hypoxic conditions. After 15

days of exposure, the SGR was not affected by MPs or hypoxia. MPs significantly

increased the expressions of HIF-1α and TNF-α but inhibited the expression of IFN at

high concentration MPs under normoxia. However, hypoxia significantly inhibited the

expression of IL-8 and TNF-α under high MP concentration and low MP concentration,

respectively. In addition, MPs had significant concentration-dependent inhibitory effects

on IFN under hypoxia. Surprisingly, a positive correction between HIF-1α and TNF-α was

found in fish. Although hypoxia might alleviate the effects of MPs with low concentrations,

the interaction of hypoxia and MPs aggravated the negative effects of MPs on immune

factors at high concentration MPs. This study provided new insight into the complex

effects of hypoxia and MPs on aquatic organisms, and future studies should focus on

the cellular pathways of immune cells in fish. Given that MPs could induce the immune

response in fish, considerations should be paid to the impacts of MPs on freshwater

aquaculture, and hypoxia should be taken into consideration when evaluating the effects

of MPs.
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INTRODUCTION

Microplastics (MPs, <5mm in size) mainly come from the daily life of people or from the aging,
weathering, and broken of the large plastic pieces (Cole et al., 2011). Due to their small volume,
MPs are difficult to remove by sewage treatment completely (Hamidian et al., 2021), which make
them able to flow into inland rivers and eventually into marine ecosystems (Wang et al., 2021a). In
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recent years, many studies have been made on the occurrence of
MPs in the environment and their effects on marine organisms,
including physical damage, behavior change, tissue lesions,
oxidative stress, and gene damage (Huang W. et al., 2021).
MPs can also be used as a carrier for some pollutants in
the environment and carry the pollutants into the body when
organisms ingest MPs, which may cause more serious damages
to organisms (Gu et al., 2020).

With the increasing discoveries of MPs in rivers and lakes,
MPs have been increasingly viewed as a serious health concern
to freshwater ecosystems (Shang et al., 2020). China is a
major country in traditional aquaculture (Su et al., 2020), and
freshwater aquaculture products account for more than half of
the total production in 2020 (Fisheries Administration Ministry
of Agriculture Rural Affairs, 2021). In recent years, MPs have
been found in major rivers and lakes in China such as Yangtze
River, Yellow River, Pearl River, Poyang Lake, Dongting Lake,
and Taihu Lake (Fu and Wang, 2019). Especially in Taihu
Lake, the concentration of MPs has reached an astonishing
25,800 items/m3 (Su et al., 2016), which even greatly exceeds
the Yellow Sea (0.33 items/m3) and South China Sea (2,569
items/m3) (Cai et al., 2018; Wang et al., 2018). In addition to the
contamination of MPs in freshwater aquaculture water sources,
various freshwater aquaculture patterns, such as cycled-water,
cement-pool, net-cage, rice-field, and fish-light, can release MPs
into aquaculture waters (Sahu et al., 2016; Lv et al., 2020). Due
to the multiple sources of MPs, freshwater aquaculture objects
are inevitably subjected to MP pollution. However, less is known
on the effects of MPs on freshwater species, especially economic
freshwater fish.

In recent years, the harm of MPs to the immune system of
fish by affecting the expression of immune genes in fish has
been revealed. Tumor necrosis factor-α (TNF-α), interleukin
(IL), and interferon (IFN) are important factors in the immune
system, which play the role of activating immune cells, regulating
immune cells, and activating antiviral cells, respectively (Samuel,
2001; Whyte, 2007). Huang et al. (2020b) showed that the
expressions of TNF-α, IL-6, and IFN in the liver of the guppy
Poecilia reticulata were significantly increased after 28 days
of exposure to MPs. What is more, MPs not only affect the
expression of IFN at the gene level but also increase the secretion
of the protein corresponding to IFN (Jin et al., 2018). Luo et al.
(2021) found that MPs induced the expression of increased IL-
8 compared with the control group. The expression changes of
these proinflammatory biomarkers under the MPs make them
become the important index on the evaluation of fish welfare.

