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Abstract

Many studies have shown that vaccines inducing CD8+ T cell responses can reduce viral loads and preserve CD4+ T cell
numbers in monkey models of HIV infection. The mechanism of viral control by the vaccine-induced CD8+ T cells is usually
assumed to be cytolysis of infected cells. However, in addition to cytolysis of infected cells, CD8+ T cells secrete a range of
soluble factors that suppress viral replication. We have studied the dynamics of virus and CD4+ T cells in a successful
vaccination-challenge model of SHIV infection. We find that better viral control in the acute phase of infection is associated
with slower decay of peak viral load. Comparing viral and CD4+ T cell dynamics in acute infection, we find that a cytolytic
mode of viral control with direct killing of infected cells is inconsistent with the observed trends. On the other hand,
comparison of the predicted effects of noncytolytic CD8+ effector function with the experimental data shows that non-
cytolytic control provides a better explanation of the experimental results. Our analysis suggests that vaccine-induced CD8+
T cells control SHIV infection by non-cytolytic means.
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Introduction

Virus-specific CD8+ T cells play an important role in control of

HIV-1 infection in humans and simian immunodeficiency virus

(SIV) infection in macaques [1,2,3,4]. After T-cell receptor

interaction with peptide/major histocompatibility class I (MHC-

I) complexes, CD8+ T cells proliferate and express a variety of

effector functions that inhibit viral replication. These include

direct lysis of infected cells [5] and release of a range of cytokines

[6], which may suppress production of new virions by infected

cells, or chemokines [7] inhibiting viral entry into the host cells.

Different types of CD8+ T-cell antiviral activity have been shown

in vivo by FACS sorting of cells expressing different markers in

blood and tissue samples taken from HIV patients and SIV-

infected monkeys [8], and in a range of in vitro experiments

[9,10,11]. There is evidence that multifunctionality of CD8+ T

cells correlates with the level of viral control [8,12], and that HIV

non-progressors exhibit strong noncytolytic response [13]. It is

therefore important to determine which type of CD8+ T cell

effector function is the most important in HIV/SIV control in

vivo. Several studies of SIV dynamics in CD8-depleted rhesus

macaques have addressed this question [2,14,15]. They showed

that the magnitude and rate of rise in viral load following CD8+ T

cell depletion was too rapid to be explained by increased lifespan

of infected cells [2], and that the decay of SIV under antiretroviral

treatment in the chronic phase of infection is not altered in the

absence of CD8+ T cells [14,15]. Similarly, we have recently

demonstrated that the decay rates of wild-type and escape mutant

virus are similar in SHIV infected macaques, and thus the

dynamics of immune escape are inconsistent with cytolytic control

of wild-type virus [16]. These results indicate that direct killing of

infected cells might not be the dominant means of viral control in

the chronic phase of SIV/SHIV infection.

Simian-human immunodeficiency virus (SHIV) infection of

rhesus macaques provides a model for studies of potential

protective ability of vaccines against HIV-1, where a large number

of vaccines have proved effective [17]. Our aim is to determine,

from the dynamics of the early and acute SHIV infection, whether

the early CD8+ T cell response, stimulated by vaccines that

generate cell-mediated immunity, is predominantly cytolytic or

noncytolytic in this animal model.

In a recent paper [18], we have shown that in CXCR4-tropic

SHIV-infected monkeys vaccination significantly reduced peak

viral load and increased the lowest CD4+ T cell count in the acute

phase of infection. Although we demonstrated the decrease in

virus replication in vaccinated animals, we did not identify the

specific mechanism (i.e. the CD8+ T cell effector function)

responsible for this outcome.

Here we investigated the relationship between the peak viral

load and the decay rate of virus in order to determine if the

improved virus control consistently corresponds to increased direct

killing of infected cells, or is better explained as a consequence of

increased noncytolytic effector functions. We found that lower

viral peak was associated with a slower decay of virus after the

peak. The viral peak and the decay rate were positively correlated

across all animals.