Hypoxia, a common phenomenon in aquaculture, which
can be caused by temperature rise, eutrophication, high-density
aquaculture, and water pollution (Wang M. et al., 2021), often
occurs at the bottom of the water body, leading to behavioral
change (Xu et al., 2006), metabolic obstruction (Obirikorang
et al., 2020), and decreased immunity (Ngoepe et al., 2020)
of aquaculture objects. What is more, hypoxia can aggravate
the negative effects of other environmental stressors on aquatic
animals (Hu et al., 2016; Somo et al., 2020), thus reducing
the production efficiency of aquaculture. With the deepening
of research, the hypoxia-inducible factor (HIF) is found to be

the main transcription factor regulating the hypoxia signaling
pathway in vertebrates (Wang C. et al., 2020). HIF-1 is widely
used in the study of hypoxia (Xu et al., 2021), and the
α subunit of HIF-1 is most sensitive to hypoxia compared
with the β subunit (Abdel-Tawwab et al., 2019). Although
this subunit has a short half-life in cells, it is difficult to be
hydrolyzed under hypoxia and accumulates in large quantities
in cells, which can activate the hypoxia signaling pathway
(He et al., 2019). At present, the HIF-1α gene sequence has
been successfully cloned from an aquaculture object, and its
function in the hypoxia signaling pathway has been found
(Lin et al., 2021). In addition, other studies have shown that
HIF-1α plays an important role in regulating inflammation,
but this effect has only been found in higher vertebrates such
as human cells and mouse cells (Li et al., 2020; Pena et al.,
2020).

On the one hand, MPs are newly emerging environmental
pollutants in freshwater aquaculture, which have been confirmed
the biological accumulation of aquaculture species (Lv et al.,
2020). On the other hand, hypoxia is a traditional inhibitor of
aquaculture and often occurs in an aquatic pond (Xu et al.,
2006). However, the effect of these two simultaneous factors at
the bottom of the pond on benthic objects is unknown.

The yellow catfish Pelteobagrus fulvidraco is a unique
freshwater aquaculture species in China, which is widely loved
for its delicious meat. Its production reached 565,477 tons
in 2020 (Fisheries Administration, Ministry of Agriculture
and Rural Affairs, People’s Republic of China, 2021). Hypoxia
occurs frequently in yellow catfish aquaculture due to the
intensive, high-density, and high-feeding farming, while MPs
were also detected from yellow catfish in a reservoir (Zhang
et al., 2017; Wang M. et al., 2021). However, this research
on yellow catfish mainly focuses on breeding and nutrition
(Wang et al., 2021b; Zhao et al., 2021), while the information
on the complex effects of MPs and hypoxia on its physiology
and ecology is very scarce. In contrast, compared with other
freshwater aquaculture fish, their scaleless bodies make them
more vulnerable to MPs and their immune function more
important (Feng et al., 2019), and the demersal habits of
yellow catfish make them more susceptible to MPs and hypoxia.
Therefore, we aimed to study the specific growth rate (SGR) and
immune-associated genes, i.e., HIF-1α, TNF-α, IL-8, and IFN of
yellow catfish under combined exposure of hypoxia and MPs.
We concluded that (1) MPs cause the cellular immunological
stress of yellow catfish and (2) hypoxia aggravates the negative
effects of MPs on immune parameters of yellow catfish at a
high concentration.

MATERIALS AND METHODS

Ethics Statement
The processes involving animals complied with the Animal
Research: Reporting of in vivo Experiments (ARRIVE)
guidelines. All experiments were conducted under the approval
of the research committee of the Institute of Hydrobiology,
Chinese Academy of Sciences.
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Fish
The juvenile yellow catfish (size 5.80 ± 0.31 cm, body weight
3.00 ± 0.74 g) were collected from Huai’an Research Center of
Hydrobiology Research Institute, Chinese Academy of Sciences.
Before the experiment, 1,000 yellow catfish were acclimated for 2
weeks in indoor tanks with a circulating water filtration system.
During the domestication process, water quality parameters were
controlled as follows: temperature 27.2 ± 0.4◦C, pH 7.1 ± 0.62,
dissolved oxygen (DO) 6.73 ± 0.3 mg/L, and ammonia nitrogen
<0.1 mg/L. All these parameters were measured by using YSI
Professional Plus (Ohio, USA). The fish were fed an expanded
pellet diet (1.8 g/day) containing more than 40% of protein
at 08:00 and 18:00 (Qianjiang Jiajia Biotechnology Co., Ltd.,
Qianjiang, China) every day.