Using a modeling approach to investigate the dynamics of virus

and CD4+ T cells, we find that the kinetics of viral load and the

loss of CD4+ T cells to infection are not consistent with a cytolytic

mechanism of CD8+ T cells killing SHIV infected cells. However,

if the mechanisms of CD8+ T cell control were non-cytolytic, or

involved killing of infected cells in a ‘window period’ before they
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produced virus, then the modeled dynamics of viral and CD4+ T

cells would be consistent with the experimental data. This suggests

that vaccine-induced virus-specific CD8+ T cells in SHIV

infection control virus using non-cytolytic mechanisms.

Results

Vaccination against SIV and SHIV results in varying degrees of

protection, depending on the type of vaccine, viral strain and

animal model. The effect of improved viral control in early

infection in vaccinated animals can be seen as the decrease in the

peak plasma viral load and reduced loss of CD4+ T cells in

peripheral blood. We have recently shown [18,19] that there is a

strong positive correlation between peak viral load and CD4+ T

cell loss in the acute phase. Peak viral loads are consistently and

significantly lower in vaccinated animals than in unvaccinated

controls.

One limitation in comparing viral decay data in controls and

vaccines is that the animals were vaccinated with a variety of

regimes, some of which (like adenovirus 5) were very effective,

while others (like Alum) were not. This can be seen in the overlap

of viral peaks. In order to take into account the effectiveness of

different vaccines or of the immune response in control animals,

we investigated how the reduction in peak viral load affected viral

decay. Figure 1 shows viral decay rates plotted against corre-

sponding peak viral loads. We found a significant positive

correlation between peak viral load and decay rate (Spearman

r = 0.346 and p = 0.0418). That is, a more effective immune

response, which led to better control of peak viremia, was actually

associated with slower decay of virus after the peak.

The dynamics of cytolysis
Let us consider the consequences of CD8+ T cell cytolysis, when

the course of the acute phase of infection in different animals

varies only because of different infected cell lifespan. Figure 2A

illustrates the expected relationship between peak viral load and

viral decay rate, when virus is controlled by cytolysis of infected

cells. When death rate of infected cells is sufficiently low, almost all

CD4+ T cells are infected at nadir, so that the decay of virus is

slow and almost exactly reflects the slow death rate of infected

cells. Increasing the death rate (or killing by cytotoxic T

lymphocytes) leads to increased observed decay rate while

decreasing peak (red, pink, purple and dark blue lines in

Figure 2A). However, when the infected cell death rate becomes

very high, the overall level of infection is decreased sufficiently that

the fraction of cells infected at peak is significantly reduced. This

means that there are more uninfected cells available during the

decay phase of virus, immediately after the peak. The observed

rate of viral decay is the net effect of infected cell death balanced

by the rate of new infections being produced. Thus, when the viral

peak is sufficiently reduced, the decay rate slows down because

there are progressively more uninfected cells available for infection

during the decay phase (the light blue line in Figure 2A). This

means that there must be a maximum decay rate for some

intermediate peak viral load, and that the decay rate should

become slower when the peak decreases further.

It is clear from the above reasoning that the correlation between

peak viral load and viral decay rate can be either positive or

negative. We would see a negative correlation when there are very

few remaining uninfected cells, and faster decay is caused by faster

disappearance of infected cells. In the positive correlation regime,

the decay slows down with decreasing viral load because there are

more uninfected cells at peak, thus allowing reinfection to balance

the death of infected cells. Crucially, a positive correlation between

peak viral load and observed viral decay can only occur when the

number of remaining uninfected cells during decay is sufficiently

large.

Our model (Eq.3–5) reproduces this behaviour. Figure 2B shows

the generic dependence of the decay rate (Eq.9) on peak viral load

(Eq.8) for increasing death rate of infected cells (d) (in the direction

of arrows), while Figure 2C shows the corresponding generic

dependence of CD4+ T cell depletion at nadir (1-Tmin/T0) on

peak viral load. Figures 2B and 2C were obtained using the

method described in the Supplementary Material A. The viral

decay rates in the blue rectangle in Figure 2B are negatively

correlated to the peak, and correspond to more depleted CD4+ T

cells in the blue rectangle in Figure 2C. The yellow rectangle in

Figure 2B represents the observed negative correlation scenario,

which occurs for better preserved CD4+ T cells in the yellow

rectangle in Figure 2C.