Microplastics and Hypoxia
The MPs (polystyrene, green fluorescent microsphere, 20µm,
density: 10 mg/cm3, and excitation and emission peaks: 488 and
518 nm) used in the experiment were purchased from Tianjin
Baseline Chromtech Research Centre, Tianjin, China. Based
on Wang X. et al. (2020), before the exposure experiment, a
scanning electron microscope (SEM, S-3400N, Hitachi, Japan)
and a micro-Fourier transform infrared spectroscope (m-FT-IR,
NICOLET iN10, Thermo Fisher Scientific, USA) were used to
detect and validate the MPs used in the experiment, respectively.
According to the study by Fu and Wang (2019), in the Chinese
freshwater ecosystem, the most serious polluted level and the
main size ofMPs are 25,800 particles/m3 and 20µm, respectively.
Thus, two MP concentrations, i.e., 25.8 particles/L (about
0.115 µg/L, represented the environmental concentration)
and 2,580 particles/L (about 11.5 µg/L, represented the high
concentration), as well as the control treatment (0 particles/L)
were set for the experiment. A stock solution of MPs in ultrapure
water was prepared and then sonicated 30min before using for
the experiment (Li et al., 2021).

Based on the DO in acclimation and the study by Diaz
and Rosenberg (2008), the normoxia and hypoxia were set to
6.7 and 2.0 mg/L, respectively. The hypoxic condition in the
experimental tank was achieved through the fish respiration
consumption and the adjustment of the air stone in the tank.
This method has been verified in the experiment by Wang M.
et al. (2021), and the DO can be reduced to 2.0 mg/L within 2 h.
In short, before the beginning of hypoxic exposure, the tank was
sealed with kraft paper, and the aeration device was closed. The
kraft paper was opened when the DO reached the specified value,
which was detected by YSI Professional Plus, and the aeration
amount of the aeration device was controlled to stabilize the DO.

Exposure Experiment
The exposure lasted for 15 days and included six groups,
namely, normoxia + no-MPs, normoxia + low concentration
MPs, normoxia + high concentration MPs, hypoxia + no-
MPs, hypoxia + low concentration MPs, and hypoxia + high
concentration MPs. After the acclimation, a total of 540 healthy
fish was randomly sampled and divided averagely into six
experimental groups, and each group had three repeated tanks
(560× 350× 340mm, with 30 L of water, N = 30).

TABLE 1 | Primers for qPCR identification of HIF-1α, TNF, IL-8, IFN, and β-actin.

Gene Primer sequence (5′-3′)

HIF-1α F CGGATCCAGAGCAAAGCGAT

R TTAGCATGACGTCGTCTCCG

TNF F ATAACCCACGCCTATGACTG

R GGCTATGACTCGCAACACTT

IL-8 F CACTCACCAAGCCAGCAATG

R AGACAACCCAAGACTTCACC

IFN F AGAGGCAAGGAGTCTGAGGTATT

R CCAGGTGAGAGGTGACATTGTG

β-actin F TTCGCTGGAGATGATGCT

R CGTGCTCAATGGGGTACT

At the beginning of the experiment, MPs were added to the
relevant tanks to achieve the desired concentrations. To maintain
water quality and concentrations of MPs, water in each tank
was renewed for 1 s every day (appropriate modifications were
made on the basis of Huang et al., 2020a), and then the measures
mentioned above were repeated to make sure each tank meet the
exposure condition. Except for DO, all water parameters during
the experiment were similar to the acclimation. In addition, the
survival of the fish was recorded after the renewal of the water.

Sampling
After 15 days of exposure, the weight of fish from each tank
was recorded (N = 4). Then the gill (the major organ for
breath) and liver (the major organ for detoxification) were
collected from them which were anesthetized by 120 mg/L of 3-
aminobenzoic acid ethyl ester methanesulfonate (MS-222, Cat.
No. A5040, Sigma-Aldrich., Shanghai, China) and put into the
liquid nitrogen to freeze quickly, and the gills and livers of four
fish in each tank were mixed into one sample. All the samples
were stocked in−80◦C refrigerator for biochemical analysis.

Quantitative PCR
The method of Trizol was used to extract the total RNA from the
gills and livers, and the concentration and purity of RNA were
determined by using a microspectrophotometer (Thermo Fisher
Scientific, USA). The cDNA was synthesized with total RNA
using the reverse transcription kit [PrimeScript (r) RT Reagent
Kit with gDNA Eraser] according to the instructions.

After determining the amplification efficiency of primers
(>90%, Table 1), the relative expressions of HIF-1α (in gills),
TNF, IL-8, and IFN (in livers) were detected by qPCR. The
qPCR was conducted on the 7500 Real-Time PCR System
(Applied Biosystems, USA) using the 2× SYBR Green qPCR
Mix (Antibody, ROX) (Genenode Biotech Ltd., Cat# 4302). The
mixture of qPCR included 1 µl of cDNA, 0.25 µl of forward
and reverse primers, and 5 µl of 2× SYBR Green qPCR Mix
(Antibody), and the RNase-free ddH2O were added to fill a
total volume of 10 µl. After full mixing, the following qPCR
procedures were executed: 95◦C for 3min, followed by 40 cycles
of 95◦C for 15 s and 60◦C for 30 s. Finally, the relative expression
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FIGURE 1 | Scanning electron microscope (SEM) image of MPs (A) and micro-Fourier transform infrared (m-FT-IR) spectroscopy of MPs (B).

FIGURE 2 | The data of dissolved oxygen (DO) under normoxia and hypoxia

after renewing the water every day (N = 15). The X-axis is the time after

renewing the water, and the Y-axis is the DO at the corresponding time.

levels were measured by using the 2−11Ct method using β-actin
as an internal reference.

Statistical Analysis
The SGR was calculated by the following formula according to
the study by Yang et al. (2015) by using Excel 2019:

Specific growth rate (SGR, %)= 100× [ln (Wt) – ln(W0)]/t
where Wt (g) and W0 (g) are the final and initial fish body

weights, respectively, and t means duration.
The results were expressed as mean ± SD. After verifying the

distribution normality of the data by using the Kolmogorov–
Smirnov test, two-way ANOVA was used to analyze the effects
of MPs, hypoxia, and their interaction. Then, the effects of MPs
at each fixed DO and the effects of DO at each MP concentration

were evaluated by using the one-way ANOVA and Student’s t-
test, respectively. Significance was indicated by P < 0.05. For all
biochemical parameters, the principal component analysis (PCA)
was used to reduce the complexity of multiple index analyses.
The Pearson coefficient (r) was used to compute the correlation
between variables, and only the correlations with | r | > 0.4 and P
< 0.05 were considered to perform the unary line fitting. All the
analysis and data visualizations (including SGR) are conducted
on the Origin Pro 2018C.

RESULTS

Characteristics of MPs
The spectrum match of MPs according to m-FT-IR was 94%
(Figure 1A). The shape of MPs is smooth sphere, and the particle
size is 20.2± 0.04µm (N = 5) according to SEM (Figure 1B).

Dissolved Oxygen
The DO for normoxia and hypoxia treatments every day is shown
in Figure 2 (N = 15). Two hours after renewing the water, the DO
of hypoxia groups reached 2.02± 0.39 mg/L and was maintained
at this level until the next water renewing. The DO of normoxia
groups was 6.72± 0.25 mg/L.

Specific Growth Rate
No significance was observed in the interaction betweenMPs and
DO in SGR (Table 2). Although the SGRs in hypoxia are all lower
than in normoxia regardless of MP concentrations, there was no
statistical difference between treatments (P > 0.05, Figure 3).

The Relative Expression of HIF-1α

There was no significant interactive effect of MPs and DO
on HIF-1α (Table 2). After 15 days of exposure, HIF-1α was
increased in both 0.115 and 11.5 µg/L MPs significantly
compared with the control (0 µg/L) under normoxia (P <

0.05). However, under hypoxia, no significant difference among
the three MP treatments was observed. Compared with the
normoxia, hypoxia significantly increased HIF-1α when there
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TABLE 2 | Summary of two-way ANOVA results on effects of microplastics (MPs) and dissolved oxygen (DO) on SGR, HIF-1α, TNF-α, IL-8, and IFN of Pelteobagrus

fulvidraco.