The model predicts that the fastest viral decay rate (the

maximum of the curve in Figure 2B) is always at the same level of

depletion of CD4+ T cells (Figure 2C). The argument goes as

follows: increased death rate of infected cells translates into the

decrease of the reproductive ratio at the peak RP, which uniquely

determines the position of the maximum decay rate in Figure 2B

(see Supplementary Material A for demonstration). The maximum

decay rate always occurs for RP<2.15. For RP,2.15 (yellow

rectangle), we expect a positive correlation between peak viral load

and decay rate, and for RP.2.15 (blue rectangle) we expect a

negative correlation.

Since CD4 depletion at nadir depends only on RP (Eq.7), the

maximum level of depletion of CD4+ T cells that we expect to see

with positive correlation between viral peak and decay corre-

sponds to RP<2.15, meaning that CD4 depletion should not

exceed 83%.

SHIV89.6P is a CXCR4-tropic virus that infects all CD4+ T

cells. Therefore, if CD8+ T-cells are predominantly cytolytic and

we have a positive correlation between peak viral load and viral

Figure 1. Correlation between peak and decay of viral load.
Peak viral load and the decay rate of virus after the peak in SHIV89.6P are
positively correlated (Spearman r = 0.346 and p = 0.0418).
doi:10.1371/journal.pone.0015083.g001
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decay, we do not expect maximum depletion of CD4+ T cells to

be higher than 83%. The observed CD4+ T cell depletion at nadir

in control and vaccinated animals is shown in Figure 3A against

peak viral load. Only 7 vaccinated animals (out of 35) show

depletion lower than 83% consistent with the positive correlation

in Figure 1.

In order to determine if these seven animals are actually driving

the positive correlation between viral peak and decay, we removed

them from the data and recalculated the correlation for the

remaining highly depleted animals. Surprisingly, the positive

correlation was then even more significant (Spearman r = 0.465

and p = 0.0127).

Figure 2. Cytolytic immune response. For cytolytic immune response, the correlation between peak viral load and the decay of virus can be
positive or negative, depending on the level of CD4+ T cell depletion at nadir. (A) Time course of viral load for increasing death rates of infected cells.
CTL killing increases from red to light blue lines. As the lifespan of infected cells decreases (red to dark blue), peak viral load becomes lower, and the
decay after the peak gets faster. However, for very high infected cell death rates (light blue) peak viral load decreases while the decay rate slows
down. (B) Dependence of viral decay rate on peak viral load (black line) is nonmonotonic with positive correlation for high death rates of infected
cells (yellow rectangle) and negative correlation for low death rates (blue rectangle). The arrows show the direction of increased death rate of
infected cells. The black circle and the vertical dashed line mark the position of the maximum virus decay rate. (C) Depletion of CD4+ T cells at nadir is
positively correlated to peak viral load. The black dot and the vertical dashed line mark the peak viral load corresponding to the maximal decay of
virus. The horizontal line shows the CD4+ T cell depletion at nadir corresponding to the maximum decay after the viral peak (,83%). We expect to
see positive correlation between the viral peak and decay after the peak only CD4+ T cell depletion at nadir is lower than ,83% (yellow rectangle). If
CD4 depletion at nadir is higher (blue rectangle), we expect negative correlation between viral peak and decay.
doi:10.1371/journal.pone.0015083.g002