Source df HIF-1α TNF-α IL-8

MS F P MS F P MS F P

MPs 2 1.513 2.326 0.140 0.655 34.926 < 0.01 0.341 8.536 < 0.01

DO 1 0.027 0.041 0.842 < 0.01 0.031 0.863 0.080 2.009 0.182

MPs×DO 2 0.617 0.948 0.415 0.191 10.182 < 0.01 0.282 7.057 < 0.01

Error 12 0.650 0.019 0.040

Source df IFN SGR

MS F P MS F P

MPs 2 1.047 131.158 < 0.01 < 0.01 0.383 0.690

DO 1 0.084 10.500 0.007 0.008 0.737 0.407

MPs×DO 2 0.599 75.098 < 0.01 < 0.01 0.04 0.961

Error 12 0.008 0.011

FIGURE 3 | The specific growth rate (%) of Pelteobagrus fulvidraco after

exposure of 15 days.

were no MPs but significantly reduced HIF-1α under high MP
treatment (11.5 µg/L) (P < 0.05, Figure 4A).

The Relative Expression of TNF-α, IL-8,
and IFN
There were significant interactions between MPs and DO on
TNF-α, IL-8, and IFN (Table 2).

In normoxia, TNF-α was significantly increased in 0.115 and
11.5 µg/L MPs compared with the control (0 µg/L) (Figure 4B,
P < 0.05). There was no significant difference in IL-8 among
three MP treatments under normoxia (Figure 4C, P < 0.05).
However, compared with the 0 and 0.115 µg/L MPs, IFN was
decreased in 11.5 µg/L MPs under normoxia (Figure 4D, P <

0.05). Under hypoxia, TNF and IL-8 were significantly increased

and significantly decreased in 11.5 µg/L MPs compared with the
control, respectively (Figures 4B,C, P< 0.05). Surprisingly, there
was a significant concentration-dependent decrease in IFN in
hypoxia (Figure 4D, P < 0.05).

In non-MP treatment, IFN in hypoxia was higher than those
in normoxia significantly (Figure 4D, P < 0.05). Only TNF in
hypoxia was lower than that in normoxia under 0.115 µg/L
MP treatment (Figure 4B, P < 0.05). In addition, there were
significantly lower expressions of IL-8 and IFN under hypoxia
than normoxia in 11.5 µg/L MPs (Figures 4C,D, P < 0.05).

PCA and Correlation Analysis
As shown by PCA, PC1 accounted for 43.17% of all variables,
which separated the presence or absence of MP treatments. PC2
accounted for 32.60% of all variables, which separated normoxia
and hypoxia (Figure 5).

The Pearson coefficient (r) between variables is shown in
Table 3, and the r between TNF and HIF-1α and IL-8 and IFN
was greater than 0.4. However, only the r between TNF and HIF-
1α was considered according to the standard mentioned above (r
= 0.49129 > 0.4, P = 0.0384 < 0.05). According to the scatter
diagram, we chose the unary equation, the sine function, and the
logarithmic function to fit the data, compared the fitting degree
of the three models, and determined that the unary equation was
the most suitable model (Supplementary Table S1).

Unary linear regression was the best model to fit the
correlation between TNF and HIF-1α. The fitting equation was
y = 1.23416x + 0.07637 (r2 = 0.24137) and all the data points
was in 95% prediction bands except one (Figure 6).

DISCUSSION

Microplastics have become a hot topic since Thompson et al.
(2004) discovered them. But there is still less research on MPs
in freshwater organisms than in marine organisms. The Qinghai-
Tibet Plateau is the birthplace of many rivers (e.g., the Yangtze
River, the Yellow River, and the Lancang River). However, Jiang
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FIGURE 4 | Relative expression of HIF-1α (A), TNF (B), IL-8 (C), and IFN (D) under different treatments (normoxia + 0 MPs, normoxia + 0.115 µg/L MPs, normoxia +

11.5 µg/L MPs, hypoxia + 0 MPs, hypoxia + 0.115 µg/L MPs, and hypoxia + 11.5 µg/L MPs) of P. fulvidraco. Different capital letters and different lowercase letters

indicate significant differences among MP concentrations in normoxia and hypoxia (P < 0.05). “*” represents the significant difference between normoxia and hypoxia.