Figure 3. CD4+ T cell depletion at nadir. The observed depletion of CD4+ T cells at nadir is incompatible with the observed positive correlation
between viral peak and decay if we assume that the CD8 response is cytolytic. (A) Dependence of nadir CD4+ depletion in control (full circles) and
vaccinated (open circles) animals on peak viral load. Only the seven points below the dashed horizontal line (with CD4 depletion below 83%) are
consistent with positive correlation in Figure 2. (B) The positive correlation between virus peak and decay remains even when the seven points with
low CD4 depletion are removed.
doi:10.1371/journal.pone.0015083.g003
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Effects of noncytolytic CD8+ T cell response
Since the dynamics of viral decay and CD4+ T cell depletion

are not consistently described by an immune response that results

in increased killing of infected cells, we explored the consequences

of noncytolytic activity of virus-specific CD8+ T cells. Some

antiviral soluble factors released by CD8+ T cells suppress viral

replication (by decreasing the probability of infection or the rate of

virus production) without killing the infected cells [7]. The

consequence is again the lowering of peak viral load. However,

since the decay rate of virus after the peak reflects the balance of

the death rate of infected cells (which is constant) and the rate of

new infections, we see a fairly constant decay rate for high values

of the peak, as in red, pink and purple lines in Figure 4A.

However, as the viral peak is further reduced, the proportion of

uninfected cells persisting after the peak also increases consider-

ably. This in turn has a consequence of leaving more uninfected

cells available for infection after the peak. Again, since the

observed decay rate is the net balance of the death rate of infected

cells and the rate of new infections, we see slower decay as the

peak is reduced (the light blue line in Figure 4A). In short, we

expect peak viral load and virus decay rate to be always positively

correlated. The dependence of virus decay on peak viral load for

variable infectivity (Figure 4B) or for variable production of virus

by infected cells (Figure 4C) in the model are similar and both

predict a positive correlation between the peak and decay rate of

viral load. The methods for obtaining the curves in Figure 4B and

C are described in the Supplementary Material A.

Comparing cytolytic and non-cytolytic effects
The analysis described above uses only the viral load kinetics in

order to investigate whether the infection dynamics are consistent

with a cytolytic or non-cytolytic model of infection. Here we found

that a cytolytic model could result in either a positive or a negative

relationship between peak viral load and viral decay rate,

depending on the CD4+ T cell level. However, a non-cytolytic

model consistently predicted a positive relationship. Since our

experimental data also included the CD4+ T cell numbers for

each animal, we extended our model to see if we would

simultaneously account for both the viral and CD4+ T cell

dynamics in using the cytolytic and non-cytolytic models. In other

words, we assume that the differences in viral control among

animals mainly arise from differences in the strength of CD8+ T

cell effector function. The differences in CD8+ T cell function

among animals can either result in differences in the death rate of

infected cells (cytolytic model), or in the viral infectivity or viral

production (non-cytolytic models), while the rest of the parameters

vary among the animals in a random manner. The details of the

fitting procedure are explained in the Supplementary Material B

in Figures S1, S2, S3. The summary of the quantitative analysis is

shown in Figure 5 and in Table 1.

In Figure 5A and in Figure S1 we assumed that cytolysis of

infected cells is the main mechanism of virus control, and

determined the model parameter p/c that provided the best fit

to the data. Using the data on the relationship between virus decay

on virus peak, we first estimated the optimal p/c for this data

(shown as a vertical black line with 95% confidence intervals (C.I.)

in grey). We next estimated the optimal value of p/c that would fit

the CD4+ T cell data (shown as a vertical red line with confidence

intervals in pink). It is quite clear that a cytolytic model cannot

simultaneously fit both the viral decay and CD4+ T cell data. This

is because the observed depletion of CD4+ T cells at nadir is too

high to be consistent with the positive correlation between viral

peak and decay. The ratio of virus production to clearance

estimated from the dependence of decay on peak is incompatible

with the estimate from virus peak and CD4 nadir (the grey and the

pink confidence intervals have no overlap).

Figures 5B and C show the results for two non-cytolytic

mechanisms of control. In Figure 5B (and Figure S2) we fit the

model of increasing immune response that partially blocks virus

entry and thus limits the infectivity of the virus. Figure 5C (and

Figure S3) shows the results of fitting the virus and CD4+ T cell

dynamics when we assume that immune response suppresses virus

production. In both cases, we estimated the best-fit parameters for

the viral load data (black/grey) and CD4 T cells (red/pink). In

each case, there is a large overlap in the confidence intervals of

parameters estimated using the viral and CD4+ T cell data,

demonstrating that the same parameters can simultaneously

describe both viral and CD4+ T cell dynamics without any

apparent contradictions.