et al. (2019) found that the water bodies of the Qinghai-Tibet
Plateau contained MPs, and the Yangtze River would receive
more than 3.1 × 105 tons MPs each year (Lebreton et al., 2017).
Some studies have carried out the toxicological effects of MPs
on tilapia (Oreochromis niloticus), but the size of MP particles
(0.1 and 5µm, respectively) and the exposure concentration
(100 and 50 µg/L, respectively) are far from the results of the
environmental investigation (Ding et al., 2018; Huang Y. et al.,
2021). Based on Fu and Wang (2019), in Chinese freshwater
ecosystem, the highest MP concentration is 25,800 items/m3,
and the smallest size of MPs is just about 20µm. Therefore, this
study can provide environmentally relevant insights on MPs in
the field of freshwater based on the real size and concentration in
the environment.

The SGR was an important index to measure the economic
benefits of fisheries, and the larger the value was, the greater
of fish would be. Malinich et al. (2018) found that MPs had
no impact on the growth of the fathead minnow Pimephales
promelas, and a similar result was detected from the brown trout
Salmo trutta (Jakubowska et al., 2020). However, MPs could

induce growth inhibition in the common carp Cyprinus carpio.
The reason for the difference may be the different exposure
methods (waterborne or foodborne). In this study, yellow catfish
did not exhibit a significant difference between MP treatments,
and it might be associated with the smooth and spherical shape of
MPs, which made them easily expel from the intestine (Mazurais
et al., 2015). Hypoxia could inhibit the growth of juvenile fish,
which had been reported previously (Yang et al., 2013; Campbell
and Rice, 2014), and yellow catfish showed a significant decrease
in SGR under hypoxia for 8 weeks (Yang et al., 2015). Under
hypoxia, although there was no statistical difference, a minimal
lower change could be seen compared with normoxia in only 15
days of exposure, which indicated that the hypoxia may impact
the growth of yellow catfish regardless of the presence or absence
of MPs.

Hypoxia can increase the expression of HIF-1α in organisms
has been confirmed in a large number of studies (Kelly et al.,
2020; Wang M. et al., 2021; Xu et al., 2021). HIF-1 is a
heterodimer composed of HIF-1α and HIF-1β (Semenza, 1998).
Among them, HIF-1β is insensitive to the changes in O2
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FIGURE 5 | The PCA of P. fulvidraco for 15 days of exposure (NN: normoxia + 0 MPs, NL: normoxia + 0.115 µg/L MPs, NH: normoxia + 11.5 µg/L MPs, HN:

hypoxia + 0 MPs, HL: hypoxia + 0.115 µg/L MPs, and HH: hypoxia + 11.5 µg/L MPs).

TABLE 3 | The Pearson coefficient (r) between HIF-1α, TNF, IL-8, and IFN of P.

fulvidraco.

HIF-1α TNF IL-8 IFN

HIF-1α Pearson coefficient (r) 1 0.49129 0.01644 −0.08288

P value – 0.0384 0.94839 0.74371

TNF Pearson coefficient (r) 0.49129 1 0.01041 −0.36829

P value 0.0384 – 0.96729 0.13264

IL-8 Pearson coefficient (r) 0.01644 0.01041 1 0.45988

P value 0.94839 0.96729 – 0.05483

IFN Pearson coefficient (r) −0.08288 −0.36829 0.45988 1

P value 0.74371 0.13264 0.05483 –

availability, while HIF-1α can accumulate in large quantities
in vivo due to its difficulty in degradation under hypoxia,
activating the hypoxia signaling pathway (Uchida et al., 2004).
Activated hypoxia signaling pathways modulate other biological
processes associated with increased O2 release or decreased
O2 consumption, such as the regulations of erythropoietin,
glucose transporter, glycolytic enzyme, and expression of
vascular endothelial growth factor (Semenza, 1999), allowing the
organism to adapt to new environmental changes. This could
also explain why the expression of HIF-1α changes significantly
under hypoxia compared with normoxia. As shown in Figure 4A,
both low (0.115 µg/L) and high (11.5 µg/L) concentration MPs
could increase the expression of HIF-1α under normoxia. A