Thus, our modelling shows that CD8+ T cell mechanisms that

involve cytolysis of virus producing cells are incompatible with the

experimental data, whereas non-cytolytic mechanisms are com-

Figure 4. Noncytolytic immune response. Peak viral load and decay rate of virus are always positively correlated if virus suppression is due to
noncytolytic immune response. (A) Decay rate of viral load after the peak stays almost constant (red, pink and purple lines) for high peak viremia, but
slows down when virus is strongly suppressed (dark and light blue lines). (B) Viral decay rate increases with the increase in virus peak if CD8+ T cells
control virus by decreasing infectivity. (C) A similar monotonic increase of decay rate with virus peak is observed assuming suppression of virus
production.
doi:10.1371/journal.pone.0015083.g004
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patible, although we cannot differentiate whether reduced viral

infectivity or reduced viral production by infected cells is the more

likely mechanism.

Cytolysis of infected cells before viral production
It has been recently shown [20,21] that in SIV infection some

epitopes from the Gag and Pol proteins are presented on MHC-I

molecules as soon as 2 hours after viral entry into the infected cell,

well before reverse transcription. Gag- and Pol-specific CD8+ T

cells can recognize and eliminate infected cells in vitro almost

immediately [20,21]. Another study has shown that, after the start

of production of new viral proteins (around 12 hours after

infection of the cell), the presence of Nef downregulates the

expression of MHC-I molecules [22], diminishing the probability

of recognition by virus-specific CD8+ T cells. These effects would

create a window period between 2–12 hours after cell infection,

and before virion production, when infected cells can be

recognized and killed most easily. If such ‘‘killing window’’

existed, what would be its impact on infection dynamics?

If infectivity of the virus remained unchanged, the number of

uninfected target cells would remain the same as without any

killing of infected cells. However, the number of infected cells

producing virus would be diminished by the fraction that were

killed before they started production. The viral replication would

Figure 5. Fitting summary. Results of fitting the same parameter to the dependence of viral decay on peak (best estimate shown as black vertical
line with 95% confidence intervals in grey) and to the dependence of CD4 depletion on viral peak (best estimate shown as red vertical line with 95%
confidence intervals in pink) for different mechanisms of virus control. If we assume cytolytic control, the same parameter cannot simultaneously fit
the two dependencies, but for noncytolytic mechanisms it can. A. The ratio of virus production to clearance p/c for cytolysis of infected cells; B. The
ratio of virus production to clearance p/c for CD8 response decreasing infectivity, C. The ratio of infected cell death rate and infectivity d/b if CD8
response decreases virus production, estimated from the dependence of virus decay and the dependence of CD4+ T cell depletion on peak viral load.
doi:10.1371/journal.pone.0015083.g005

Table 1. Results of nonlinear regression fitting of the same parameter from the dependence of virus decay and CD4+ nadir on
virus peak, assuming different mechanisms of immune control.

Effect of CD8+ T cell response Estimated parameter Relationship Best estimate (95% confidence interval)

Increase in d (cytolysis) p/c DV/T0 vs. VP/T0 933.3 (467.7–1096.5) (copies/cell)6day21

1-Tmin/T0 vs. VP/T0 97.72 (75.86–151.4) (copies/cell)6day21

Decreased b (noncytolytic) p/c DV vs. VP/T0 112.2 (85.1–263.0) (copies/cell)6day21

1-Tmin/T0 vs. VP/T0 97.72 (75.86–151.4) (copies/cell)6day21

Decreased p (noncytolytic) d/b DV vs. VP 3.246107 (2.00–6.46)6107 (copies/mL)

1-Tmin/T0 vs. VP 3.246107 (2.88–3.89)6107 (copies/mL)

doi:10.1371/journal.pone.0015083.t001
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then appear the same as if virion production were reduced. The

simplest model describing this effect would be the one where the

Eq.4 is replaced by

dI

dt
~ 1{að ÞbVT{dI , ð1Þ

where a is the fraction of infected cells killed in the window period.

The solutions for target cells and viral load would then be the same

as in the original model, but with viral production changed from p

to (1-a)p. Thus, the conclusion is that our model of viral load

behavior cannot distinguish between noncytolytic antiviral effects

and infected cell killing in the window period between infection

and the production of viral proteins.

Discussion

After recognition of MHC-bound viral peptides, CD8+ T cells

can kill infected cells and/or release into the environment a

number of soluble factors that limit viral replication. We analysed

the relationships of three main parameters of acute infection –

peak viral load, decay rate of viral load after the peak and CD4+ T

cell nadir, with the aim to identify the dominant mechanism of

CD8+ T cell-mediated virus control in SHIV89.6P infection that

can consistently explain these three aspects of the acute phase

dynamics.

We found that peak viral load and viral decay after the peak

were positively correlated. Detailed analysis of the dynamics of

decay of viral load showed that, if viral control is mediated by

cytolysis of infected cells, the correlation between peak viral load

and decay rate can be either positive or negative. However, the

positive association can only occur when CD4+ T cell depletion is

incomplete (less than ,80%) (Figure 5C). While the experimental

data show positive correlation between viral peak and decay, the

massive depletion of CD4+ T cells at nadir is not consistent with

the observed dynamics (Figure 3). Cytolytic control of SHIV89.6P

infection cannot simultaneously explain the observed relationships

between peak viral load, decay of viral load after the peak and

CD4+ T cell depletion at nadir.

If control of infection is mediated by noncytolytic mechanisms

(such as suppression of new infections or virus production by

infected cells), peak viral load and decay are expected to be always

positively correlated as observed. Moreover, our modelling

demonstrates that both the viral load and CD4+ T cell data are

consistent with a non-cytolytic model.

One limitation of this study is the use of a CXCR4-tropic SHIV

virus that may have different target cell specificity to the typical

CCR5-tropism of HIV. The clear advantage of the SHIV model is

that, since all CD4+ T cells can be infected, we were able to

compare the dynamics of total CD4+ T cells with viral dynamics

in individual hosts, by assuming that the virus infects all CD4+
phenotypes with similar probability, so that the CD4 depletion

measured in blood reflects the depletion in other anatomical

compartments like tissues and lymph nodes. By contrast, in

infection with CCR5-tropic viruses, it is unclear which CD4+ T

cell population is ideal to study in order to understand target cell

availability [23]. However, the key question for this study is not

which cells are infected, but how the CD8+ T cells control

infection. It seems unlikely that the mechanisms of viral control by

CD8+ T cells are completely different between CCR5-tropic and

CXCR4-tropic viruses, since many of the epitopes targeted by

CD8+ T cells are identical, and the viruses have a very similar

decay rate under therapy (suggesting that the major virus-

producing cells are behaving in a similar manner). Moreover,

these results are consistent with recent results suggesting non-

cytolytic control of SIV in vivo following depletion of CD8+ T

cells and therapy during chronic infection [14,15] and during

immune escape [16]. Our study extends this work to suggest that

viral control is also non-cytolytic during acute infection, and that

vaccination does not modify this mechanism.

Our results demonstrate that the relationship between peak viral

load, virus decay rate after the peak, and CD4+ T cell depletion

cannot be simultaneously explained by a cytolytic mechanism of

direct killing of productively infected cells by virus-specific CD8+
T cells. However, we cannot exclude the possibility that cytolysis of

infected cells predominantly takes place in the window period after

virus enters the cell, but before the start of production of viral

proteins. On the other hand, non-cytolytic mechanisms of viral

control involving reduced infectivity or reduced production of

virus are consistent with the experimental data from SHIV

vaccination analyzed here, as well as the results from CD8-

depletion experiments and immune escape kinetics in SIV/SHIV-

infected macaques ([14,15,16]), suggesting that further work is

required to elucidate the cellular and molecular mechanisms by

which vaccine-induced CD8+ T cells can control HIV infection.