similar result was obtained in themicrocrustaceanDaphnia pulex
(Liu Z. et al., 2020), despite nanoplastics were used in their
experiments, which might be more biotoxic than MPs (Browne
et al., 2008). It was possible that HIF-1α could also be used as
an indicator for toxicological tests of contaminants as well as
other cytokines, such as the heat shock proteins (Varo et al.,
2019; Jaikumar et al., 2021). Although this study did not detect
the presence and quantity of MPs in gill tissues, it could be
speculated from previous studies that the increased expression
of HIF-1α might be related to the accumulation of MPs in gill
tissues, which would influence the normal respiration (Lu et al.,
2016; Wang et al., 2019; Huang et al., 2020a). However, in this
study, we did not find that MPs increased the expression of HIF-
1α under hypoxia treatment, indicating that MPs did not exert
biological toxicity under hypoxia. As we know, fish will head
out of the water to utilize the oxygen in the air when they live
in the hypoxic water environment (Juca-Chagas, 2004), and this
behavior is defined as “floating head.” During the experiment, in
the hypoxia group, “floating head” was recorded. This behavior
could decrease the amount of water fish filtered, reduce the
number of MPs getting into fish, and thus ease the negative
effects of MPs. Oxygen was necessary for the survival of oxygen-
consuming organisms, and organisms had already developed an
effective defense mechanism in the face of the occasional lack of
oxygen during survival (Bickler and Buck, 2007). However, in the
face of emerging environmental pollutants such as MPs, yellow
catfish seemingly did not find an effective solution to resist the
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FIGURE 6 | The correlation between the relative expression of HIF-1α and TNF of P. fulvidraco by unary linear regression.

impacts of MPs, but hypoxia can hold back the effects of MPs
on HIF-1α.

According to previous studies, harmful substances in the
environment, such as MPs, heavy metals, pesticides, and
antibiotics, could cause the inflammatory response of organisms
(Liu H. et al., 2020; Maselli et al., 2020; Pirsaheb et al., 2020;
Wang Y. et al., 2021). However, inflammatory responses in fish
were often closely related to cytokines such as TNF, IL, and IFN
(Falcão et al., 2021). TNF-α is an important immune factor that
is heavily induced in injury, inflammation, and wound responses
and activates macrophages, enhancing their phagocytosis and
clearance to pathogens (Secombes et al., 2001). TNF-α has been
shown to induce the expression of other genes involved in the
immune response, such as IL-1β, IL-8, and COX2. IL-8, the first
known chemokine, mainly attracts the movement of neutrophils,
T-lymphocytes, and basophils in the body (Whyte, 2007). IFN
is a secreted protein that induces antiviral activity in vertebrates
and regulates apoptosis and cellular immunity (Samuel, 2001).
Three factors interact to enhance the resistance of organisms to
the external environment. Therefore, the transcription of these
three types of immune factors was detected to comprehensively
evaluate the immune status of yellow catfish.

In this study, the expressions of the three immune factors
showed different changes under different MP concentrations.
Under normoxia, the expressions of TNF-α were significantly
increased with the presence of MPs. This suggested that MPs
activated immune mechanisms in yellow catfish, which was due
to the activation of the NF-κB signaling pathway, leading to the

increased expression of related signaling factors (Wu et al., 2020;
Yang et al., 2020). The same result was also obtained by Luo
et al. (2021) who studied zebrafish (Danio rerio). Compared with
normoxia, the expression of TNF-α was higher under hypoxia
with 0 MPs, although this increase was not significant. Martinez
et al. (2020) have found that hypoxia increased the expression
level of TNF-α, and it was similar to our results. Under hypoxia,
the relative expression of TNF-α was lower than those under
normoxia in 0.115 µg/L MP treatment. But in 11.5 µg/L MP
treatment, TNF-α was higher than those in 0.115 µg/L MPs
under hypoxia. It is explained that hypoxia could reduce the
negative effects of MPs on yellow catfish to some extent. The
reasons for this result might be the reduced uptake of MPs by fish
(direct reason) and the regulation of HIF-1α (indirect reason).