Methods

Experimental data
In a previously published study [24], 35 rhesus macaques

(Macaca mulatta) were challenged intravenously with 50% monkey

infectious doses of X4-tropic SHIV89.6P expressing SIVmac239 gag

gene. Fourteen animals in this group were unvaccinated controls,

while 21 were vaccinated with a variety of regimens, consisting of

SIV gag-containing plasmid DNA (with different adjuvants),

modified vaccinia Ankara, and adenovirus type 5 vectors, as

previously reported. All animals were genotyped for the MHC

class I Manu-A*01 allele presenting the immunodominant SIV gag

epitope p11CM. All but one of the vaccinated animals and 6 out of

14 control animals were positive for this allele. The vaccinated

animals were challenged at 6 weeks or at 12 weeks after the final

boost. Viral loads and CD4+ T-cell counts were monitored in

peripheral blood every 2 to 4 days until 4 weeks after infection and

then weekly.

Data analysis
We use experimental data for the acute peak viral load, the

CD4+ T cell nadir and the maximum decay rate of the viral load

after the peak. The peak viral load is the highest measured value of

viral load during 4 weeks post infection and the target cell nadir is

the lowest CD4+ T cell count within 10 days after the peak viral

load. We define the exponential decay rate DV of viral load

between two measurements at t1 and t2 as:

DV ~
ln V t1ð Þ{ ln V t2ð Þ

t2{t1
ð2Þ

We calculate the decay rates for all the intervals for 2 weeks after

the peak viral load, and use the maximum value. In all cases this

maximum decay rate is calculated over time intervals of 3 or 4

days.

Model
Mathematical models of viral dynamics have been successfully

used to study HIV infection [25]. Here we adapt the standard

model of viral dynamics [26,27,28,29], using its reduced form

[18,19] to describe the behavior of uninfected (T) and infected (I)

Noncytolytic Effects from SHIV Vaccines
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CD4+ T cells and viral load (V) in the acute SHIV89.6P infection,

where we have access to both viral load and CD4+ T cell number.

The reduced standard model consists of equations

dT

dt
~{bVT ð3Þ

dI

dt
~bVT{dI ð4Þ

dV

dt
~pI{cV : ð5Þ

The infectivity b is the rate at which target cells become infected

at unit virus concentration, and d is the death rate of infected cells.

Free virus is produced by infected cells at rate p and is cleared at

rate c. The dynamics of replacement and death of uninfected

target cells are important for their recovery after the nadir, but can

be neglected in the description of infection between peak viral load

and target cell nadir (where the rate of viral load decline is the

fastest) [18,26]. Thus Eqs.3–5 provide a good model of the

correlations between viral peak and decay and target cell nadir in

CXCR4-tropic infection.

In this model, cellular immune response can affect the death

rate of infected cells d (by killing of infected cells by cytotoxic T

lymphocytes), infectivity b (by blocking viral entry) and production

p (by suppression of virus production by infected cells).

We assume that infection-dependent parameters (b, d, p and c)

are approximately constant between peak viral load and the nadir

of CD4+ T cells. Since the parameters in fact change in time

because of change in immune response, this amounts to assuming

that immune response does not change much during this period of

approximately 10 days. If T0 is the baseline CD4 number, the

course of acute infection in this period is characterized by the

reproductive ratio at the peak RP,

RP~T0
bp

dc
ð6Þ

The reproductive ratio at the peak represents the number of

infected cells generated by one infected cell during its lifetime,

assuming the average level of immune response present between

the peak and the nadir. It is a measure of virus replication in this

period.

In the reduced standard model, the nadir of uninfected cells

Tmin is the solution of the equation [18]

Tmin

T0
{

1

RP

ln
Tmin

T0
~1, ð7Þ

Peak viral load can be expressed as

VP~T0
p

c
1{

1

RP

{
ln RP

RP

� �
: ð8Þ

The fastest decay rate of viral load after the peak DV is at the

nadir of CD4+ T cells [26],

DV ~d{b
p

c
Tmin: ð9Þ

The reproductive ratio at the peak RP will differ among animals

(e.g. with vaccination) because of the differences in the strength of

their immune response, which translates into differences in some

of the immunity-dependent parameters d, b, or p. We shall analyse

the predictions of these relationships assuming that the differences

in viral control among animals mainly arise from differences in a

single CD8+ T cell effector function, which either changes the

lifespan of infected cells, or viral infectivity or production. In the

model terms, this would translate into the interdependencies of

viral peak and decay and target cell nadir, if the differences in RP

among animals arise predominantly because of the differences in

only one parameter (d for cytolytic control or b, or p for

noncytolytic effects). Using the model predictions, we shall

determine which CD8 effector function best reproduces the

observed viral and CD4+ T cell dynamics in the acute phase of

infection.

Supporting Information

Figure S1 Effects of cytolytic response. The ratio of viral

production and clearance (p/c) cannot be consistently determined

from experimental data for viral peak and decay and CD4

depletion if we assume cytolytic immune response. (A) Model

prediction for dependence of decay rate on viral peak and the

method for fitting to experimental data. The dependence is

nonmonotonic with positive correlation for low peaks and negative

correlation for higher peaks (black line). Increasing p/c shifts the

curve in x-direction without changing its shape (red lines), while

increasing the replicative capacity bp/c increases the maximum

without shifting its position. (B) Best fit for p/c and bp/c from the

dependence of virus decay on virus peak (both scaled by the

baseline target cell number) is shown as black line. The envelope of

confidence intervals for the two parameters is in grey. Because of

the overall positive correlation between viral peak and decay, the

best-fit p/c moves the position of maximum decay rate to the peak

viral load higher than observed in most of the animals. Best fit (red

line) and confidence intervals (pink) for replicative capacity when

p/c is constrained to the best fit of peak – target nadir dependence.

(C) Model prediction for dependence of CD4+ T cell depletion at

nadir on viral peak and the method for fitting to experimental

data. The basic shape of the dependence (black line) is parameter-

independent and the increase in p/c shifts the curve in x-direction

without changing its shape (red lines). (D) Best fit (red line) and

confidence intervals (pink) for p/c determined from the depen-

dence of CD4+ T cell depletion on peak viral load. Best fit and

confidence intervals for p/c from peak – decay dependence are

shown for comparison (black line and grey area respectively). Most

data points lie on the left hand side of the curve in order to fit the

negative correlation in (B). Red and black dashed lines in (B) and

(D) show the peak viral load corresponding to the maximum viral

decay rate for each fit.

(TIF)

Figure S2 Effects of reduced viral infectivity on the behaviour of

viral load and CD4+ T cell depletion. The same ratio of virus

production to clearance (p/c) fits the experimental data for the

dependence of viral decay on peak and the dependence of CD4

depletion on viral peak if we assume that immune response limits

virus infectivity. (A) Best fit for p/c and death rate of infected cells

(d) from the dependence of virus decay on virus peak (scaled by

CD4+ T cell number) is shown as black line. The envelope of

confidence intervals for the two parameters is in grey. Best fit (red

line) and confidence intervals (pink) for d when p/c is constrained

to the best fit of dependence CD4+ nadir on virus peak. (B) Best fit
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(red line) and confidence intervals (pink) for p/c determined from

the dependence of CD4+ T cell depletion on peak viral load

(scaled by baseline target cell number). Best fit and confidence

intervals for p/c from peak – decay dependence are shown for

comparison (black line and grey area respectively).

(TIF)

Figure S3 Effects of decreased virus production on the

behaviour of viral load and CD4+ T cell depletion. The same

ratio of infected cells death rate to infectivity (d/b) fits the

experimental data for the dependence of viral decay on peak and

the dependence of CD4 depletion on viral peak if we assume that

immune response suppresses virus production rate. (A) Best fit for

d/b and infected cells death rate (d) from the dependence of virus

decay on virus is shown as black line. The envelope of confidence

intervals for the two parameters is in grey. Best fit (red line) and

confidence intervals (pink) for d when b/d is constrained to the

best fit of dependence CD4+ nadir on virus peak. (B) Best fit (red

line) and confidence intervals (pink) for b/d determined from the

dependence of CD4+ T cell depletion on peak viral load. Best fit

and confidence intervals for b/d from peak – decay dependence

are shown for comparison (black line and grey area respectively).

(TIF)
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