In contrast, the relative expression of IL-8 in normoxia was
not influenced by the MPs, and it might be due to the size of
MPs. Based on the experiment in Danio rerio, 0.5µmMPs could
decrease the relative expression of IL-8, but 50µm MPs did not
have the same negative effects (Jin et al., 2018), and the fact that
smaller MPs have more serious negative effects has been proved
by Browne et al. (2008). Under hypoxia, the variation tendency
of IL-8 was the same as the normoxia condition which mainly
showed an increase at 0.115 µg/L MPs and a decrease at 11.5
µg/L MPs, although the decrease at 11.5 µg/L was significant.
In the study by Zhang et al. (2019) on the immune effects of
di-2-ethylhexyl phthalate (DEHP, a kind of phthalic acid ester,
PAEs) on yellow catfish P. fulvidraco, it was also observed that
the relative expression of IL-8 increased at low concentration
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DEHP and decreased at high concentration DEHP. We held
the opinion that this variation tendency of IL-8 was unique to
yellow catfish exposed to environmental pollutants. However,
the relative expression of IL-8 in 11.5 µg/L MPs in hypoxia was
lower than that in normoxia, which explained that the composite
effects of hypoxia and high concentration MPs could inhibit the
expression of IL-8. And the interactive effects of hypoxia and
MPs were observed in this study, which indicated that hypoxia
aggravates the inhibition of hypoxia in the expression of IL-8. But
this interaction did not have the same inhibition in 0.115 µg/L
MPs under hypoxia, which might be related to the decrease of
MP intake.

As a cytokine, IFN plays an important role in the immunity
of the body, apoptosis, and antivirus (Samuel, 2001). Previous
studies have shown that MPs can increase the relative expression
of IFN in zebrafish (Danio rerio) and guppies (Poecilia reticulata)
(Jin et al., 2018; Huang et al., 2020b). In this study, we also
saw an increase in the relative expression of IFN in 0.115 µg/L
MP treatment under normoxia, although this increase was not
significant. It might be related to the inflammatory response
caused by MPs. However, in the 11.5 µg/L MP group, the
expression of IFN was significantly reduced under normoxia,
which had not been found before. As mentioned above, it might
be related to the difference of the species. Previous studies have
shown that hypoxia could cause a significant increase in the
expression of IFN (Niklasson et al., 2011; Chen et al., 2017), and
the same result was obtained in this study. Based on the result of
two-way ANOVA, a significant interaction of hypoxia and MPs
was observed. This concentration-dependent interaction induced
the inhibition in the expression of IFN.

According to the PCA, two principal components accounted
for 75.77% of the total composition. PC1 separated MP
treatment from non-MP treatment, accounting for 43.17 of the
total variances, while PC2 separated normoxic treatment from
hypoxic treatment, accounting for 32.60% of the total variances,
indicating that MP treatment had a greater impact on yellow
catfish. Significant positive correlation between TNF-α and
HIF-1α, and this relationship had been discovered in mouse
cells and human cells (van Uden et al., 2008; Li et al., 2020). We
also found that there was a relationship between TNF-α and
HIF-1α in fish, which could make up the gap between HIF-1α
and TNF-α in fish. When inflammation occurred in the body,
TNF-α induced a large number of macrophages to accumulate
in the inflammatory site, consumed a large amount of oxygen,
resulting in hypoxia in the inflammatory part and the production
of a large number of HIF-1α (Cummins et al., 2016). In contrast,
TNF-α could activate the NF-κB signaling pathway to produce
NF-κB factor, and several subsequent NF-κB subunits bind to
the promoter of HIF-1α, thereby inducing HIF-1α production in
the body (Lin and Simon, 2016; Warbrick and Rabkin, 2019). In
addition, HIF-1α plays a crucial role in the initiation, regulation,
and coordination of cell responses during inflammation
(Frede et al., 2007).

CONCLUSION

This study filled the gap in understanding the effects of MPs on
benthic fish under hypoxia. In this study,MPs were able to induce
immune responses on yellow catfish. Hypoxia seemed to alleviate
the effects of MPs at 0.115 µg/L on yellow catfish to some extent,
but the interaction between hypoxia and MPs aggravated the
negative effects of MPs on the expression of immune parameters
on yellow catfish at 11.5 µg/L MPs. Thus, attention should be
paid to the harm of MPs to aquaculture fish species, and the
occurrence of hypoxia in water bodies should be reduced as far
as possible. To form a systematic understanding, future studies
should focus on the molecular pathway of immune cells in fish
exposed to MPs and hypoxia.
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